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On the number of fixed points of a Boolean transformation

Sergiu Rudeanu

Abstract. In [1] the authors determine the Boolean transformations F : {0, 1}2 −→ {0, 1}2
which have two fixed points, via the semi-tensor product method. In the present paper,
using the irredundant solution of a Boolean equation in an arbitrary Boolean algebra, which
we have devised in [2], we obtain two generalizations. First we find the fixed points of a
Boolean transformation F : B2 −→ B2 in an arbitrary Boolean algebra B. Secondly, we
describe explicitly the form of the transformations F : {0, 1}2 −→ {0, 1}2 having exactly k
fixed points, for k = 0, . . . , 4.
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In [1] the authors use the technique of semi-tensor product in order to determine
all the transformations F : {0, 1}2 −→ {0, 1}2 which have exactly two fixed points.
In the present paper we first recall all necessary well-known prerequisites in §1. In
§2 we recall the concept of irredundant solution of a Boolean equation in n variables
over an arbitrary Boolean algebra B, introduced in [2], and carry out the complete
computation for n = 2. Also, as an application we determine explicitly the fixed
points of a Boolean transformation F : B2 −→ B2 (Proposition 2.2). In §3, by
applying Proposition 2.2 for B = {0, 1}, we determine explicitly, for k = 0, . . . , 4,
those transformations F : {0, 1}2 −→ {0, 1}2 which have exactly k fixed points. So,
as a by-product we have thus obtained a classification of the 256 transformations.

1. Introduction

In switching theory it is customary to use the name Boolean algebra for the algebra
({0, 1},∨, ·, ′, 0, 1), where x∨y = max(x, y) and x ·y = xy = min(x, y), and the name
Boolean function for the functions with arguments and values in {0, 1}.

Yet in algebra the term Boolean algebra has a more general meaning, namely
any non-trivial distributive complemented lattice, i.e., any algebra (B,∨, · , ′, 0, 1),
where the binary operations ∨, · are idempotent, commutative, associative, each of
them distributive over the other, 0 is unit for ∨, 1 is unit for ·, 0 6= 1, and x′ is
the complement of x, i.e., x ∨ x′ = 1 and x · x′ = 0. There is a plethora of Boolean
algebras in mathematics, e.g. in probability theory, functional analysis, mathematical
logic, etc. Besides the two-element Boolean algebra {0, 1}, another standard example
of Boolean algebras is provided by the fields of subsets (P(S),∪,∩, ′,∅, S), where ′

denotes set complementation.
For an arbitrary Boolean algebra B, the term Boolean function is reserved to the

algebraic functions over B, that is, those functions which are obtained from variables
and constants of B by superpositions of the operations ∨, · and ′. It is proved that a
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function f : Bn −→ B is Boolean if and only if it can be represented in the canonical
disjunctive form (CDF)

(3.1) f(x1, . . . , xn) =
∨

α1,...,αn∈{0,1} cα1...αn
xα1

1 . . . xαn
n ,

where
∨

denotes iterated disjunction (like
∑

with respect to +), and xα is de-
fined by x1 = x and x0 = x′; the elements cα1...αn

belong to B (in fact, cα1...αn
=

f(α1, . . . , αn)). So, while there are | B ||B|n functions f : Bn −→ B, only | B |2n

of
them are Boolean functions. It follows that in the two-element Boolean algebra {0, 1}
every function f : {0, 1}n −→ {0, 1} is Boolean in the above sense, and {0, 1} is the
unique Boolean algebra with this property.

Boolean equations are equations expressed in terms of Boolean functions. Every
Boolean equation f = g is equivalent to the Boolean equation fg′ ∨ f ′g = 0, and
every system of Boolean equations fj = 0 (j = 1, . . . , m) is equivalent to the single
Boolean equation

∨m
j=1 fj = 0.

The Boolean equation in one unknown ax ∨ bx′ = 0 has solutions if and only if
ab = 0, in which case the set of solutions is the interval [b, a′] = {x ∈ B | b ≤ x ≤ a′},
where the order relation ≤ satisfies x ≤ y ⇐⇒ xy = x ⇐⇒ xy′ = 0. Equivalently, the
solution set has the parametric representation x = a′t ∨ bt′.

More generally, the Boolean equation in n unknowns f(x1, . . . , xn) = 0 has so-
lutions if and only if

∏
A∈{0,1}n f(A) = 0. One of the methods for solving such an

equation is the successive elimination of variables, which has two stages. The first
one iterates the following step. One writes the equation in the form

f(x1, . . . , xn−1, 1)xn ∨ f(x1, . . . , xn−1, 0)x′n = 0 ,

which is regarded as an equation in xn, so that the consistency condition is

f(x1, . . . , xn−1, 1)f(x1, . . . , xn−1, 0) = 0 .

This equation has (at most) n − 1 unknowns and the procedure continues until all
the variables have been eliminated. The second stage follows in reverse order the
equations constructed in the first stage, introducing in turn each of the solutions
x1, x2, . . . into the previous equation. In §2 we will explicitly apply this technique for
n = 2.

A representation theorem says that every Boolean algebra is isomorphic to a field of
sets, therefore all the set-theoretical computation rules are valid in arbitrary Boolean
algebras, e.g. the De Morgan laws. Other useful computation rules are x ∨ x′y =
x∨y, x(x′∨y) = xy, (ax∨bx′)(cx∨dx′) = acx∨bdx′, (ax∨bx′)′ = a′x∨b′x′, (axy∨
bxy′ ∨ cx′y ∨ dx′y′)′ = a′xy ∨ b′xy′ ∨ c′x′y ∨ d′x′y′, and in general formula (3.1) yields
f ′(x1, . . . , xn) =

∨
c′α1...αn

xα1
1 . . . xαn

n . In §2 and §3 we will tacitly use these rules.
Much more about Boolean functions and Boolean equations can be found in [2]

and also in [3].

2. Irredundant solutions of Boolean equations

In this section we work in an arbitrary Boolean algebra. First we present the irre-
dundant solution of a Boolean equation, devised in [2], which means a parametric
representation of the solutions of a Boolean equation in such a way that there is a
bijection between the values given to the parameters and the solutions of the equa-
tion. Then we apply this technique in order to obtain an irredundant parametric
representation of the fixed points of a Boolean transformation F : B2 −→ B2.
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Theorem 2.1. ([2], Theorem 2.9) Suppose ax ∨ bx′ = 0 is a consistent Boolean
equation, i.e., ab = 0. Then an element x ∈ B satisfies the equation if and only if it
is of the form
(2.1) x = b ∨ t, where t ≤ a′b′ ,

in which case the element t is unique.

In other words, (2.1) is the irredundant parametric solution of the equation. By
combining Theorem 2.1 with elimination of variables, one obtains an irredundant
solution of a consistent Boolean equation in n unknowns. Let us do this explicitly for
n = 2.

Proposition 2.1. Suppose
(2.2) axy ∨ bxy′ ∨ cx′y ∨ dx′y′ = 0
is a consistent Boolean equation, i.e.., abcd = 0. Then a pair (x, y) satisfies (2.2) if
and only if it is of the form
(2.3.1) x = cd ∨ t, where t ≤ (a′ ∨ b′)(c′ ∨ d′) ,

(2.3.2) y = bt ∨ d(b ∨ c′)t′ ∨ u, where u ≤ a′b′t ∨ (c′d′ ∨ a′b′cd)t′ ,

in which case the pair (t, u) is unique.

Proof. Writing (2.2) in the form
(2.4.1) (ax ∨ cx′)y ∨ (bx ∨ dx′)y′ = 0 ,

the elimination of y yields (ax ∨ cx′)(bx ∨ dx′) = 0, that is,
(2.4.2) abx ∨ cdx′ = 0 .

Since ab · cd = 0, equation (2.4.2) is consistent, therefore its irredundant solution is
(2.3.1) by Theorem 2.1.

In the second stage of the elimination process we introduce the solution (2.3.1) of
(2.4.2) into equation (2.4.1). We have x = cdt′ ∨ t, x′ = (c′ ∨ d′)t′, hence

ax ∨ cx′ = at ∨ acdt′ ∨ cd′ t′ = at ∨ c(ad ∨ d ′)t′ ,

bx ∨ dx′ = bcdt′ ∨ bt ∨ c′dt′ = bt ∨ d(bc ∨ c′)t′ ,

hence equation (2.4.1) becomes the equation in y

(2.4.1′) [at ∨ c(a ∨ d′)t′]y ∨ [bt ∨ d(b ∨ c′)t′]y′ = 0 ,

which is consistent because of (2.4.2). By applying Theorem 2.1 to equation (2.4.1′)
we get

y = bt ∨ d(b ∨ c′)t′ ∨ u ,

where

u ≤ [at ∨ c(a ∨ d ′)t′]′ [bt ∨ d(b ∨ c′)t′]′ = [a′t ∨ (c′ ∨ a′d)t′] [b′t ∨ (d ′ ∨ b′c)t′]

= a′b′t ∨ (c′ ∨ a′d)(d′ ∨ b′c)t′ = a′b′t ∨ (c′d′ ∨ a′b′cd)t′ .

So (2.3.2) is the irredundant parametric solution of (2.4.1) by Theorem 2.1.
Therefore the elimination of variables ensures that the pair (2.3.1),(2.3.2) is a

parametric solution of (2.2). If (x, y) satisfies (2.2) then x satisfies (2.4.2), hence t is
uniquely determined. Then y satisfies (2.4.1′), hence u is uniquely determined. ¤

A Boolean transformation is a map F : Bn −→ Bm of the form F = (f1, . . . , fm),
where f1, . . . , fm : Bn −→ B are Boolean functions. If m = n then F may have fixed
points, that is, vectors (x1, . . . , xn) ∈ Bn such that F (x1, . . . , xn) = (x1, . . . , xn). The
possible fixed points are the solutions of the system of Boolean equations fi(x1, . . . , xn)
= xi (i = 1, . . . , n), so that we can determine whether fixed points do exist and obtain
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an irredundant parametric representation of them. We carry out below the complete
computation for n = 2.

Proposition 2.2. Consider a Boolean transformation F = (f, g) : B2 −→ B2, where
(2.5.1) f(x, y) = axy ∨ bxy′ ∨ cx′y ∨ dx′y′ ,

(2.5.2) g(x, y) = pxy ∨ qxy′ ∨ rx′y ∨ sx′y′ .

Then F has fixed points if and only if
(2.6) ap ∨ bq′ ∨ c′r ∨ d′s′ = 1 ,

in which case
(2.7.1) x = (c ∨ r′)(d ∨ s) ∨ t, where t ≤ (ap ∨ bq′)(c′r ∨ d ′s′) ,

(2.7.2)
y = (b′ ∨ q)t ∨ (d ∨ s)(b′ ∨ q ∨ c′r)t′ ∨ u, where

u ≤ apbq′t ∨ [c′rd′s′ ∨ apbq′(c ∨ r′)(d ∨ s)]t′

is an irredundant parametric representation of the fixed points.

Proof. The fixed points are characterized by the equations f(x, y) = x and g(x, y) =
y. The equivalent equations fx′ ∨ f ′x = 0 and gy′ ∨ g′y = 0 are

cx′y ∨ dx′y′ ∨ a′xy ∨ b′xy′ = 0 ,

qxy′ ∨ sx′y′ ∨ p′xy ∨ r′x′y = 0 .

This system is equivalent to the single equation
(2.8) (a′ ∨ p′)xy ∨ (b′ ∨ q)xy′ ∨ (c ∨ r′)x′y ∨ (d ∨ s)x′y′ = 0 ,

whose consistency condition (a′ ∨ p′)(b′ ∨ q)(c ∨ r′)(d ∨ s) = 0 is equivalent to (2.6).
If (2.6) is fulfilled, the irredundant parametric solution of (2.8) is obtained by

applying Proposition 2.1. We see that (2.3.1) and (2.3.2) reduce to (2.7.1) and (2.7.2),
respectively. ¤

3. Classifying the transformations of {0, 1}2 by the number of their fixed
points

The transformations F : {0, 1}2 −→ {0, 1}2 can be classified according to the number
of their fixed points. In this section we provide explicit descriptions of the five classes
of this partition.

We recall that

F (x, y) = (axy ∨ bxy′ ∨ cx′y ∨ dx′y′, pxy ∨ qxy′ ∨ rx′y ∨ sx′y′)

and we introduce the following shorthand of notation:
(3.1) a′ ∨ p′ = A, b′ ∨ q = B, c ∨ r′ = C, d ∨ s = D ,

so that the equation (2.8) of fixed points becomes
(3.2) Axy ∨Bxy′ ∨ Cx′y ∨Dx′y′ = 0
and the consistency condition (2.6) is
(3.3) A′ ∨B′ ∨ C ′ ∨D′ = 1 .

The solution (2.3) can be written
(3.4.1) x = CD ∨ t, t ≤ α ,

(3.4.1′) α = (A′ ∨B′)(C ′ ∨D′) ,

(3.4.2) y = Bt ∨D(B ∨ C ′)t′ ∨ u, u ≤ β(t) ,

(3.4.2′) β(t) = A′B′t ∨ (C ′D′ ∨A′B′CD)t′ .
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Now everything takes the values 0,1. Since the solution provided by Proposition
2.1 is irredundant, the number of fixed points equals the number of possible values of
the pair (t, u). If α = 0 then t = 0, while if α = 1 then t takes both values 0 and 1.
For a given t, β(t) = 0 forces u = 0, while u takes both values 0 and 1 if β(t) = 1.

Notation. Let Ck denote the class of transformations F having exactly k fixed points.

Proposition 3.1. The class C0 is characterized by

A = B = C = D = 1 .

Proof. This is the negation of (3.3). ¤
Lemma 3.1. Equation (3.2) is consistent and α = 0 if and only if A′ ∨ B′ = CD.
This implies β(0) = A′B′ ∨ C ′D′.

Proof. The first two conditions, which are (A′∨B′)∨(C ′∨D′) = 1 and (A′∨B′)(C ′∨
D′) = 0, express the fact that A′∨B′ is the complement of C ′∨D′, that is, A′∨B′ =
(C ′ ∨D′)′ = CD. This implies A′B′ ≤ CD, hence C ′D′ ∨A′B′CD = C ′D′ ∨A′B′. ¤
Proposition 3.2. The class C1 is characterized by

A′B′ = C ′D′ = 0 and A′ ∨B′ = CD .

Proof. Follows by Lemma 3.1, since having a single fixed point means that the
consistency condition (3.3) is fulfilled and both t and u are fixed at 0, which happens
if and only if α = 0 and β(0) = 0. ¤
Proposition 3.3. The class C2 consists of two families of transformations, whose
characteristic functions are

A′B′ ∨ C ′D′ = 1 and A′ ∨B′ = CD

and
A′ = B and C ′ = D .

Proof. There exist exactly two fixed points if and only if the consistency condition
(3.3) is joined to the following alternative: either t = 0 and u is free in {0, 1}, or t is
free in {0, 1} and u is fixed to 0 no matter the value of t. This alternative is equivalent
to the following one: either α = 0 and β(0) = 1 or α = 1 and β(0) = β(1) = 0.

According to Lemma 1 the first possibility is expressed by A′ ∨ B′ = CD and
A′B′ ∨ C ′D′ = 1.

The second possibility amounts to (3.3) and A′ ∨ B′ = C ′ ∨ D′ = 1 and C ′D′ ∨
A′B′CD = A′B′ = 0. The second condition implies (3.3) and can be written AB ∨
CD = 0, while the last two conditions become C ′D′ ∨ A′B′ = 0. We have obtained
AB = A′B′ = 0 and CD = C ′D′ = 0; but xy ∨ x′y′ = 0 ⇐⇒ x′ = y. ¤
Proposition 3.4. The class C3 is characterized by

A′ ∨B′ = C ′ ∨D′ = 1 and A ∨B = C ′D′ .

Proof. It is necessary that t be free in {0, 1}, that is, A′ ∨ B′ = C ′ ∨D′ = 1. This
also implies the consistency condition (3.3).

Now there are two possibilities in order to have exactly 3 fixed points: either one
fixed point with t = 0 and 2 fixed points with t = 1, or 2 fixed points with t = 0
and one fixed point with t = 1. This amounts to either β(0) = 0 and β(1) = 1,
or β(0) = 1 and β(1) = 0. In other words, this condition is β(0) = β′(1), that is,
C ′D′ ∨A′B′CD = A ∨B. But CD = 0 by the first condition, so the latter condition
reduces to C ′D′ = A ∨B. ¤
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Proposition 3.5. The class C4 is a singleton characterized by

A = B = C = D = 0 .

Proof 1. There are 4 fixed points (the whole set {0, 1}) iff t and u are free in {0, 1},
that is, iff α = β(0) = β(1) = 1, which implies (3.3). This amounts to

(A′ ∨B′)(C ′ ∨D′) = C ′D′ ∨A′B′CD = A′B′ = 1 .

The last equation is equivalent to A = B = 0, so that it remains C ′ ∨D′ = C ′D′ ∨
CD = 1, hence CD = 0, therefore C ′D′ = 1, that is C = D = 0. ¤
Proof 2. Clearly the unique transformation having 4 fixed points is F (x, y) = (x, y).
So we have the identities

axy ∨ bxy′ ∨ cx′y ∨ dx′y′ = x, pxy ∨ qxy′ ∨ rx′y ∨ sx′y′ = y ,

which hold iff a = b = 1, c = d = 0, p = r = 1, q = s = 0, that is, A = B = C =
D = 0. ¤

Finally let us compute the cardinalities of the five classes.
To do this we essentially come back to the old parameters a, b, . . . , r, s, using (3.1).

Since the parameters occurring in A,B, C,D are disjoint, we can split the discussion
by giving to the new parameters A,B, C,D values 0,1 independently of each other.
Taking A = 0 amounts to fixing the parameters a, p, while A = 1 summarizes 3 cases
with respect to a, p ; similarly for B, C, D. The technique will consist in splitting
the discussion into cases and subcases until we come to small subcases in which
the parameters A,B, C,D have fixed values. Each small case describes a family of
transformations having 3k members, where k is the number of parameters A,B, C, D
fixed to 1. For each class we finally add the cardinalities of the families described by
the small subcases corresponding to that class.

The class C0 requires no splitting: it has 34 = 81 transformations.
The following lemma facilitates the splitting process.

Lemma 3.2. The condition AB = A′B′ = 0 is equivalent to A′ = B and there are 6
transformations satisfying this property; similarly for CD = C ′D′ = 0.

Proof. The first claim was already noticed in the proof of Proposition 3.3. But
A′ = B means that either A = 1 and B = 0, or A = 0 and B = 1. There are 3
transformations in each of the two variants, so there are 6 transformations satisfying
A′ = B. ¤

For the class C1 we split the discussion by CD.
If CD = 0 we get A = B = 1, which describes 32 = 9 possibilities, and it re-

mains CD = 0 and C ′D′ = 0, which corresponds to 6 possibilities by Lemma 3.2.
Consequently there are 9× 6 = 54 transformations which satisfy the case CD = 0.

If CD = 1 we get C = D = 1, again 9 possibilities, and A′B′ = 0, A′∨B′ = 1, that
is A′ = B′′ = B, again 6 possibilities by Lemma 3.2. Therefore we obtain 9× 6 = 54
transformations satisfying CD = 1.

In conclusion C1 has 54 + 54 = 108 members.
For the first family of C2, if CD = 0 then A = B = 1, hence C ′D′ = 1, therefore

C = D = 0; so there are 9 possibilities. If CD = 1 then C = D = 1, hence
A′ ∨B′ = A′B′ = 1, therefore A = B = 0, so that we get 9 more possibilities. So this
family has 9 + 9 = 18 members.
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By applying twice Lemma 3.2 we see that the second family of C2 has 6 × 6 = 36
transformations.

Therefore C2 has 18 + 36 = 54 members, as was already noticed in [1].
For C3, if C ′D′ = 0 then A = B = 0 and it remains C ′ ∨ D′ = 1; so C ′ = D,

hence 6 transformations by Lemma 3.2. If C ′D′ = 1 then C = D = 0 and it remains
A′ ∨B′ = 1 and A∨B = 1, that is, AB = A′B′ = 0, hence another 6 transformations
by Lemma 3.2. Therefore C3 has 6 + 6 = 12 members.

We have thus proved:

Proposition 3.6. The cardinalities of the classes C0, . . . , C4 are given in the following
table:

C0 C1 C2 C3 C4

81 108 54 12 1
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