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Uniqueness of strong solution for a 1D viscous bi-layer
Shallow Water model
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ABSTRACT. The aim of this paper is to prove the uniqueness of strong solution of a one dimen-
sional viscous bilayer shallow water model. Our analysis is based on some new useful estimate
namely BD entropy and on a method developed by Mellet and Vasseur in [14] to prove the
existence and uniqueness on some compressible one dimensional Navier-Stokes system. Under
suitable assumptions on the solutions and using Gronwall Lemma, we obtain the uniqueness
of strong solution. We perform our analysis in periodic domain with periodic boundaries
conditions.
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1. Introduction

In this paper, we study the uniqueness of strong solution of the following viscous
bilayer shallow water model :

O¢h1 + 0z (hyv1) = 0, (1)
Ot (h1v1) 4 05 (h1v?) + gh10,hy + 1gh10,hy — 110, (h105v1) = 0, (2)
Othg + 0, (havz) = 0, (3)
Or(hava) + 0z (hov3) + ghaOyhg + ghaOyhy — 120y (haOyv2) = 0. (4)

where (¢,2) € (0,7) x ©, and Q is a periodic domain in one dimension. We denote
by p1 and po the densities of each layer of fluid, and r is their ratio r = pa/p1 < 1.
The quantities v; and 5 are the respective kinematic viscosity, that is v; = p;/p;
where pu; is the dynamic viscosity. These equations represent a system composed of
two layers of immiscible fluids. Index 1 refers to the deeper layer and index 2 to the
upper layer, see Figure 1.

In the two dimensional case, this model is formally derived in [17]. Such model
appears naturally in geophysical flows, see [1, 6].

The existence result for the one dimensional Navier-Stokes equations which includes
the shallow water equations has been studied by many authors.

When the viscosity coefficient is constant, there were a lot of investigations of the
one dimensional Navier-Stokes equations. For instance, the one dimensional Navier-
Stokes problem were investigated in [11] for a smooth data and in [8, 10, 18] for
discontinuous data. The authors prove in these papers the global existence of smooth
solutions. For the multidimensional case, one can see [9, 13].

The first global existence result for initial density which can vanish was shown in
[13]. That result was later extended in [7] to the full Navier-Stokes equations.

Received November 5, 2012.

182



UNIQUENESS OF STRONG SOLUTION FOR A BI-LAYER SHALLOW WATER MODEL 183
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FIGURE 1. Notations for the bi-layer model

In [3, 4], the authors proved the existence of a global weak solution for a 2D shallow
water system and a Korteweg system with a diffusion term of type div(hD(w)). The
key point that allows us to get this result is an entropy inequality namely BD entropy
derived first in [3] and in [4]. Using also this inequality in [16, 20], the authors proved
the existence of a global weak solution for viscous bilayer shallow water models in two
dimensions.

Notice that in one dimension, the BD entropy gives control on some negative power
of the density. This nice control was shown in [14]. Using techniques similar to those
in [14], the authors proved in [19] that vacuum cannot arise if there is no vacuum at the
initial time and obtained the existence of strong solutions of a bilayer shallow water
model. This existence result was obtained thanks to a construction of approximate
solutions following the work performed in [12].

An existence result concerning an one dimensional bi-layer shallow water model
was studied in [15]. The authors obtained the existence, the uniqueness and some
smoothness of weak solution under the assumption that the data are sufficiently small.

We consider in this paper, the system of bi-layer immiscible fluids obtained by
derivation. The existence of strong solutions of such system was studied in [19]. In
this paper, we will prove the uniqueness of strong solution under suitable conditions.

Our hypothesis on the initial data h;j;—q, vijs—o (for i = 1,2) to define the strong
solution in [19] are the following:

0 < ¢y < hijp—o = hiy < co,  hivij—o = iy (5)
hio EHl(Q), Vi, EHl(Q).
The rest of the paper is organized as follows: in Section 2, we give the main uniqueness
result. Next, in Section 3, we give some inequalities that will be useful to prove our
main statement. We prove the result in Section 4 by using Gronwall Lemma. The
last Section is dedicated to the proof of the physical energy and the BD entropy
inequalities.

2. Main result

In this section, we give our main result. It can be written as follows:

Theorem 2.1. Assume that

r(v1 + v V1 + v
1/1>(12 2)7 Yo 122
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Let (hy,v1, ha,va) and (E,ﬁ,ﬁ;,ﬁg) be strong solutions of the system (1)—(4) satis-
fying the inequalities (8) and (10) with initial data (hy,,v1,,ho,,V2,) which satisfy
conditions (5) and verify the following bounds:

1 r 1 T
& = 7/h10|v10‘2 + */h20|1]20|2 + 79(1 - T)/ |h10|2 + 79/ |h10 + h’20|2 <C
2/a 2/a 2 Q

1 ouhi |2 1 Dzha
Fo= = 0 - 0
0 2/9”1 T +2/92h20

Assume moreover that there exists a constant ¢ such that the two solutions satisfy the
following condition fori =1, 2:

/Qg(f/w)dx > ¢ max ((/Qmi—fzﬁdx)m, (/Qf;@i —@)de)m) M)

where E(V|V) is defined by (12). Then

<C.

3. Energy inequalities

In this section, we give the physical energy inequality and the BD entropy for the
solution of System (1)—(4).

Proposition 3.1. If (hy, ha,v1,v2) is a smooth solution of (1)-(4), then the following
classical inequality holds :

1d/ o, rd 2 2
- — v |+ h\v| +1//h(3zv)
T 1|v1 5 7 | Pelv2 191 1

1—r)d d
+7“V2/h2((9zv2)2+u /l P+ = "9 /|h1+h2|2 <0. (8)
o 2 2 dt

Corollary 3.2. The classical energy estimate gives the following uniform bounds:
[hill Lo 0,120y < C(T); IV hivil Lo 0,752 () < C(T); )
[V hiOzvill L2(0.1y(L2(0))2) < C(T), Vi=1,2.
It is well known that these bounds are not enough to obtain the existence of strong

solutions for our system. We write the BD entropy to have more informations on the
solutions.

Proposition 3.3. Let (hy,v1,ha,v2) be a smooth solution of (1)-(4), then the fol-
lowing mathematical BD entropy inequality holds :
g /|h1|2

1 dhi |? 9, h
/hl ! +r/h2 Vo + Vo 2
2 2 /g

v+

hi ha

3w B o [ [

6‘mh1 ath
§2/Qh10 ’U10+I/1 hloo 5/0}120 U20+V2 h200
1—r r
AT 2o 2 i s, P (10)
2 Q 2 Ja

for allt €10,T].
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This nice inequality was first derived in [2, 3, 5] in dimension 2 and 3.
Corollary 3.4. The BD mathematical entropy inequality implies that:

h

= QH(‘):E\/ hiHL“’(O,T;LQ(Q)) S C(T) (11)
L>2(0,T;L3())

This bound is the key point to obtain the existence result in [19].

4. Proof of Theorem 2.1.

This part is devoted to the proof of Theorem 2.1.
Following the work performed in [14], we define some functions which will be useful
to do the proof.
Assume that the state vector is V' and let us define the following functions of V:

hy hy q1
hyvy Q1 + 1gh?
V= = , AV) = 2’“ 2
hg hg ( ) ) q2
hav q2 2qu2 + 1gn3
0 0 O 0 0 0 O 0
. 0 wvihy O 0 _ 0 0 rghy O
B(V) = 0 0 0 0 , CV)= 0 0 0 0 ’
0 0 0 %Ughg ghg 0 0 0
@ @
F(V)= th + 9q1h1 + rgqiha + rgqehi + rggaha + 7“2h27
E(V) = T + 1g(l —r)h3 + 1g(hl + hy)? + rq—Q
2h, ) 2hs

and
E(VIV)=E(V)—E(V) - DEV)(V - V),

where DE(V) is the Jacobian matrix of £(V).
We also have

~ 1~ . 1~ ~
g(V|V) = ihl(vl — ’01)2 + 5]12(1]2 — ’U2)2

+ 5000 =) =) + Zg(hs + b = (i + )%, (12)

Now, we can state the following proposition :

Proposition 4.1. Suppose that (hy, vy, ha,va) and (71\1/,71\2/, 01,03) are two strong so-
lutions of system (1)—(4) given in [19] and satisfying the physical entropy (8) and the
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BD entropy (10). Then, the following inequality holds:
d ~ ~ .~ ~ 4~
— / g(V|V) —+ 11 / hl(axvl - 8:,31)1)2 —+ TI/Q/ hQ(axUQ - 8:,3112)2
dt Jq Q Q

< 7"9/ (71V1U13xil\; — hiu10zhe) + / (E;Uana — hous0zh1)
Q Q

- /Q Davr(lr — hn)[0a (3 — v1)] — 1 /Q Dova(lis — ha)[0u(ds —v)]  (13)
+u1/QWm—m(ﬁ?—hl)mr/ﬂ@”wfl‘jm(vg—@)@;—hz)

trg / (a0uhs - (5 — v1) + hadshy - (G5 — v2)) + C / (0501 + B0 E(VIV).
Q Q
Proof. Thanks to a careful computation, we ensure that
REVIV) = 0E(V) + 8, F (V) — 0, [B(v)axpgm} DE(V)
— (0 E(V) + 0, F(V) — 0, [B(V)9, DE(V)| DE(V))
- ((%F(f/) - 8ZF(V)) + DE(V)O,A(VIV) + 8,[DF(V)(V — V)]
(V)

— D2E(V)[B,V + 8, A(V) + C(V)D,V — 8,(B(V)8,DE(V))] - (V = V)
+ DEV) [0,V 4 0, A(V) + C(V)D,V — 8,(B DE(V)))

(V)0,DE

— DE(V) [aﬁ/ + 0, AV) + C(V)0,V — aI(B<x7>ang(\7)>}
+ 8, |B(V)0,DE(V) — B(V)0,DE(V)| - [E(V) = E(V)]+ D2 E(V)C(V)DV - (V = V)
+ DE(V)C(V)d,V — DE(V)C(V)8,V + 8,[B(V)d, DE(V)DEV|V). (14)

Since V' = (h1,q1, he,q2) and V= (E,qﬁ,%,q}) are solutions of system (1)—(4)
satisfying the natural entropy equality (8), we deduce that

QEVIV) < — (@F(f/) - al.F(V)> + DE(V),AV|V) + 8,[DF(V)(V = V)]
0, |BV)2.DE(V) — B(V)9, DE(V)| - [DE(V) - DE(Y)
+ D2E(V)C(V)3,V - (V = V) + DE(V)C(V)d,
~ DE(V)C(V)B,V + 8:[B(V)8, DE(V)DE(V|V).

Next, we integrate over {2 and use the boundary conditions to obtain the following
inequality:

6t/QE(V|V)dmg/QDS(V)@xA(VW)d:U
n / 8, {B(V)awDé‘(f/) - B(V)@IDS(V)} [DE(V) — DE(V)]dz
Q
+/ D2E(V)C(V)O,V - (V = V)dx + | DE(V)C(V)d,Vdx
Q

Q

/ DEV)C(V),Vda + / 0, [B(V)0, DE(V)DEV|V)dx
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We study now every term in the right hand side. We integrate by parts the first term.
This implies that

/DS V)0, A(V|V)da /a (DEV)] - A(V|V)da
—/{3z01[h1(1)1—171) +§9(h1—h1) ]4‘7"81-112[%(”2—@)24‘%9(}12—?1;)2]}433-
Q

Since |hy — ;ng| < |h — ;L\I + hy — E;| + |h — 7“71|, it is clear that the quantities
N B 1 N _ B 1 N

hi(vy —01)% + i‘q(hl — h1)? and rd,va|ho(ve —02) + ig(hg — hy)?] are less than some
constant multiplied by £(V[V). So

/QDS(V)GZA(VW)dx < o(/ﬂwwmg(mvm + /Q|8wv2|5(17|V)dx).

Moreover, we have successively:
/ﬂ 8, [B(f/)al.pe(f/) - B(V)awpe(V)] [DE(V) — DE(V)]dz
S /Q [B(f/)@zDﬁ(f/) - B(V)axDs(V)} - 8,[DE(V) — DE(V))da
—— [ A @51~ 22002 + 0u0n - (B — k)05 = )
+ 12 (ha(02T3 — 0402)? + D02 - (hy — h2) (T3 — v0)) }d,
/ D2E(V)C(V)A,V - (V — V)da

= 7"9/9 (Eamhz (01 — ) + had,hy - (02 — Uz)) dz,

/DS 8 Vdr = rg/ (HulamE;J{ﬁ;uQathl)dx
Q

/Dg 8 Vdx = ’I"g/ (hlulath-FhQUQazhl)d(E
Q
/a V)8, DE(V)|DE(V|V )da

0z (h10, BN

= Vl/ %(Ul — 'Ul)(hl — hl)dx

Q 1

0z (h20; T
+ 1/27’/ M(Ug — ’Ug)(hg — hg)dl‘
Q ho

Substituting all these terms, we obtain the proclaimed result. ([

Let us estimate the right hand side of the inequality (13). First, we have

rg/(ﬁ:vlaxﬁ; — hiv10.ho)dx
Q

= rg/ (71\1/ — hl)vlaxﬁ;dx —rg / (;l\g/ — ho)h10zv1dx — rg/ (712 — ho)v10,hidx.
Q Q Q
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Notice that

/ (Fy — h)nduhadz < / oy — ho)l[or BT dc
Q
1/2 1/2
< il Q)(/ |h1 hy |2d$) </ |0 h2| dx)
<

coAawmm

In the same way, we establish that: /(ﬁ; — ho)hidpvidz < C(t) | E(V|V)dz and
Q Q

/ (;L; — ha)v10hide < C(t) / E(V|V)dz. Finally, the following estimate holds:
Q Q

/Wwﬁhghwﬁh@@ﬂy/@wﬁﬁ}@m@hﬂxﬁﬂﬂ E(V|V)dx
Q Q

Secondly,

/ Bavi(hi — i) 0 (T — v7))dx
Q

< 0wl 195 (7 — 02) 1= (/ R — bl da:)
t)/g(ffw)dx, fori =1, 2.
Q

Besides, we check that:

rg/ (ilvlazhz - (01 — 1) +E;5xh1 - (0g — Uz)) dx
Q

< rgl|0zha|[L=(0) (/ hy(v1 —v1) dx> </ |h1|dx>
N 1/2 N 1/2 _
Q Q Q

and
/ Oull0rve) (v; — 03) (hi — hi)dz
Q h;
< C@)|hi = hill2 @102 (hi0evi) | L2 (@) lvi — Vill Lo (@)
o/aﬁmm,
Q
fori=1,2.

Gathering all these results, we end up with:
i/ammmgcw/aﬁmm
dt Jo Q

In the fact that (V|V)(t = 0) = 0, Gronwall Lemma allows us to write that
/ E(V|V)da = 0. So, we conclude that
Q

hi:hi, ’Ui:’[)vi,fOI‘Z.:L 2.
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5. Proof of propositions 3.1 and 3.3

We multiply both momentum equations (2) and (4) respectively by v; and ve and
integrate by parts. We obtain for i = 1, 2:

/ (at(hl’l)l) + 8z(hlv%))v1dx + g/ (hlaxhl + Thlazhg)’l)ldfﬂ
Q Q

— V1/ Oz (h10,v1)vide =0 (15)
Q

and

/ (3t(h,21)2) + 8x(hgv§))v2dx + g/ (hgath + hgﬁxhl)l}ldI
Q Q

- 1/2/ 61(h18$v2)v2d:1: = O (16)
Q

We can reformulate some terms, namely (for ¢ = 1,2)

o ’ 2dt Jq
71/1"/8z (hiaz’Uz)’UZ der = I/i/ hi(azvl)z dx. (18)
Q Q

To obtain the energy inequality, we add (15) to (16) multiplied by r. We remark that:
g/ h10,hivy dx + Tg/ h10:hovy dx + rg/ hoOyhovs da + Tg/ hoOphive dx
Q Q Q Q

1-7)d d
_ T)—/|h1|2dx+ @—/ml + hol*dz.
Q Q

2 dt 2 dt

Our next concern will be the proof of the BD entropy (10):
Differentiating the mass equations with respect to x; we get
0:0zhi + ’Uzaihz + 0,v;0:h; + hz@ivi + 0,v;0.h; = 0.
We introduce the corresponding viscosity coefficient and obtain:
Adding after the momentum equation (equation (2) for ¢« = 1 and equation (4) for
i = 2), we deduce the following equalities:

Ozh Ozh
3t (hl’Ul +hin h 1) +8x (hlvf +hi1q hl’Ul) —|—gh18xh1 —|—Tgh1(9xh2 =0, (19)
1 1

Ozh
8,5 (hg’l)g + hgl/g A 2

Ozh
) + Oy (hgvg + havg h 2?)2) + ghzamhg + ghgamhl =0. (20)
2 2

i . -
We add Equation (19) multiplied by <v1 + ah 1> to Equation (20) multiplied
1
Ozh
by r <v2 + vy A 2). To end, it suffices to integrate over €2 and use the fact that
a® b ’
ab < — + —.

2 2
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