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Durrmeyer operators of King-type
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Abstract. A class of linear and positive operators which generalizes the classical Durrmeyer’s
operators in the King sense is constructed. For these operators, uniform convergence results,
error estimations in terms of first modulus of continuity and Voronovskaja’s type theorems
are established.
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1. Introduction

Let N be the set of positive integers and N0 = N ∪ {0}. In 1967, J.L. Durrmeyer
introduced in [5] a class of linear and positive operators (Dm)m∈N0 defined for any
f ∈ L1([0, 1]), any x ∈ [0, 1] and m ∈ N0 by

(Dmf)(x) = (m + 1)
m∑

k=0

pm,k(x)
∫ 1

0

pm,k(t)f(t)dt, (1.1)

where pm,k are the Berstein’s polynomials defined by

pm,k(x) =
(

m

k

)
xk(1− x)m−k (1.2)

for any k ∈ {0, 1, ..., m}. Regarding the operators from (1.1), are well known the
following results:

Theorem 1.1. (see [9]) For any f ∈ C([0, 1])

lim
m−→∞

Dmf = f (1.3)

uniform on [0, 1] and

|(Dmf)(x)− f(x)| ≤ 2ω

(
f ;

1√
2m + 6

)
(1.4)

for any x ∈ [0, 1], f ∈ C([0, 1)) and m ∈ N0,m ≥ 3.

Theorem 1.2. (see [4]) Let f ∈ L1([0, 1]) be a bounded function on [0, 1]. If f is two
times differentiable in x ∈ [0, 1], then

lim
m−→∞

m ((Dmf)(x)− f(x)) = (1− 2x)f (1)(x) + x(1− x)f (2)(x). (1.5)
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Here f (s)(x) denotes the s-order derivative of f with respect to x.
We recall the following results from [8].
Let I ⊂ R be an interval of real axis, a, b, a′, b′ be real numbers such that a < b, a′ <

b′, [a, b] ⊂ I, [a′, b′] ⊂ I and [a, b] ∩ [a′, b′] 6= ∅. Like usually, E(I) denotes the set of
real valued functions defined on I, C(I) = {f ∈ E(I)|f − continuous on I}, B(I) =
{f ∈ E(I)|f − bounded on I}, CB(I) = {f ∈ C(I)|f − bounded on I}.

For any m ∈ N consider the functions ϕm,k : I −→ R having the property
ϕm,k ≥ 0 for any x ∈ [a′, b′], k ∈ {0, 1, ..., m} and the linear positive functionals
Am,k : E([a, b]) −→ R, k ∈ {0, 1, ..., m}. For m ∈ N let Lm : E([a, b]) −→ E(I) be the
operator defined by

(Lmf)(x) =
m∑

k=0

ϕm,k(x)Am,k(f) (1.6)

for any f ∈ E([a, b]) and x ∈ I. It is immediately that the operators (1.4) are linear
and positive on [a, b] ∩ [a′, b′].

For m ∈ N, i ∈ N0, let us to define Tm,i by (Tm,iLm)(x) = mi(Lmψi
x)(x), thus

(Tm,iLm)(x) = mi
m∑

k=0

ϕm,k(x)Am,k(ψi
x) (1.7)

for any x ∈ [a, b] ∩ [a′, b′], where

ψx(t) = t− x, (1.8)

for any t ∈ I. Next, let s ∈ N0 be fixed and s even. We suppose that the operators
(Lm)m≥1 verify the condition: there exists the smallest αs, αs+2 ∈ [0,∞) so that the
following:

lim
m−→∞

(Tm,jLm)(x)
mαj

= Bj(x) ∈ R (1.9)

holds for any x ∈ [a, b] ∩ [a′, b′], j ∈ {s, s + 2} and

αs+2 < αs + 2. (1.10)

Theorem 1.3. Let f ∈ C([a, b]) be given. If x ∈ [a, b] ∩ [a′, b′] and f is s-times
differentiable in x, having the s-order derivate f (s) continuous in x, then the following
identity:

lim
m−→∞

ms−αs

{
(Lmf)(x)−

s∑

i=0

f (i)(x)
mii!

(Tm,iLm)(x)

}
= 0 (1.11)

holds.
If f is s-times differentiable on [a, b], the function f (s) is continuous on [a, b] and

there exists m(s) ∈ N, kj ∈ R such that for any m ∈ N,m ≥ m(s), x ∈ [a, b]∩[a′, b′], j ∈
{s, s + 2} the inequality

(Tm,jLm)(x)
mαj

≤ kj (1.12)

holds, then the convergence from (1.11) is uniform on [a, b] ∩ [a′, b′] and

ms−αs

∣∣∣∣∣(Lmf)(x)−
s∑

i=0

f (i)(x)
mii!

(Tm,jLm)(x)

∣∣∣∣∣

≤ 1
s!

(ks + ks+2)ω
(

f (s);
1√

m2+αs−αs+2

)
(1.13)

for any x ∈ [a, b] ∩ [a′, b′] and m ∈ N,m ≥ m(s).
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In [6], J.P. King constructed a sequence (Lm)m∈N0 of positive linear operators
defined on C([0, 1]) which preserve the test functions e0 and e2, i.e. Lm(e0) = e0,
Lm(e2) = e2, where ei : [0, 1] −→ R, ei(x) = xi, for i ∈ {0, 1, 2}.

In what follows, King-type operator means a linear positive operator which preserve
exactly two test functions from the set {e0, e1, e2}.

In the second section, we define the general form of Durrmeyer operators. In the
following sections of this paper, we construct Durrmeyer operators of King-type. We
study, in each case, the uniform convergence, the approximation order in terms of
first modulus of continuity ω and a Voronovskaja’s type theorem of these operators.

2. The general form of Durrmeyer operators

For m, k, p ∈ N0, k ≤ m, is well known the following result (see [9])
∫ 1

0

pm,k(t)tpdt =
(k + p)!

k!
m!

(m + p + 1)!
. (2.1)

Let I ⊂ [0, 1] be an interval, m0 ∈ N0, m0 ≥ 2 fixed, N1 = {m ∈ N|m ≥ m0}, the
functions αm, βm : I −→ R, αm(x) ≥ 0, βm(x) ≥ 0, for any x ∈ I and m ∈ N1.

By using the idea of Durrmeyer operators construction, we consider operators of a
general form defined by

(Qmf)(x) = (m + 1)
m∑

k=0

(
m

k

)
(αm(x))k(βm(x))m−k

∫ 1

0

pm,k(t)f(t)dt, (2.2)

where x ∈ I, m ∈ N1 and f ∈ L1([0, 1]).
The operators (Qm)m∈N1 are called Durrmeyer type operators.

Remark 2.1. The operators Qm,m ∈ N1, are linear and positive.

Remark 2.2. Consider [a, b] = [0, 1] and [a′, b′] = I,

ϕm,k(x) = (m + 1)
(

m

k

)
(αm(x))k(βm(x))m−k (2.3)

and

Am,k(f) =
∫ 1

0

pm,k(t)f(t)dt, (2.4)

where x ∈ I, m ∈ N1, k ∈ {0, 1, ..., m} and f ∈ L1([0, 1]). Then

(Qme0)(x) = (αm(x) + βm(x))m, (2.5)

(Qme1)(x) =
(αm(x) + βm(x))m−1

m + 2
(mαm(x) + αm(x) + βm(x)), (2.6)

and

(Qme2)(x) =
(αm(x) + βm(x))m−2

(m + 2)(m + 3)
· ((m(m− 1)(αm(x))2 + 4mαm(x)·

· (αm(x) + βm(x)) + 2(αm(x) + βm(x))2
)
. (2.7)
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3. Durrmeyer operators preserving the test functions e0 and e1

In this section we construct a sequence of Durrmeyer operators as defined in section
2, which preserve the test functions e0 and e1.

Imposing the conditions (Qme0)(x) = e0(x) and (Qme1)(x) = e1(x), for any x ∈ I
and m ∈ N1 and taking into account (2.5) and (2.6), we obtain

αm(x) =
(m + 2)x− 1

m
, (3.1)

βm(x) =
m + 1− (m + 2)x

m
, (3.2)

for any x ∈ I and m ∈ N1.
The conditions αm(x) ≥ 0 and βm(x) ≥ 0, for any x ∈ I and m ∈ N1, imply

1
m + 2

≤ x ≤ m + 1
m + 2

. (3.3)

Lemma 3.1. The following
[

1
m0 + 2

,
m0 + 1
m0 + 2

]
⊂

[
1

m + 2
,
m + 1
m + 2

]
(3.4)

holds for any m ∈ N1.

Proof. Because the function 1
m+2 is decreasing and the function m+1

m+2 is increasing,
relation (3.4) follows. ¤

Remark 3.1. In this case I =
[

1
m0+2 , m0+1

m0+2

]
, so for remaining of this section we

shall consider I =
[

1
m0+2 , m0+1

m0+2

]
. Thus, for αm, βm defined by (3.1) and (3.2) we

have αm(x) ≥ 0 and βm(x) ≥ 0, for any x ∈ I and m ∈ N1.

Taking into account the above remarks, we construct the sequence of Durrmeyer
operators (Q1,m)m≥m0 as follows. If m ∈ N1, we define the operator

(Q1,mf)(x) =
m + 1
mm

m∑

k=0

(
m

k

)
((m + 2)x− 1)k(m + 1− (m + 2)x)m−k· (3.5)

·
∫ 1

0

pm,k(t)f(t)dt

for any x ∈
[

1
m0+2 , m0+1

m0+2

]
.

Lemma 3.2. We have
(Q1,me0)(x) = 1, (3.6)

(Q1,me1)(x) = x, (3.7)

and

(Q1,me2)(x) =
(m− 1)(m + 2)

m(m + 3)
x2 +

2(m + 1)
m(m + 3)

x− m + 1
m(m + 2)(m + 3)

(3.8)

for any x ∈ I and m ∈ N1.

Proof. Results immediately from the definition above and (2.7). ¤
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Lemma 3.3. The following identities

(Tm,0Q1,m)(x) = 1, (3.9)

(Tm,1Q1,m)(x) = 0, (3.10)
and

(Tm,2Q1,m)(x) =
m3(−2x2 + 2x) + m2(−6x2 + 6x− 1) + m(−4x2 + 4x− 1)

(m + 2)(m + 3)
(3.11)

hold, for any x ∈ I and m ∈ N1.

Proof. By using Lemma 3.2 and relation (1.7) we have

(Tm,0Q1,m)(x) = (Q1,me0)(x) = 1,

(Tm,1Q1,m)(x) = m(Q1,mψx)(x) = m((Q1,me1)(x)− x(Q1,me0)(x)) = 0,

and

(Tm,2Q1,m)(x) = m2(Q1,mψ2
x)(x)

= m2((Q1,me2)(x)− 2x(Q1,me1)(x) + x2(Q1,me0)(x))

= m2

(
(m− 1)(m + 2)

m(m + 3)
x2 +

2(m + 1)
m(m + 3)

x− m + 1
m(m + 2)(m + 3)

− 2x2 + x2

)
,

from where (3.11) follows. ¤

Lemma 3.4. We have that

lim
m−→∞

(Tm,0Q1,m)(x) = 1, (3.12)

lim
m−→∞

(Tm,2Q1,m)(x)
m

= 2x(1− x), (3.13)

for any x ∈ I, and there exists m(0) ∈ N such that

(Tm,2Q1,m)(x)
m

≤ 3
2
, (3.14)

for any x ∈ I and m ∈ N1, m ≥ m(0).

Proof. The relations (3.12) and (3.13) result taking (3.9) and (3.11) into account. By
using the definition of limit of a function and because x(1− x) ≤ 1

4 for any x ∈ [0, 1],
from (3.13) the relation (3.14) is obtained. ¤

Theorem 3.1. Let f : [0, 1] −→ R be a continuous function on [0, 1]. Then

lim
m−→∞

Q1,mf = f (3.15)

uniformly on I and there exists m(0) ∈ N such that

|(Q1,mf)(x)− f(x)| ≤ 5
2
ω

(
f ;

1√
m

)
(3.16)

for any x ∈ I and m ∈ N1,m ≥ m(0).

Proof. Theorem 3.1 is a corollary of Theorem 1.3, for s = 0, α0 = 0, α2 = 1, k0 = 1
and k2 = 3

2 . ¤

Theorem 3.2. If f ∈ C([0, 1]), x ∈ I, f is two times differentiable in x and f (2) is
continuous on I, then

lim
m−→∞

m((Q1,mf)(x)− f(x)) = x(1− x)f (2)(x). (3.17)
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Proof. We apply Theorem 1.3 for s = 2. ¤

4. Durrmeyer operator preserving the test function e0 and e2

In this section, we construct a sequence of Durrmeyer operators as defined in section
2, which preserve the test functions e0 and e2.

Imposing the conditions (Qme0)(x) = e0(x) and (Qme2)(x) = e2(x) for any x ∈ I
and m ∈ N1. Then, taking (2.5) and (2.7) into account, we obtain

αm(x) + βm(x) = 1, (4.1)

m(m− 1)(αm(x))2 + 4mαm(x) + 2− (m + 2)(m + 3)x2 = 0.

for any x ∈ I and m ∈ N1. Since we are interest only in the positive valued func-
tions αm, βm, an elementary computation leads to a unique solution for system (4.1),
namely

αm(x) =
−2m +

√
δm(x)

m(m− 1)
, βm(x) =

m2 + m−
√

δm(x)
m(m− 1)

, (4.2)

where
δm(x) = m(2m + 2 + (m− 1)(m + 2)(m + 3)x2), (4.3)

for x ∈ I and m ∈ N1.
Since 4δm(x) is the discriminant of the second equation from (4.1), the above

solutions exist and are positive if

x ≥
√

2
(m + 2)(m + 3)

. (4.4)

Lemma 4.1. Let m ∈ N1. Then βm(x) ≥ 0, x ≥ 0 if and only if

0 ≤ x ≤
√

m + 1
m + 3

. (4.5)

Proof. From βm(x) ≥ 0 we have m2 + m ≥
√

δm(x), equivalent after calculus to
m + 1 ≥ (m + 3)x2, from where (4.5) follows. ¤

Lemma 4.2. Let m ∈ N1. If x ∈
[√

2
(m+2)(m+3) ,

√
m+1
m+3

]
, then αm(x) ≥ 0 and

βm(x) ≥ 0.

Proof. Results immediately from (4.4) and (4.5). ¤
Lemma 4.3. The following inclusions[√

2
(m0 + 2)(m0 + 3)

,

√
m0 + 1
m0 + 3

]
⊂

[√
2

(m + 2)(m + 3)
,

√
m + 1
m + 3

]
⊂ [0, 1] (4.6)

hold, for any m ∈ N1.

Proof. By using that the function
√

2
(m+2)(m+3) is decreasing and the function

√
m+1
m+3

is increasing, relations (4.6) follows. ¤
Remark 4.1. For the remaining of this section we shall consider
I =

[√
2

(m0+2)(m0+3) ,
√

m0+1
m0+3

]
. Thus, for αm, βm defined by (4.2) we have αm(x) ≥ 0

and βm(x) ≥ 0, for any x ∈ I and m ∈ N1.
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If m ∈ N1 and f ∈ L1([0, 1]), we define the operator

(Q2,mf)(x) =
m + 1

(m(m− 1))m

m∑

k=0

(
m

k

) (
−2m +

√
δm(x)

)k

·

·
(
m2 + m−

√
δm(x)

)m−k

·
∫ 1

0

pm,k(t)f(t)dt (4.7)

for any x ∈ I.

Lemma 4.4. We have

(Q2,me0)(x) = 1, (4.8)

(Q2,me1)(x) =

√
δm(x)−m− 1

(m− 1)(m + 2)
, (4.9)

(Q2,me2)(x) = x2, (4.10)

for any x ∈ I and m ∈ N1.

Proof. Results immediately from the condition above and (2.6). ¤

Lemma 4.5. The following identities

(Tm,0Q2,m)(x) = 1, (4.11)

(Tm,1Q2,m)(x) = m

(√
δm(x)−m− 1

(m− 1)(m + 2)
− x

)
, (4.12)

and

(Tm,2Q2,m)(x) = 2m2x

(
x− 1

m + 2

(
1 +

√
δm(x)− 2m

m− 1

))
(4.13)

hold, for any x ∈ I and m ∈ N1.

Proof. By using Lemma 4.4 and relation (1.7), the relations (4.11)-(4.13) follows. ¤

Lemma 4.6. The following identity

lim
m−→∞

m

(√
δm(x)−m− 1

(m− 1)(m + 2)
− x

)
= x− 1 (4.14)

holds for any x ∈ I.

Proof. We have

lim
m−→∞

m

(√
δm(x)−m− 1

(m− 1)(m + 2)
− x

)
=

= lim
m−→∞

(
m2

(m− 1)(m + 2)
·
√

δm(x)− (m− 1)(m + 2)x
m

− m(m + 1)
(m− 1)(m + 2)

)

= −1 + lim
m−→∞

√
δm(x)− (m− 1)(m + 2)x

m
.

and after calculus, identity (4.14) results. ¤
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Lemma 4.7. We have that

lim
m−→∞

(Tm,0Q2,m)(x) = 1, (4.15)

lim
m−→∞

(Tm,2Q2,m)(x)
m

= 2x(1− x), (4.16)

for any x ∈ I, and there exists m(0) ∈ N such that
(Tm,2Q2,m)(x)

m
≤ 3

2
(4.17)

for any x ∈ I and m ∈ N1, m ≥ m(0).

Proof. The relations (4.15) and (4.16) result taking (4.11), (4.13) and (4.14) into
account. By using the definition of the limit of a function and because x(1− x) ≤ 1

4
for any x ∈ [0, 1], from (4.16) the relation (4.17) is obtained. ¤
Theorem 4.1. Let f : [0, 1] −→ R be a continuous function on [0,1]. Then

lim
m−→∞

Q2,mf = f (4.18)

uniformly on I and there exists m(0) ∈ N such that

|(Q2,mf)(x)− f(x)| ≤ 5
2
ω

(
f ;

1√
m

)
(4.19)

for any x ∈ I and m ∈ N1,m ≥ m(0).

Proof. Theorem 4.1 is a corollary of Theorem 1.3 for s = 0, α0 = 0, α2 = 1, k0 = 1
and k2 = 3

2 . ¤

Theorem 4.2. If f ∈ C([0, 1]), x ∈ I, f is two times differentiable in x and f (2) is
continuous on I, then

lim
m−→∞

m((Q2,mf)(x)− f(x)) = (x− 1)f (1)(x) + x(1− x)f (2)(x). (4.20)

Proof. Taking Lemma 4.6 into account and applying Theorem 1.3 for s = 2 we obtain
relation (4.20). ¤

5. Durrmeyer operator preserving the test functions e1 and e2

In this section we construct a sequence of Durrmeyer operators as defined in section
2, which preserve the test functions e1 and e2.

Imposing the conditions (Qme1)(x) = e1(x) and (Qme2)(x) = e2(x), for any x ∈ I
and any m ∈ N1 and taking (2.6) and (2.7) into account, we have

(αm(x) + βm(x))m−1

m + 2
((m + 1)αm(x) + βm(x)) = x (5.1)

and
(αm(x) + βm(x))m−2

(m + 2)(m + 3)
(
m(m− 1)α2

m(x) + 4mαm(x)(αm(x) + βm(x))+ (5.2)

+2(αm(x) + βm(x))2
)

= x2.

We note tm(x) = αm(x) + βm(x) and from (5.1) and (5.2) we obtain that

αm(x) =
(m + 2)

m

x

tm−1
m (x)

− 1
m

tmm(x), βm(x) = tm(x)− αm(x), (5.3)
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and the equation in tmm(x)

(m+1)t2m
m (x)+(m(m+3)(m+2)x2−2(m+1)(m+2)x)tmm(x)+(1−m)(m+2)2x2 = 0.

(5.4)
The discriminant of the equation (5.4) is

∆m = (m + 2)2mx2(8(m + 1)− 4(m + 1)(m + 3)x + m(m + 3)2x2) ≥ 0, (5.5)

for any x ∈ I and m ∈ N1.
We note δm(x) = m

(
8(m + 1)− 4(m + 1)(m + 3)x + m(m + 3)2x2

)
, for any x ∈ I

and m ∈ N1.
Because m ≥ 2, it results

(1−m)(m + 2)2x2 ≤ 0 (5.6)

and then equation (5.4) has exactly one positive solution

tmm(x) =
(m + 2)x

(
2(m + 1)−m(m + 3)x +

√
δm

)

2(m + 1)
. (5.7)

Lemma 5.1. Let m ∈ N1. Then βm(x) ≥ 0 if and only if

0 ≤ x ≤ m + 2
m + 3

. (5.8)

Proof. From βm(x) ≥ 0 we have m(m + 3)x − 2m ≤ √
δm, equivalent after some

calculus with (5.8). ¤

Lemma 5.2. Let m ∈ N1. Then αm(x) ≥ 0 if and only if

x ≥ 2
m + 3

. (5.9)

Proof. From αm(x) ≥ 0 we have m(m + 3)x ≥ √
δm, equivalent after calculus with

(5.9). ¤

Lemma 5.3. Let m ∈ N1. If x ∈
[

2
m+3 , m+2

m+3

]
then αm(x) ≥ 0 and βm(x) ≥ 0.

Proof. Results immediately from (5.8) and (5.9). ¤

Lemma 5.4. The following inclusions
[

2
m0 + 3

,
m0 + 2
m0 + 3

]
⊂

[
2

m + 3
,
m + 2
m + 3

]
⊂ [0, 1] (5.10)

hold for any m ∈ N1.

Proof. By using that the function 2
m+3 is decreasing and the function m+2

m+3 is increas-
ing, the relation (5.10) follows. ¤

If m ∈ N1 and f ∈ L1([0, 1]) we define the operator

(Q3,mf)(x) = (m + 1)
m∑

k=0

(
m

k

)
(αm(x))k(βm(x))m−k

∫ 1

0

pm,k(t)f(t)dt, (5.11)

where αm(x) and βm(x) are given by the relations (5.3), for any x ∈
[

2
m0+3 , m0+2

m0+3

]
.

Remark 5.1. In this section we note I =
[

2
m0+3 , m0+2

m0+3

]
.
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Lemma 5.5. We have

(Q3,me0)(x) =
(m + 2)x(2(m + 1)−m(m + 3)x +

√
δm(x))

2(m + 1)
, (5.12)

(Q3,me1)(x) = x, (5.13)

(Q3,me2)(x) = x2, (5.14)

for any x ∈ I and any m ∈ N1.

Proof. Results immediately from the condition above and (2.5). ¤

Lemma 5.6. The following identities

(Tm,0Q3,m)(x) = tmm(x), (5.15)

(Tm,1Q3,m)(x) = mx(1− tmm(x)), (5.16)

(Tm,2Q3,m)(x) = −m2x2(1− tmm(x)) (5.17)

hold for any x ∈ I and for any m ∈ N1.

Proof. By using Lemma 5.5 and the relation (1.7) the relations (5.15)-(5.17) follow.
¤

Lemma 5.7. The following identities

lim
m−→∞

tmm(x) = 1 (5.18)

and

lim
m−→∞

m(1− tmm(x)) =
2(x− 1)

x
(5.19)

hold.

Proof. We have

lim
m−→∞

tmm(x) =
x

2
lim

m−→∞
δm(x)− (m(m + 3)x− 2(m + 1))2√

δm(x) + m(m + 3)x− 2(m + 1)
(5.20)

and after calculus, (5.18) follows. Taking (5.7) into account, similarly (5.19) is ob-
tained. ¤

Lemma 5.8. We have that

lim
m−→∞

(Tm,0Q3,m)(x) = 1, (5.21)

lim
m−→∞

(Tm,2Q3,m)(x)
m

= 2x(1− x), (5.22)

for any x ∈ I and there exists m(0) ∈ N such that

(Tm,0Q3,m)(x) ≤ 2 (5.23)

and
(Tm,2Q3,m)(x)

m
≤ 3

2
(5.24)

for any x ∈ I and any m ∈ N1,m ≥ m(0).

Proof. The relations (5.21) and (5.22) result taking (5.15), (5.18) and (5.19) into
account. By using the definition of the limit of a function and because x(1−x) ≤ 1

4 for
any x ∈ [0, 1], from (5.20) and (5.21) the relations (5.22) and (5.23) are obtained. ¤
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Theorem 5.1. Let f : [0, 1] −→ R be a continuous function on [0, 1], then

lim
m−→∞

(Q3,mf)(x) = f(x) (5.25)

uniformly on I and there exists m(0) ∈ N such that

|(Q3,mf)(x)− f(x)| ≤ 7
2
ω

(
f ;

1√
m

)
, (5.26)

for any x ∈ I and m ∈ N1,m ≥ m(0).

Proof. Theorem 5.1 is a corollary of Theorem 1.3 for s = 0, α0 = 0, α1 = 1, k0 = 2
and k2 = 3

2 . ¤

Theorem 5.2. If f ∈ C([0, 1]), x ∈ I, f is two times differentiable in x and f (2) is
continuous on I then

lim
m−→∞

m((Q3,mf)(x)− f(x)) =
2(1− x)

x
f(x) + 2(x− 1)f (1)(x) + x(x− 1)f (2)(x).

(5.27)

Proof. Taking Lemma 5.8 into account and applying Theorem 1.3 for s = 2, we obtain
the relation (5.27). ¤
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