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A new conic curve digital signature scheme with message
recovery and without one-way hash functions
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Abstract. In this paper, we present an efficient digital signature scheme with message reco-

very and without using any one-way hash function and message redundancy. The new scheme
is based on conic curve cryptography (CCC) that offers a very high level of security with a
small key size. Obviously, the result is a low computational cost and a clear saving in memory
and bandwidth. The security of the new scheme is based on two hard problems, the discrete

logarithm on conic curve and factorization problem. It provides higher level security than
schemes based on a single hard problem. We show in details that the proposed scheme does
not involve any modular exponentiation operation in all algorithms.
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1. Introduction

In modern cryptography [1], the security of developed signature schemes is based on
the hardness of solving some hard number theoretical problems, such as factoring and
discrete logarithms problems ([2], [3]). One common feature of these schemes is that
they are depending on a number-theoretical problem and thus their implementation
heavily depends on modular exponentiation which is known to be consuming and
costly. Conic curve cryptography [4] is a new public key cryptosystem that people
put forward in recent years. Compared with elliptic curve cryptography (ECC),
conic curve cryptography has the advantages of simpler calculations, the coding and
decoding can be carried out more efficiently in the conic curve point group, which is a
very exciting feature. Since the discrete logarithm problem based on conic curve point
group, or the conic curve discrete logarithm problem (CCDLP), are not easier than
the elliptic curve discrete logarithm problem (ECDLP) when the conic curve point
group has the same order as elliptic curve point group, the conic curve cryptosystem
has become an important research content in cryptography, and has also got much
attention from many researchers in the past ten years. However, the idea to design
signature scheme on the conic curve over Zn based on two hard problems is novel
and useful. Nyberg and Rueppel scheme in [5] is the first signature scheme with
message recovery based on discrete logarithm problem. In message recovery mode,
the receiver can recover the original message from the received signature. In contrast
to the appendix mode, the message recovery mode has the advantage of smaller
communication load and consequently is more efficient in applications. Usually, the
message redundancy scheme should be used to resist the forgery attack [6]. However,
a lot of researches are made in these areas ([7], [8], [9], [10], [11]). Recently, Mohanty
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and Banshidhar [12] proposed a digital signature with message recovery and without
one-way hash function based on discrete logarithm problem (DLP).

In this paper, we propose a new conic curve digital signature with message reco-
very and without one-way hash function and the security of the new scheme is based
on two hard problems; CCDLP and integer factorization problem (FIP). The new
scheme offers a longer security than the schemes based on DLP. This is because the
probability of solving two hard problems simultaneously by intruder is believable to
be negligible. We next discuss and describe the efficiency of our scheme, and show
that the proposed scheme does not involve any modular exponentiation operation in
all algorithms, this giving an advantage to the scheme.

1.1. The Conic Curves Over a Finite Field. Let p be an odd prime and Fp be
a finite field of p elements. Let F∗

p be tile multiplication group on Fp. Then, without
loss of generality, we can assume

Fp = {0, 1, ..., p− 1}, F∗
p = Fp\{0}.

Let us further consider the conic over an affine plane A2(Fp),

C(Fp) : y
2 = ax2 − bx, a, b ∈ F∗

p . (1)

It’s obvious that C(Fp) includes origin of coordinates O(0, 0). If x ̸= 0, let t = yx−1

and fill y = xt in the equation (1). Then, we get

x(a− t2) = b, where a, b ∈ F∗
p . (2)

If a = t2, the equation (2) doesn’t hold; if a ̸= t2, from the equation (2) we will have{
x = b(a− t2)−1

y = bt(a− t2)−1 (3)

For any t ∈ Fp and t2 ̸= a, let P (t) be the point of C(Fp) satisfying equation (3)
Moreover, an ideally defined point O, namely the point at infinity P (∞), is also
recognized as a point over C(Fp).

Let H = {t ∈ Fp; t
2 ̸= a}∪{∞}. We can define a bijection P : H −→ C(Fp) where

∞ −→ (0, 0), t −→ (xt, yt), t ̸= ∞ and xt = b(a− t2)−1, yt = bt(a− t2)−1.
A conic (C(Fp),⊕, P (∞)) becomes an abelian group under the operation ⊕ as

shown below:
• For every P (t) ∈ C(Fp),

P (t)⊕ P (∞) = P (∞)⊕ P (t) = P (t). (4)

• For any P (t1), P (t2) ∈ C(Fp) where t1, t2 ̸= ∞, P (t1)⊕ P (t2) = P (t3) with

t3 =

{
(t1t2 + a)(t1 + t2)

−1, t1 + t2 ̸= 0,
∞, t1 + t2 = 0.

(5)

The cardinality of C(Fp) is given by

|C(Fp)| =
{

p− 1, (ap ) = 1

p+ 1, (ap ) ̸= 1

where (ap ) denotes the Legendre symbol.

It’s evident that ∀P (t) ∈ C(Fp), |C(Fp)|P (t) = P (∞), when mP (t) = P (t)⊕ ...⊕ P (t)︸ ︷︷ ︸
m

.
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2. The Proposed Scheme

In this section, we propose an efficient digital signature scheme with message re-
covery and without one-way hash function based CCDLP. The proposed scheme is
divided into four phases: the system initialization phase, the key generation phase,
the signature generation phase and verification phase.

2.1. System initialization phase. Choose a conic curve Cn(a, b) over Zn, the curve
equation is Cn(a, b) : y

2 = ax2 − bx(modn), where a, b ∈ Zn, n = pq and gcd(a, n) =
gcd(b, n) = 1. p and q are large different odd primes, satisfying the condition (ap ) =

(aq ) = −1, p+1 = 2r, q+1 = 2s, r and s are odd primes. Then, the order of Cn(a, b) is:

Nn = lcm|Cp(a, b)|, |Cq(a, b)| = p+ 1, q + 1 = 2rs, where lcm represents the function
of calculating the least common multiple, |Cp(a, b)| and |Cq(a, b)| are the orders of
the conic curve over finite fields Zp and Zq.

2.2. Key Generation phase.
Step 1: Let G = (xG, yG) be a base point of Cn(a, b) and let the order beNn = 2rs;
Step 2: Choose d ∈ Z∗

Nn
as the private key, calculate y = dG(modn) = (e, h) as

the public key;
Step 3: The message M = (mx,my) is an integer pair, where mx ∈ Zn,my ∈ Zn.

Let M = (mx,my) be a point on the conic curve Cn(a, b).
Step 4: Publish (n, a, b,G, y), but keep d and Nn privately.

2.3. Signature Generation phase. Signer generates the signature for the message
M , as follows.
Step 1: Pick randomly an integer k ∈ Z∗

Nn
.

Step 2: Computes

s1 = eM = (x1, y1), where u ≡ x1(modNn) (6)

s2 = s1 ⊕M ⊕ (−kG)(modn) = (x2, y2),where δ ≡ x2(modNn) (7)

Step 3: Calculates t from

u+ t ≡ d−1(k − δ)(modNn) (8)

Step 4: The signer sends the signature (s1, s2, t, u, δ) of M to the verifier.

2.4. Verification phase. After receiving the signature (s1, s2, t, u, δ), the verifier
performs the following operations.
Step 1: Computes

Ḿ = (−s1)⊕ s2 ⊕ (u+ t)y ⊕ δG (9)

Step 2: Checks whether s1 = eḾ(modn). If it holds, then the signature (s1, s2, t, u, δ)
is indeed the valid signature generated by the signer of the recovered message
M .
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3. Security Analysis

The security of our scheme over conic curves is based on the difficulty of factoring
n. Now we will show some possible attacks by which intruder may try to take down
the proposed signature scheme based on CCDLP.

A. Correctness proof
The correctness of the signature scheme of the message M as shown below

Ḿ = (−s1)⊕ s2 ⊕ (u+ t)y ⊕ δG

= (−s1)⊕ s1 ⊕M ⊕ (−kG)⊕ d−1(k − δ)y ⊕ δG

= M ⊕ (−kG)⊕ d−1(k − δ)dG⊕ δG

= M ⊕ (−kG)⊕ (kG)⊕ (−δG)⊕ (δG)

= M

Therefore, s1 = eḾ (modn). Then the verifier accepted the signature.

B. Attack Aiming to recover d
• Attack 1: It is infeasible that an intruder wants to solve k from equation (7)
always equivalent the discrete logarithms over Cn(a, b).

• Attack 2: It is infeasible that intruder wants to solve d from equation (8), since
it has 3 unknown parameters k, δ and d.

C. Simulated Attacks
Intruder wishes to obtain the private key d from public key y = dG(modn) and the

random number k from the u + t ≡ d−1(k − δ)(modNn) which are clearly infeasible
because the difficulty of solving CCDLP and factoring Nn. Moreover, the modulus n
cannot be factorized through the known parameters the security will be guaranteed.
Finding Nn = 2rs is computationally equivalent to factoring the composite number
n. In our scheme keep the Nn privately so that the modulus n is difficult to be
factorized. Therefore, no matter where do an attacker to conduct attacks, the new
scheme is not easy to break. The simulations of two hard mathematical problems are
in the following:
(1) If an attacker wants to forge the signature t from u + t ≡ d−1(k − δ)(modNn),

he must get the parameter Nn. Assume that the attacker can solve the factoring
problem, that is the big integer n can be calculated, the prime factorization p
and q, and the parameter Nn can also be calculated. However, as we know the
difficulty of discrete logarithm problem on conic curve, so the attacker still cannot
solve the problem of getting the private key d by the public key y = dG(modn).

(2) If the attacker can solve the CCDLP, assume that he has got private key d from
the public key y = dG(modn). In order to forge the signature message, he needs
to calculate the signature value t from u+ t ≡ d−1(k− δ)(modNn). But because
of the unpublished parameter Nn the attacker wants to calculate p and q from
the public modulus n, and then calculates the parameter Nn he still needs to
decompose the big integer n, that is needed to solve factoring problem.

The above simulated attacks show that the new scheme is very fast in the case of two
hard mathematical problems cannot be solved at the same time.

D. Attack for parameter Reduction
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Table 1. The comparison between our scheme and Mohanty’s scheme

Items Our new scheme Mohanty’s scheme
Signature 3Tcc−add + 2Tcc−mul 2Texp + 2Tmul

generation +Tmul

Signature 3Tcc−add + 2Tcc−mul 3Texp + 2Tmul

verification

The message recovery equation (9) can be transformed into

Ḿ = (−s1)⊕ s2 ⊕ t́y ⊕ δG (10)

where t́ = t+ u. The parameter in equation (9) cannot be reduced via the parameter
reduction attack, which means the new scheme will withstand the parameter reduc-
tion attack.

E. Forgery attack
Given the message M , a forger has to solve both equation (6) and equation (9)

in order to get the signature (s1, s2, t, u, δ). Even if both s1 and s2 are known, it is
difficulty to solve k and d in equation (8) so it is difficult to get t and the attacker
cannot get a signature u and δ because of the unpublished parameter Nn.

4. Efficiency Analysis

Conic curve cryptography [4] is a new public key cryptosystem that people put for-
ward in recent years. Compared with elliptic curve cryptography (ECC), conic curve
cryptography has the advantages of simpler calculations, easier achieving encoding
and decoding, faster calculating, et al. The results from some scholars show that
under the same order, a conic curve of the discrete logarithm problem is not easier
than elliptic curve.

The main computation amount to generate the signature for new digital signa-
ture scheme is s1 = eM = (x1, y1), s2 = s1 ⊕ M ⊕ (−kG)(modn) = (x2, y2), u ≡
x1(modNn), δ ≡ x2(modNn) and u + t ≡ d−1(k − δ)(modNn). And the main com-

putation amount to verify the signature is Ḿ = (−s1) ⊕ s2 ⊕ (u + t)y ⊕ δG and

s1 = eḾ(modn). We use the following notation to analyze the efficiency of the new
scheme

• Tmul is the time complexity for executing the modular multiplication,
• Tcc−add is the time complexity for executing the addition of two conic curve
points,

• Texp is the time complexity for executing the modular exponentiation,
• Tcc−mul is the time complexity for executing the multiplication on conic curve
points.

Table 1 shows the comparison of main computation amount of two digital schemes.
From the comparison of Table 1 we can see that the computation amount of the new

scheme is reduced comparing with Mohanty’s scheme based on DLP. In the proposed
scheme, no modular exponentiations are performed by the signer and verifier and it
makes the scheme very efficient. CCC devices require less storage, less power, less
memory, and less bandwidth than other systems. In our scheme s1 is computed as
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s1 = eM(modn) instead of exponential, so the new scheme can be applicable to large
message, hence it is practical.

5. Conclusion

In this paper, we proposed a new conic curve digital signature scheme with message
recovery and without one-way hash functions. The security of our scheme relies
on the difficulty of solving the factorization and discrete logarithm on conic curve.
The proposed scheme requires minimal operations in signing and verifying and thus
makes it very efficient. The scheme supports message recovery feature, as message
is recovered from the signature and there is no need to send message along with the
signature. Clearly, whether it is in terms of security or performance, the proposed
scheme is superior to Mohanty’s scheme. To the best of our knowledge, this is the
first work done on conic curve digital signature scheme with message recovery and
without one-way hash functions.
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