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On Jachymski’s theorem

Florin Bojor

Abstract. In this note we prove that a fixed point theorem (due to Jachymski in [5]) extends
and subsumes some results in the fixed point theory.
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1. Introduction

The classical Banachs contraction principle is one of the most useful results in fixed
point theory. In a metric space setting it can be briefly stated as follows.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X a strict
contraction, i.e. a map satisfying

d (Tx, Ty) 6 ad (x, y) , for all x, y ∈ X, (1)

where 0 < a < 1 is constant. Then:
(1) T has a unique fixed point x∗ in X;
(2) The Picard iteration (xn)n>0 defined by

xn+1 = Txn, n = 0, 1, 2, ... (2)

converges to x∗, for any x0 ∈ X.

There is more than one way to generalize the Banach’s contraction mapping prin-
ciple. One of them is to get the subset M of X ×X, the contraction condition to be
satisfied only for (x, y) ∈ M and still the operator is the operator is a Picard operator
(abbr. PO). This article will prove that the Jachymski’s theorem is one of the most
general theorems of its kind.

Let T be a selfmap of a metric space (X, d). Following Petruşel and Rus [12], we
say that T is a Picard operator if T has a unique fixed point x∗ and lim

n→∞
Tnx = x∗ for

all x ∈ X and T is a weakly Picard operator (abbr. WPO) if the sequence (Tnx)n∈N
converges, for all x ∈ X and the limit (which may depend on x) is a fixed point of T .
Thus any contraction on complete metric space is PO.

Let (X, d) be a metric space. Let ∆ denote the diagonal of the Cartesian product
X ×X. Consider a directed graph G such that the set V (G) of its vertices coincides
with X, and the set E (G) of its edges contains all loops, i.e., E (G) ⊇ ∆. We assume
G has no parallel edges, so we can identify G with the pair (V (G) , E (G)). Moreover,
we may treat G as a weighted graph (see [[6], p. 309]) by assigning to each edge the
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distance between its vertices. By G−1 we denote the conversion of graph G, i.e. the
graph obtained from G by reversing the direction of edges. Thus we have

E
(
G−1

)
= {(x, y) | (y, x) ∈ G} .

The letter G̃ denotes the undirected graph obtained from G by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G̃ as a directed graph
for which the set of its edges is symmetric. Under this convention,

E
(
G̃
)
= E (G) ∪ E

(
G−1

)
(3)

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G) , E′ ⊆ E (G) and for any edge
(x, y) ∈ E′, x, y ∈ V ′.

Now we recall a few basic notions concerning the connectivity of graphs. All of
them can be found, e.g., in [6]. If x and y are vertices in a graph G, then a path in

G from x to y of length N (N ∈ N) is a sequence (xi)
N
i=0 of N + 1 vertices such that

x0 = x, xN = y and (xi−1, xi) ∈ E (G) for i = 1, ..., N . A graph G is connected if

there is a path between any two vertices. G is weakly connected if G̃ is connected.
If G is such that E (G) is symmetric and x is a vertex in G, then the subgraph Gx

consisting of all edges and vertices which are contained in some path beginning at x
is called the component of G containing x. In this case V (Gx) = [x]G, where [x]G is
the equivalence class of the following relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

Clearly, Gx is connected.
Recently, J. Jakhymski [5] was the first author who gave sufficient conditions for an

operator to be a PO if (X, d) is endowed with a graph and defined the next concept:

Definition 1.1 ([5], Def. 2.1). We say that a mapping f : X → X is a Banach
G-contraction or simply G-contraction if f preserves edges of G, i.e.,

∀x, y ∈ X ((x, y) ∈ E (G) ⇒ (f (x) , f (y)) ∈ E (G)) (4)

and f decreases weights of edges of G in the following way:

∃α ∈ (0, 1) , ∀x, y ∈ X ((x, y) ∈ E (G) ⇒ d (f (x) , f (y)) 6 αd (x, y)) . (5)

The main theorem is:

Theorem 1.2 ([5], Th 3.2). Let (X, d) be complete, and let the triple (X, d,G) have
the following property:

(P) for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then there
is a subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Let f : X → X be a G-contraction, and Xf = {x ∈ X |(x, fx) ∈ E (G)}. Then the
following statements hold.
1. cardFix f = card {[x]G̃ |x ∈ Xf }.
2. Fix f ̸= ∅ iff Xf ̸= ∅.
3. f has a unique fixed point iff there exists x0 ∈ Xf such that Xf ⊆ [x0]G̃.

4. For any x ∈ Xf , f
∣∣
[x]G̃

is a PO.

5. If Xf ̸= ∅ and G is weakly connected, then f is a PO.
6. If X ′ := ∪{[x]G̃ |x ∈ G} then f |X′ is a WPO.
7. If f ⊆ E (G), then f is a WPO.

Here Fixf denotes the set of fixed points of operator f .
Since then several authors have considered the problem of existence and uniqueness

of a fixed point for contraction type operators in metric spaces endowed with a graph
(see [1], [2], [3], [9]).
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2. Main results

Using Jachymski’s Theorem [5] we can give alternate proofs to some known results
by choosing the right form of graph.

Proposition 2.1. Banach’s contraction principle is a consequence of Jakhymski’s
Theorem.

Proof. Let the graph G0 defined by V (G) = X and E (G0) = X × X, which is a
connected graph and the contraction T by Theorem 1.1 is a G0-Banach contraction.
The property (P) is fulfilled so from Theorem 1.1 the operator T is PO. �

In the following we prove that the fixed point theorems for contractions in partially
ordered metric spaces are consequences of Jakhymski’s Theorem.

Theorem 2.2 (Ran and Reurings [14], Th 2.1). Let (X, d) be a complete metric space
endowed with a partial ordering ” ≤ ” such that

every pair of, elements of X has an upper and a lower bound. (6)

Let T : X → X be continuous and monotone, and such that

∃α ∈ (0, 1) ∀x, y ∈ X (x 6 y ⇒ d (Tx, Ty) 6 αd (x, y)) . (7)

If there exists x0 ∈ X with x0 6 Tx0 or Tx0 6 x0, then T is a PO.

Proof. Let G be the graph defined by V (G) = X and

E (G) = {(x, y) ∈ X ×X |x ≤ y } .
Because every pair of elements of X has an upper and a lower bound the graph G is
weakly connected. The mapping T : X → X which satisfies (7) and is monotone is a
G-Banach contraction. From the continuity of mapping T we get that the property
(P) is true so from Theorem 1.1 the operator T is PO. �

Further improvements of the above results were found independently by Petruşel
and Rus [12], and Nieto and Rodŕıguez-López [11]. Here we give a slightly more gen-
eral version of these extensions taken from the paper by Nieto, Pouso and Rodŕıguez-
López [10]. Following [12] we denote:

X≤ := {(x, y) ∈ X ×X |x ≤ y or y ≤ x} .
Theorem 2.3. Let (X, d) be a complete metric space endowed with a partial ordering
” ≤ ” such that every pair of elements of X has an upper or a lower bound. Let
T : X → X be such that T preserves comparable elements, i.e.

for any x, y ∈ X, (x, y) ∈ X≤ implies (Tx, Ty) ∈ X≤, (8)

and (7) holds. Assume that either T is orbitally continuous or (X, d,≤) is such that

for any (xn)n∈N , if xn → x and (xn, xn+1) ∈ X≤, for n ∈ N, then

there is a subsequence (xkn)n∈N such (xkn , x) ∈ X≤ ∀n ∈ N.
(9)

If there exists x0 ∈ X with (x0, Tx0) ∈ X≤, then T is a PO.

Proof. Let G be the graph defined by V (G) = X and

E (G) = {(x, y) ∈ X ×X |x ≤ y or y ≤ x} .
Because every pair of elements of X has an upper and a lower bound the graph G is
weakly connected. The mapping T : X → X which satisfies (7) and is monotone is a
G-Banach contraction. From the orbitally continuity of mapping T or by (9) we get
the property (P) is true so from Theorem 1.1 the operator T is PO. �
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On the other hand, Theorem 1.1 yields directly the following well-known fixed
point theorem which is quite different from the above results.

Theorem 2.4 (Edelstein, [7]). Let (X, d) be complete and ϵ-chainable for some

ϵ > 0, i.e., given x, y ∈ X, there is N ∈ N and a sequence (xi)
N
i=0 such that

x0 = x, xN = y and d (xi−1, xi) < ε for i = 1, ..., N . Let T : X → X be such that

∃α ∈ (0, 1) , ∀x, y ∈ X (d (x, y) < ε ⇒ d (Tx, Ty) 6 αd (x, y)) . (10)

Then T is a PO.

Proof. Clearly, (10) implies T is continuous. Consider the graph G with V (G) = X
and

E (G) = {(x, y) ∈ X ×X |d (x, y) < ε} .

Then ϵ-chainability of (X, d) means G is connected. If (x, y) ∈ E (G), then

d (Tx, Ty) 6 αd (x, y) 6 αε 6 ε.

Hence (4) and (5) hold, so T is a G-contraction. By Theorem 1.1 , T is a PO. �

In the following we show the fixed point theorem for cyclic contractions proved in
[8] by W.A. Kirk, P.S. Srinivasan and P. Veeramani is a consequence of Theorem 1.1.

Definition 2.1. Let p ∈ N, p ≥ 2 and {Ai}pi=1 be nonempty closed subsets of a
complete metric space (X, d). An operator T : {Ai}pi=1 → {Ai}pi=1 is called a cyclic
operator if the following condition is satisfied:

T (Ai) ⊆ Ai+1 for all i ∈ {1, 2, ..., p} , (11)

where Ap+1 = A1.

Theorem 2.5 ([8]). Let p ∈ N, p ≥ 2 and {Ai}pi=1 be nonempty closed subsets of a
complete metric space (X, d), and suppose T : {Ai}pi=1 → {Ai}pi=1 satisfies (11) and
the following one

d (Tx, Ty) 6 kd (x, y) , for all x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p, (12)

where Ap+1 = A1. If k ∈ [0, 1) then T has an unique fixed point.

Proof. Consider the graph G with V (G) = X and

E (G) = {(x, y) ∈ X ×X |x ∈ Ai şi y ∈ Ai+1 , i = 1, ..., p}

Because T is a cyclic operator and (x, y) ∈ E (G) then x ∈ Ai and y ∈ Ai+1 so
Tx ∈ Ai+1 and Ty ∈ Ai+2, which implies (Tx, Ty) ∈ E (G). Using (12) we have
T is a G-contraction. From the definition of edges of G we have that G is weakly
connected. Let (xn)n∈N in X, with xn → x and (xn, xn+1) ∈ E (G) for n ∈ N. Then
there is j ∈ {1, 2, ..., n} such that x ∈ Aj . However in view of (11) the sequence {xn}
has an infinite number of terms in each Ai, for all i ∈ {1, 2, ..., n}. The subsequence
of the sequence {xn} formed by the terms which are in Aj−1 satisfies the condition
(P) from Theorem 1.1. Obviously XT ̸= ∅ so T is PO. �

The last consequence of Jachymski’s Theorem which we present is The Alternative
of Fixed Point, due to Diaz and Margolis [4]. Here we will give a slightly more general
version of these extensions taken from the paper by V. Radu [13].
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Theorem 2.6 (The fixed point alternative). Suppose we are given a complete gen-
eralized metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with the
Lipschitz constant a. Then, for each given element x ∈ Ω, either

d
(
Tnx, Tn+1x

)
= ∞, ∀n > 0,

or there exists a natural number n0 such that
i. d

(
Tnx, Tn+1x

)
< ∞ for all n > n0;

ii. The sequence (Tnx)n>0 is convergent to a fixed point y∗ of T ;

iii. y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω |d (Tn0x, y) < ∞};
iv. d (y, y∗) 6 1

1−ad (y, Ty) for all y ∈ ∆.

Proof. Let the graph G with V (G) = X and

E (G) = {(x, y) ∈ X ×X |d (x, y) < ∞} .

By the symmetry of distance we have G̃ = G.
If (x, y) ∈ E (G), so d (x, y) < ∞, then d (Tx, Ty) 6 ad (x, y) < ∞ in conclusion

(Tx, Ty) ∈ E (G), and T being a strictly contractive mapping we have T is a G-
contraction.

Let x ∈ X such that, there exists n0 ∈ N with property d
(
Tn0x, Tn0+1x

)
< ∞,

then
(
Tn0x, Tn0+1x

)
∈ E (G), that is Tn0x ∈ XT so

XT ̸= ∅.
An easy induction shows

d
(
Tnx, Tn+1x

)
6 an−n0d

(
Tn0x, Tn0+1x

)
, for all n > n0

so d
(
Tnx, Tn+1x

)
< ∞ for all n > n0, therefore the relation i. is true.

For the same x like the one above, we have:

[Tn0x]G = {y ∈ X |∃ a path in G from x to y } .

If y ∈ [Tn0x]G then there is a path (xi)
N
i=0 in G from Tn0x to y, that is, x0 = Tn0x,

xN = y and (xi−1, xi) ∈ E (G) for i = 1, ..., N . Then

d (Tn0x, y) 6
N∑
i=1

d (xi−1, xi) < ∞.

Consequently [Tn0x]G ⊆ ∆ and the relation ∆ ⊆ [Tn0x]G is obvious, so ∆ = [Tn0x]G.
If (xn)n∈N converges to x∗ ∈ X with property (xn, xn+1) ∈ E (G) for all n ∈ N

then for ϵ = 1 there exists nϵ ∈ N such that d (xn, x
∗) < 1 for all n ≥ nϵ, that is

(xn, x
∗) ∈ E (G) , ∀n > nϵ.

The subsequence (xn)n>n0
satisfies the condition (P) from Theorem 1.2. Then from

Theorem 1.2, 4. we have T |[Tn0x]G
is PO which implies ii. and iii. from The Fixed

Point Alternative.
For iv., let y ∈ ∆ so d (y, Tn0x) < ∞. Because (Tnx)n>n0

converges, then

d
(
Tn0x, Tn−1x

)
< ∞ for all n > n0 and d

(
y, Tn−1x

)
< ∞, that is

(
y, Tn−1x

)
∈

E (G). By the triangle inequality and because T is a G-contraction, we get:

d (y, Tnx) 6 d (y, Ty) + d (Ty, Tnx) 6 d (y, Ty) + ad
(
y, Tn−1x

)
, (13)

for all n ≥ n0.
Hence, letting n tend to ∞ in (13) we conclude

d (y, y∗) 6 d (y, Ty) + ad (y, y∗)
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that is d (y, y∗) 6 1
1−ad (y, Ty) for any y ∈ ∆, which completes the proof. �
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