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Category of soft sets

O. Zahiri

Abstract. The aim of this paper is to introduce a category, whose objects are soft sets, and

obtain some basic results of this category, such as existence of product and coproduct. Then
we introduce a subcategory of the category of soft sets, whose objects are soft BCK/BCI-
algebras and develop the theory of soft ideals and soft BCK/BCI-subalgebras.
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Introduction

Molodtsov initiated the theory of soft sets as a new mathematical tool for dealing
with uncertainties which traditional mathematical tools can not handle. He has shown
several applications of this theory in solving many practical problems in economics,
engineering, social science, medical science, etc. Later other authors like Maji et
al. [11, 12, 13], have further studied the theory of soft sets and used this theory to
solve some decision making problems. The most appropriate theory for dealing with
uncertainties is the theory of fuzzy sets developed by Zadeh [15]. In 1991, the fuzzy
set theory was applied to BCK-algebras [8]. Then Y. B. Jun et al. applied and
studied the fuzzy set theory to BCK-algebras, soft BCK-algebras [8, 9, 6], BCC-
algebras [2], MTL-algebras [10]. Later, other authors such as Y. B. Jun, C. H. Park,
H. Aktas et al. study the theory of soft set in some kind of algebras such as groups,
BCK-algebras and BCI-algebras (see [1, 5, 7]).

In this paper, we define the concept of soft morphism and introduce new category,
which is called soft set category. Then verify some properties of a subcategory of soft
set category, in the last section.

1. Preliminaries

Definition 1.1. [14] Let U be a initial universe set and E be a set of parameters.
Let P (U) denote the power set of U and A ⊆ E. A pair (f,A) is called a soft set
over U , where f : A→ P (U) is a map. If (f,A) is a soft set over U , we denote it by
(f,A)U , briefly.

Definition 1.2. Let {Ai}i∈I be a family of sets. The map πi :
∏
i∈I

Ai → Ai, defined

by πi((xi)i∈I) = xi is called the i− th canonical projection map, for any i ∈ I.
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Definition 1.3. [3, 4] A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying
the following conditions:

(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
(BCI2) x ∗ 0 = x;
(BCI3) x ∗ y = 0 and y ∗ x = 0 imply y = x.

We will also use the following notation in brevity: x ∗ yn = (...(x ∗
n times︷ ︸︸ ︷

y) ∗ ...) ∗ y, where
x, y ∈ X and n ∈ N. A BCI-algebra X is called a BCK-algebra if 0 ∗ x = 0, for all
x ∈ X. A nonempty subset S of BCK/BCI-algebra (X, ∗, 0) is called a subalgebra of
X if x ∗ y ∈ S, for all x, y ∈ X. A subset I of X is called an ideal of X if (i) 0 ∈ I;
(ii) x ∗ y ∈ I and x ∈ I imply y ∈ I, for all x, y ∈ X. Let (x, ∗, 0) and (y, ∗, 0) be two
BCK/BCI-algebras. The map f : X → Y is called a BCK/BCI-homomorphism if
f(x∗y) = f(x)∗f(y), for all x, y ∈ X. If f : X → Y is a BCK/BCI-homomorphism,
then ker(f) = f−1(0) is an ideal of X. For any element x ∈ X, we define the order of
x, denoted by o(x), as o(x) = min{n ∈ N| 0 ∗ xn = 0}.

Proposition 1.1. [16] Let (X, ∗, 0) be a BCI-algebra and f : X → X be a map
defined by f(x) = 0 ∗ x, for all x ∈ X. Then
(i) f is a BCK/BCI-homomorphism.
(ii) o(x) = o(f(x)), for all x ∈ X.

Proposition 1.2. [16] Let (X, ∗, 0) and (Y, ∗, 0) be two BCK/BCI-algebras and
f : X → Y be a BCK/BCI-homomorphism.
(i) If S is a subalgebra of X, then f(S) is a subalgebra of Y .
(ii) If T is a subalgebra of Y , then f−1(T ) is a subalgebra of X.
(iii) If I is an ideal of Y , then f−1(I) is an ideal of X.
(iv) If f is onto and I be an ideal of X, then f(I) is an ideal of Y .

Definition 1.4. [7] Let (X, ∗, 0) be a BCK/BCI-algebra and (f,A)X be a soft set.
Then (f,A)X is called a soft BCK/BCI-algebra if f(x) is a BCK/BCI-subalgebra
of X, for all x ∈ X.

Definition 1.5. [7] Let (X, ∗, 0) be a BCK/BCI-algebra and (f,A)X , (g,B)X be
two soft BCK/BCI-algebras. Then (f,A)X is called a soft subalgebra of (g,B)X if it
satisfies:
(i) A ⊆ B,
(ii) f(x) is a BCK/BCI-subalgebra of g(x), for all x ∈ A.

Definition 1.6. [5] Let (X, ∗, 0) be a BCI/BCK-algebra and (f,A)X be a soft
BCK/BCI-algebras. A soft set (g,B)X is called a soft ideal of (f,A)X , if it satisfies:
(i) B ⊆ A,
(ii) g(x) is an ideal of f(x), for all x ∈ B.

Definition 1.7. [7] Let (X, ∗, 0) be a BCK/BCI-algebra and (f,A)X be a soft set.
Then (f,A)X is called an idealistic soft BCK/BCI-algebra over X if f(a) is an ideal
of X, for any a ∈ A.

Remark 1.1. [16] Let A be an ideal of a BCI-algebra X. Define a binary relation
θ on X as follows: (x, y) ∈ θ if and only if x ∗ y, y ∗ x ∈ A, for all x, y ∈ X. Then
θ is a congruence relation and it is called the congruence relation induced by A.
Let [x] = {y ∈ X| (x, y) ∈ θ} and X/A = {[x]| x ∈ X}. Then (X/A, ∗, [0]) is a
BCI-algebra, where [x] ∗ [y] = [x ∗ y], for all x, y ∈ X.
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2. Category of soft sets

From now on, in this paper, we use IdA to denote the identity map from A to A,
for all nonempty set A, unless otherwise stated.

Definition 2.1. Let (f,A)U and (g,B)V be two soft sets. If α : A → B and β :
P (U) → P (V ) are two maps such that β ◦ f = g ◦ α, then (α, β) is called a soft
morphism or briefly morphism from (f,A)U to (g,B)V and we write (α, β) : (f,A)U →
(g,B)V . Therefore, (α, β) : (f,A)U → (g,B)V is a soft morphism, if and only if the
following diagram is commutative.

-

-

? ?
P (U)

A

P (V )

B
α

β

f g

Figure 1. Diagram of soft morphism

If (f,A)U and (g,B)V are two soft sets, then we use Hom((f,A)U , (g,B)V ) to
denote the set of all morphisms from (f,A)U to (g,B)V .

Definition 2.2. Let X be a set and f : X → P (X), defined by f(x) = {x}, for any
x ∈ X. Then the soft set (f,X)X is called a simple soft set generated by X.

Example 2.1. Let A and B be two sets, α : A→ B be a map, (f,A)A and (g,B)B be
simple soft sets generated by A and B, respectively. Then clearly, (α, β) : (f,A)A →
(g,B)B is a soft morphism, where β(S) = {α(s)| s ∈ S}, for all nonempty subset
S ∈ P (A) and β(∅) = ∅.

Definition 2.3. Let (α, β), (λ, µ) ∈ Hom((f,A)U , (g,B)V ).
(i) We use (α, β) = (λ, µ) to denote α = λ and β = µ.
(ii) We use (α, β) ∼ (λ, µ) to denote g ◦ α = g ◦ λ (or equivalently, β ◦ f = µ ◦ f).

Theorem 2.1. The class of all soft sets together with the class of all soft morphisms
form a category. It is called a soft set category and is denoted by SS.

Proof. Let (f,A)U , (g,B)V and (h,C)W be soft sets, (α, β) ∈ Hom((f,A)U , (g,B)V )
and (γ, λ) ∈ Hom((g,B)V , (h,C)W ). Then g ◦ α = β ◦ f and h ◦ γ = λ ◦ g and so
h ◦ (γ ◦ α) = (h ◦ γ) ◦ α = (λ ◦ g) ◦ α = λ ◦ (g ◦ α) = λ ◦ (β ◦ f). It follows that

(γ ◦ α, λ ◦ β) ∈ Hom((f,A)U , (h,C)W ).

Let (k,D)Z and (k′, D′)Z′ be two soft sets and (φ,ψ) ∈ Hom((f,A)U , (k,D)Z),
(φ′, ψ′) ∈ Hom((k′, D′)Z′ , (f,A)U ). Clearly, (IdA, IdP (U)) : (f,A)U → (f,A)U is
a morphism, (IdA, IdP (U)) ◦ (φ,ψ) = (φ,ψ) and (φ′, ψ′) ◦ (IdA, IdP (U)) = (φ′, ψ′).
Also, ((α, β)◦(γ, λ))◦(µ, ν) = (α, β)◦((γ, λ)◦(µ, ν)), for any soft set (d,E)Y and any
morphism (µ, ν) ∈ Hom((h,C)W , (d,E)Y ), so these classes of morphisms and objects
form a category. �

Definition 2.4. Let (g,B)V , (f,A)U be two soft sets and (α, β) : (f,A)U → (g,B)V
be a morphism.
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(i) (α, β) is called a weak monic if (α, β) ◦ (γ, η) ∼ (α, β) ◦ (γ′, η′), implies (γ, η) ∼
(γ′, η′), for any (k,D)Z and morphisms (γ, η), (γ′, η′) ∈ Hom((k,D)Z , (f,A)U ).

(ii) (α, β) is called a weak epic if (λ, µ) ◦ (α, β) ∼ (λ′, µ′) ◦ (α, β), implies (λ, µ) ∼
(λ′, µ′), for any (h,C)W and morphisms (λ, µ), (λ′, µ′) ∈ Hom((g,B)V , (h,C)W ).

Proposition 2.2. Let (g,B)V , (f,A)U be two soft sets and (α, β) : (f,A)U → (g,B)V
be a morphism.
(i) If β is an one to one map, then (α, β) is a weak monic.
(ii) If α and β are one to one maps, then (α, β) is a monic.
(iii) If α is an onto map, then (α, β) is a weak epic.
(iv) If α and β are onto maps, then (α, β) is an epic.
(v) (α, β) is an isomorphism if and only if α and β are one to one and onto maps.

Proof. (i) Let (α, β) ◦ (γ, η) ∼ (α, β) ◦ (γ′, η′), for some soft set (h,C)W and some
morphisms (γ, η), (γ′, η′) ∈ Hom((h,C)W , (f,A)U ). Then (α◦γ, β◦η) ∼ (α◦γ′, β◦η′)
and so (β ◦ η) ◦ h = (β ◦ η′) ◦ h. Since β is an one to one map, then η ◦ h = η′ ◦ h.
Hence (γ, η) ∼ (γ′, η′). Therefore, (α, β) is a weak monic.
(ii) Let (α, β)◦(γ, η) = (α, β)◦(γ′, η′), for some soft set (h,C)W and some morphisms
(γ, η), (γ′, η′) ∈ Hom((h,C)W , (f,A)U ). Then α ◦ γ = α ◦ γ′ and β ◦ η = β ◦ η′. Since
α and β are one to one maps, we have γ = γ′ and η = η′ and so (α, β) is a monic.
(iii) Let (φ, χ)◦(α, β) = (φ′, χ′)◦(α, β), for some soft set (k,D)Z and some morphisms
(φ, χ), (φ′, χ′) ∈ Hom((g,B)V , (k,D)Z). Then (φ ◦ α, χ ◦ β) ∼ (φ′ ◦ α, χ′ ◦ β) and
so k ◦ (φ ◦ α) = k ◦ (φ′ ◦ α). Since α is onto, then we obtain k ◦ φ = k ◦ φ′. Hence
(φ, χ) ∼ (φ′, χ′) and so (α, β) is a weak epic.
(iv) Straightforward.
(v) Let (α, β) be an isomorphism. Then there exists a morphism (λ, µ) : (g,B)V →
(f,A)U such that (α, β) ◦ (λ, µ) = (IdB , IdP (V )) and (λ, µ) ◦ (α, β) = (IdA, IdP (U)).
Hence αoλ = IdB and λ ◦α = IdA and so α is one to one and onto. In a similar way,
we obtain β is one to one and onto. Conversely, let α and β be two one to one and onto
maps. Then there are λ : B → A and µ : P (V ) → P (U) such that α◦λ = IdB , λ◦α =
IdA, β ◦ µ = IdP (V ) and µ ◦ β = IdP (U). We show that (λ, µ) : (g,B)V → (f,A)U is
a morphism. Let b ∈ B. Then there exists an element a ∈ A such that b = α(a) and
so f(λ(b)) = f(a) = µ(β(f(a))) = µ(g(α(a))) = µ(g(b)). Hence (λ, µ) is a morphism.
Clearly, (α, β) ◦ (λ, µ) = (IdB , IdP (V )) and (λ, µ) ◦ (α, β) = (IdA, IdP (U)). Therefore,
(α, β) is an isomorphism. �

Remark 2.1. Let (α, β) : (f,A)U → (g,B)V be a morphism, C = Im(α) and
h = g|C . Then (h,C)V is a soft set and (α, β) : (f,A)U → (h, c)V is a soft morphism
and so by Proposition 2.2(iii), (α, β) : (f,A)U → (h, c)V is a weak epic.

Example 2.2. (i) Let f : [0, 1] → P{[0, 1]} and g : [0, 1] → P{[0, 2]} by defined by
f(x) = {u ∈ [0, 1]| u ≤ x} and g(x) = {u ∈ [0, 2]| u ≤ 2x}, for all x ∈ [0, 1]. Then
(f, [0, 1])[0,1] and (g, [0, 1])[0,2] are two soft sets. Define α : [0, 1] → [0, 1] by α(x) = x
and β : P ({[0, 1]}) → P ({[0, 2]}), by β(S) = {u ∈ [0, 2]| u ≤ 2x , ∃x ∈ S}. It is easy
to see that (α, β) : (f, [0, 1])[0,1] → (g, [0, 1])[0,2] is a soft morphism. Since β is one to
one, then by Proposition 2.2(i), (α, β) is a weak monic.
(ii) Let f : N → P ({1}) and g : N → P ({1}) be two maps was defined by

f(a) =

{
∅ if a is even ,
{1} if a is odd .

g(a) =

{
{1} if a is even ,
∅ if a is odd .
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Then (IdN, β) : (f,N){1} → (g,N){1} is a soft morphism, where β : P ({1}) → P ({1})
is a map defined by β(∅) = {1} and β({1}) = ∅. Since IdN is onto, then by Proposition
2.2(iii), (IdN, β) is a weak epic.

Theorem 2.3. Let (g,B)V and (f,A)U be two soft sets and (α, β) : (f,A)U →
(g,B)V be a monic such that β be one to one. Then α is one to one, too.

Proof. Let α(x) = α(y), for some x, y ∈ A. Let γ : A → A and γ′ : A → A be two
maps defined by

γ(a) =

{
a if a ∈ A− {x, y},
{y} if a ∈ {x, y}. γ′(a) =

{
a if a ∈ A− {x, y},
{x} if a ∈ {x, y}.

We show that (γ, IdP (U)) : (f,A)U → (f,A)U and (γ′, IdP (U)) : (f,A)U → (f,A)U are
two morphisms. Let a ∈ A. If a ∈ A−{x, y}, then (f ◦γ)(a) = f(a) = (IdP (U)◦f)(a).
Since (α, β) : (f,A)U → (g,B)V is a morphism, we have g◦α = β◦f and so β(f(x)) =
g(α(x)) = g(α(y)) = β(f(y)). Since β is an one to one map, then f(x) = f(y).
Now, let a ∈ {x, y}. Then (f ◦ γ)(a) = f(y) = f(a) = IdP (U) ◦ f(a). Therefore,
(γ, IdP (U)) ∈ Hom((f,A)U , (f,A)U ). By the similar way, we obtain (γ′, IdP (U)) ∈
Hom((f,A)U , (f,A)U ). Moreover,

(α, β) ◦ (γ, IdP (U)) = (α ◦ γ, β ◦ IdP (U))

= (α ◦ γ′, β ◦ IdP (U)), since α(x) = α(y)

= (α, β) ◦ (γ′, IdP (U))

Since (α, β) is a monic, then (γ, IdP (U)) = (γ′, IdP (U)) and so y = γ(x) = γ′(x) = x.
Therefore, α is an onto map. �

Theorem 2.4. Let (g,B)V and (f,A)U be two soft sets and (α, β) : (f,A)U →
(g,B)V be an epic such that α is onto. Then β is onto, too.

Proof. Let a ∈ P (V ) − Im(β) and µ′ = IdP (V ). Let µ : P (V ) → P (V ) be a map
defined by

µ(x) =

{
x if x ∈ Im(β),
a if x ∈ P (V )− Im(β).

We show that (IdB , µ), (IdB , µ
′) ∈ Hom((g,B)V , (g,B)V ). Since g ◦α = β ◦ f and α

is onto, then Im(g) ⊆ Im(β), it follows that (µ◦g)(b) = µ(g(b)) = g(b), for any b ∈ B.
Hence g ◦ IdB = µ ◦ g and so (IdB , µ) ∈ Hom((g,B)V , (g,B)V ). Also, µ′(g(b)) =
g(b) = (IdB ◦ g)(b), for any b ∈ B, so (IdB, µ

′) ∈ Hom((g,B)V , (g,B)V ). Now, let
b ∈ B. Then µ′(β(b)) = β(b) = µ(β(b)) and so (IdB , µ) ◦ (α, β) = (IdB, µ

′) ◦ (α, β).
Since (α, β) is an epic, we have (IdB, µ) = (IdB , µ

′) consequently, µ = µ′, which is
impossible. Therefore, there is not any a ∈ P (V )− Im(β) and β is onto. �

Definition 2.5. A morphism (α, β) : (f,A)U → (g,B)V is called onto morphism, if
α and β are onto maps.

Let f : X → Y be a maps and ker(f) = {(x, y) ∈ A × A| f(x) = f(y)}. Then
ker(f) is a equivalence relation on X. The set of all equivalent classes of X with
respect to ker(f), is denoted by X/ ker(f). Clearly, the map f : X/ ker(f) → Im(f),
was defined by f([x]) = f(x), for any x ∈ X is a one to one and onto map.

Theorem 2.5. Let (α, β) : (f,A)U → (g,B)V be an onto morphism. Then the soft
set (f,A/ ker(f))V is isomorphic to (g,B)V , where f([x]) = β(f(x)), for any x ∈ X.
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Proof. Let α(x) = α(y), for some x, y ∈ A. Then β(f(x)) = g(α(x)) = g(α(y)) =
β(f(y)). Hence f is well defined. Moreover, g(α([x])) = g(α(x)) = β(f(x)) =
IdP (V )(f([x])), for all x ∈ A and so (α, IdP (V )) : (f,A/ ker(f))V → (g,B)V is a
morphism. Since α and IdP (V ) are one to one and onto, then by Proposition 2.2(v),
(α, IdP (V )) is an isomorphism. �

Note that, if {Ai}i∈I is a family of sets, then
∏
i∈I

Ai = {(xi)i∈I | xi ∈ Ai , ∀i ∈ I}

is the product of this family of sets. In the next theorem, we use this fact to find the
product of {(fi, Ai)Ui}i∈I in SS.

Theorem 2.6. Let {(fi, Ai)Ui}i∈I be a family of soft sets. Then (f,A)W is the

product of this family, where A =
∏
i∈I

Ai, W =
∪
i∈I

(Ui × {i}) and f((xi)i∈I) =∪
i∈I

(fi(xi)× {i}), for any (xi)i∈I ∈ A.

Proof. Let αi : A → Ai be the i−th canonical projection maps, for all i ∈ I and
Wi = Ui × {i}. Define βi : P (W ) → P (Ui), by βi(Y ) = {u ∈ Ui| (u, i) ∈ Wi ∩ Y },
for all Y ⊆ W and i ∈ I. We show that (αi, βi) ∈ Hom((f,A)W , (fi, Ai)Ui), for all
i ∈ I. Let (ai)i∈I ∈ A and j ∈ I. Then fj(αj((ai)i∈I)) = fj(aj) and βj(f((ai)i∈I)) =

βj(
∪
i∈I

(fi(ai)×{i})) = fj(aj) and so βj ◦f((ai)i∈I) = fj(α((ai)i∈I)). Hence (αi, βi) is

a morphism, for all i ∈ I. Let (g,B)V be a soft set and (λi, µi) : (g,B)V → (fi, Ai)Ui

be a morphism, for all i ∈ I. Then we define φ : B → A and χ : P (V ) → P (W ), by

φ(b) = (λi(b))i∈I and χ(X) =
∪
i∈I

(µi(X)× {i}), for all b ∈ B and X ⊆ V . Clearly, χ

and φ are well defined. Let b ∈ B. Then f(φ(b)) = f((λi(b))i∈I) =
∪
i∈I

(fi(λi(b))×{i}).

Since (λi, µi) ∈ Hom((g,B)V , (fi, Ai)Ui), then fi ◦ λi = µi ◦ g, for all i ∈ I and so

f(φ(b)) =
∪
i∈I

(µi ◦ g(b) × {i}) = χ ◦ g(b). Hence (φ,ψ) ∈ Hom((g,B)V , (f,A)W ).

Assume that x ∈ B, Y ∈ P (V ) and i ∈ I. Then we have

(αi, βi) ◦ (φ, χ)(x, Y ) = (αi(φ(x)), βi(χ(Y ))) = (λi(x), βi(
∪
i∈I

(µi(Y )× {i})))

= (λi(x), µi(Y )).

Hence (αi, βi) ◦ (φ, χ) = (λi, µi), for all i ∈ I. Now, we show that (φ, χ) is unique.
Let (φ′, χ′) : (g,B)V → (f,A)W be a morphism such that (αi, βi) ◦ (φ′, χ′) = (λi, µi),
for all i ∈ I. Then αi(φ

′(x)) = λi(x) = αi(φ(x)), for all x ∈ B and i ∈ I and so by

definition of αi we get φ = φ′. Let Y ∈ P (V ). Since χ′(Y ), χ(Y ) ⊆ W , W =
∪
i∈I

Wi

and Wi ∩Wj = ∅, for all distinct elements i, j ∈ I, then χ′(Y ) = χ(Y ) if and only if
χ′(Y ) ∩Wi = χ(Y ) ∩Wi, for all i ∈ I. Let i ∈ I and (a, i) ∈Wi. Then

(a, i) ∈ χ′(Y ) ∩Wi ⇔ a ∈ βi(χ
′(Y )), by definition of βi

⇔ a ∈ βi(χ(Y )), since βi ◦ χ = βi ◦ χ′

⇔ (a, i) ∈ χ(Y ) ∩Wi, by definition of βi

Hence χ′(Y ) ∩Wi = χ(Y ) ∩Wi and so χ′(Y ) = χ(Y ). Therefore, (φ, χ) = (φ′, χ′)
and so (f,A)W is the product of {(fi, Ai)Ui

}i∈I . �
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Corollary 2.7. The category SS has arbitrary products.

Definition 2.6. A weak coproduct for the family {(fi, Ai)Ui}i∈I of soft set is a soft
set (g,B)V together with a family of morphisms {(αi, βi) : (fi, Ai)Ui → (g,B)V }i∈I

such that for any object (h,C)W and family of morphisms {(φi, χi) : (fi, Ai)Ui →
(h,C)W }i∈I , there exists a morphism (φ, χ) : (g,B)V → (h,C)W such that for any
i ∈ I, (φ, χ) ◦ (αi, βi) = (φi, χi). Moreover, if (φ′, χ′) : (g,B)V → (h,C)W be another
morphism such that (φ′, χ′) ◦ (αi, βi) = (φi, χi), for any i ∈ I, then (φ, χ) ∼ (φ′, χ′).

Theorem 2.8. Let {(fi, Ai)Ui}i∈I be a family of soft sets. Then this family has a
weak coproduct in SS.

Proof. Let U ′
i = Ui × {i}, Bi = Ai × {i}, for any i ∈ I, C =

∪
i∈I

Bi and U
′ =

∪
i∈I

U ′
i .

Let gi : Bi → P (Ui) defined by gi(x, i) = fi(x), for any x ∈ Ai and i ∈ I. We define
g : C → P (U ′) by g((x, i)) = gi((x, i)) × {i}, αi : Ai → C, by α(y) = (y, i) and
βi : P (Ui) → P (U ′), by βi(Y ) = Y × {i}, for any (x, i) ∈ C, y ∈ Ai, Y ⊆ U ′ and
i ∈ I. Clearly, g is well defined. We show that (αi, βi) : (fi, Ai)Ui → (g, C)U ′ is a
morphism, for any i ∈ I. Let i ∈ I and a ∈ Ai. Then βi(fi(a)) = fi(a) × {i} =
gi((a, i))× {i} = g((a, i)) = g(αi(a)). Hence βi ◦ fi = g ◦ αi, for any i ∈ I. Now, let
(h,X)V be a soft set and (λi, µi) : (fi, Ai)Ui → (h,X)V be a morphism, for any i ∈ I.
Then we define two maps φ : C → X and χ : P (U ′) → P (V ) by

φ((x, i)) = λi(x), for all (x, i) ∈ C, i ∈ I

χ(Y ) =
∪
i∈I

{µi(Xi)| Xi = {x| (x, i) ∈ Y ∩ Ui}, for all Y ⊆ U ′ }

Let (x, i) ∈ C. Then h(φ((x, i))) = h(λi(x)) = µi(fi(x)) = χ(gi((x, i)) × {i}) =
χ(g((x, i))). Hence h ◦ φ = χ ◦ g and so (φ, χ) ∈ Hom((g, C)U ′ , (h,X)V ). Moreover,

(φ, χ)◦(αi, βi)(a, Y ) = (φ(αi(a)), χ(βi(Y ))) = (φ((a, i)), χ(Y ×{i})) = (λi(a), µi(Y )),

for any a ∈ Ai, Y ⊆ Ui and i ∈ I. Therefore, (φ, χ) ◦ (αi, βi) = (λi, µi), for any i ∈ I.
Now, let (φ′, χ′) : (g, C)U ′ → (h,X)V be a morphism, such that (φ′, χ′) ◦ (αi, βi) =
(λi, µi), for any i ∈ I. Let x ∈ C. Then there exists i ∈ I and y ∈ Ai such that x =
(y, i). Hence φ′(x) = φ′((y, i)) = φ′(αi(y)) = λi(y) = φ(αi(y)) = φ((y, i)) = φ(x).
Hence φ = φ′. Since (φ′, χ′) ∈ Hom((g, C)U ′ , (h,X)V ), then χ

′ ◦ g = h ◦ φ′ and so
χ′ ◦ g = h ◦φ′ = h ◦φ = χ ◦ g, whence (φ, χ) ∼ (φ′, χ′). Therefore, (g, C)U ′ is a weak
coproduct of the family {(fi, Ai)Ui}i∈I in SS. �

Note that, in the proof of the last theorem, if Ui ∩ Uj = ∅, (Ai ∩ Aj = ∅), for any
i, j ∈ I, then we can use Ui (Ai) instead of U ′

i (Bi).
In Example 2.3, we show that (g, C)U ′ is not coproduct of the family {(fi, Ai)Ui}i∈I

in general, where (g, c)U ′ is a soft set, defined in the Theorem 2.8.

Remark 2.2. Let (α, β) : (f,A)U → (g,B)V be a morphism. If f ′ : A → P (P (U)),
g′ : B → P (P (V )) and β′ : P (P (U)) → P (P (V )) defined by f(a) = {f(a)}, g(b) =
{g(b)} and β′(Y ) = {β(y)| y ∈ Y }, for any a ∈ A, b ∈ B and Y ⊆ P (U). Then
β′(f ′(a)) = β′({f(a)} = {β(f(a))} = {g ◦α(a)} = g′(α(a)), for any a ∈ A. Therefore,
(α, β′) ∈ Hom((f ′, A)P (U), (g

′, B)P (V )).

Example 2.3. Let A1 = {1, 2, 3}, A2 = {4, 5, 6}, U1 = {a, b, c}, U2 = {e, f, g},
C = {1, 2, 3, 4, 5, 6} and U = {a, b, c, e, f, g}. Define the maps f1 : A1 → P (U1),
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f2 : A2 → P (U2) and g : C → P (U) by

f1(x) =

 {a} x = 1,
{b} x = 2,
{c} x = 3.

f2(x) =

 {e} x = 4,
{f} x = 5,
{g} x = 6.

g(x) =

{
f1(x) x ∈ A1,
f2(x) x ∈ A2.

Let α1 : A1 → C, α2 : A2 → C, β1 : P (U1) → P (U) and β2 : P (U2) → P (U) be
the inclusion maps. Then it is easy to check that (α1, β1) ∈ Hom((f1, A1)U1 , (g,B)C)
and (α2, β2) ∈ Hom((f2, A2)U2 , (g,B)C). Let X = {7, 8, 9}, W = {m,n, o} and
h : X → P (W ), λ1 : A1 → X, λ2 : A2 → X, µ1 : U1 → W and µ2 : U2 → W defined
by

h(x) =

 {m} x = 7,
{n} x = 8,
{o} x = 9.

λ1(x) =

 7 x = 1,
8 x = 2,
9 x = 3.

λ2(x) =

 7 x = 4,
8 x = 5,
9 x = 6.

µ1(x) =

 m x = a,
n x = b,
o x = c.

µ2(x) =

 m x = e,
n x = f,
o x = g.

Then clearly, (λi, µi) ∈ Hom((fi, Ai)Ui , (h,X)W ), for any i ∈ {1, 2}, where µi(S) =
{µi(s)| s ∈ S}, for all S ⊆ Ui, i ∈ {1, 2}. Let φ : C → X, χ : P (U) → P (W ),
φ′ : C → X and χ′ : P (U) → P (W ), were defined by

φ(x) =

 7 x ∈ {1, 4},
8 x ∈ {2, 5},
9 x ∈ {3, 6}.

χ(x) =


{m} x ∈ {{a}, {e}},
{n} x ∈ {{b}, {f}},
{o} x ∈ {{c}, {g}},
{m,n} otherwise.

χ′(x) =


{m} x ∈ {{a}, {e}},
{n} x ∈ {{b}, {f}},
{o} x ∈ {{c}, {g}},
{o, n} otherwise.

and φ(x) = φ′(x), for any x ∈ C. Then (φ, χ), (φ′, χ′) ∈ Hom((g, C)U , (h,C)W ) and
(φ, χ) ◦ (αi, βi) = (λi, µi), for any i ∈ {1, 2}. But (φ, χ) ̸= (φ′, χ′). Therefore, (g, C)U
may not be coproduct of the family {(fi, Ai)Ui}i∈{1,2}.

Corollary 2.9. The category SS has arbitrary weak coproducts.

Proposition 2.10. The category SS has a terminal object.

Proof. Let A = {a}, U = ∅ and f : A → P (U) defined by f(a) = ∅. Then (f,A)U
is a soft set. Now, let (g,B)V be an other soft set. Define α : B → A and β :
P (V ) → P (U) by α(b) = a and β(Y ) = ∅, for all b ∈ B and Y ∈ P (V ). Clearly,
(α, β) : (g,B)V → (f,A)U is a morphism. It is easy to see that (α, β) is a terminal
object. �
Definition 2.7. Let (f,A)U and (g,B)V be two soft sets. The soft set (f,A)U is
called a soft subset of (g,B)V if the following conditions are satisfied:
(i) U ⊆ V ;
(ii) A ⊆ B;
(iii) f(x) ⊆ g(x), for any x ∈ A.

Proposition 2.11. Let F : P (U) → P (V ) be a map and (α, β) : (f,A)U → (g,B)V
be a morphism such that β preserve the inclusion. Then
(i) (F ◦ f,A)V is a soft set too.
(ii) (IdA, F ) : (f,A)U → (F ◦ f,A)V is a morphism.
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(iii) If (f ′, A′)U ′ is a soft subset of (f,A)U , then (g′, α(A′))β(U ′) is a soft subset of
(g,B)V , where g

′(b) = ∪{β(f ′(a))| α(a) = b)}, for any b ∈ α(A′).

Proof. The proof of (i) and (ii) are straightforward.
(iii) Clearly, the maps g′ : α(A′) → P (V ) is well defined. Let b ∈ α(A′). Then there
is a ∈ A′ such that α(a) = b. Since f ′(a) ⊆ f(a) and β preserve the inclusion, then
g(b) = g(α(a)) = β(f(a)) ⊇ β(f ′(a)). Hence g′(b) = ∪{β(f ′(a))| α(a) = b)} ⊆ g(b).
Moreover, f ′(a) ⊆ U ′, for any a ∈ A′ and β preserve the inclusion and so β(f ′(a)) ⊆
β(U ′), for any a ∈ A′. Hence g′(b) ⊆ U ′. Therefore, (g′, α(A′))β(U ′) is a soft subset
of (g,B)V . �
Definition 2.8. Let (f,A)U and (g,B)V be two soft sets. If α : A→ B and β : U →
V are two maps such that β ◦ f = g ◦ α, then (α, β) is called normal soft morphism
or briefly normal morphism from (f,A)U to (g,B)V and we write (α, β) : (f,A)U →
(g,B)V , where β(X) = {β(x)| x ∈ X}, for all X ∈ P (U).

Proposition 2.12. The class of all soft sets and all normal morphisms forms a
subcategory of SS. It is denoted by NSS.

Proof. Similar to the proof of Theorem 2.1. �
Theorem 2.13. NSS has arbitrary coporoducts.

Proof. Let {(fi, Ai)Ui}i∈I be a family of soft sets and (g, C)U ′ be the soft set defined
in the proof of Theorem 2.8. Define αi : Ai → C, by α(x) = (x, i) and βi : Ui → U ′,
by βi(y) = (y, i), for any x ∈ Ai, y ∈ U ′ and i ∈ I, where Bi is a set defined in
the proof of Theorem 2.8. Then clearly, (αi, βi) : (fi, Ai)Ui

→ (g, C)U ′ is a normal
soft morphism. Now, let (h,X)V be a soft set and (λi, µi) : (fi, Ai)Ui → (h,X)V be
a normal soft morphism, for any i ∈ I. Then we define two maps φ : C → X and
χ : U ′ → V by

φ((x, i)) = λi(x), for all (x, i) ∈ C, i ∈ I

χ((y, i)) = µi(x), for all (y, i) ∈ U ′, i ∈ I

Let (x, j) ∈ C, for some j ∈ I. Then

h(φ((x, j))) = h(λj(x)) = µj(fj(x)), (λj , µj) : (fj , Aj)Uj → (h,X)V is a morphism

= {µj(u)| u ∈ fj(x)}
= {χ(x, j)| u ∈ fj(x)}, by definition of χ

= χ(fj(x)× {j})
= χ(gj((x, j))× {j}) = χ(g((x, j))).

Hence h ◦ φ = χ ◦ g and so (φ, χ) : (g, C)U ′ → (h,X)V is a normal soft morphism.
Moreover,

(φ, χ)◦(αi, βi)(a, Y ) = (φ(αi(a)), χ(βi(Y ))) = (φ((a, i)), χ(Y ×{i})) = (λi(a), µi(Y )),

for any a ∈ Ai, Y ⊆ Ui and i ∈ I. Therefore, (φ, χ) ◦ (αi, βi) = (λi, µi), for any
i ∈ I. Now, let (φ′, χ′) : (g, C)U ′ → (h,X)V be a normal soft morphism, such that
(φ′, χ′)◦ (αi, βi) = (λi, µi), for any i ∈ I. Similar to the proof of Theorem 2.8, we can
show that φ = φ′. Let y ∈ U ′. Then there are i ∈ I and x ∈ Ui such that y = (x, i).

χ(y) = χ(x, i) = χ(βi(x)) = µi(x) = χ′(βi(x)) = χ′(x, i) = χ′(y).

Hence χ = χ′ and so (φ, χ) = (φ′, χ′). Therefore, (g, C)U ′ is a coproduct of the family
{(fi, Ai)Ui}i∈I in NSS. �
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In the next section we want to verify a subcategory of SS, which its morphism
are normal.

3. Some results on soft BCK/BCI-morphisms

In this section, we define the concept of soft BCK/BCI-morphism and give some
results about soft subalgebras, soft ideals and soft BCK/BCI-morphisms.
From now on, in this paper, U and V will denote two BCK/BCI-algebras, unless
otherwise stated.

Definition 3.1. Let (f,A)U and (g,B)V be two soft BCK/BCI-algebras. If α :
A → B and β : U → V are two maps such that β is a BCK/BCI-homomorphism
and (α, β) : (f,A)U → (g,B)V is a normal soft morphism, then (α, β) is called a soft
BCK/BCI-morphism.

Example 3.1. Let U , V be two BCK-algebras and α : U → V be a BCK/BCI-
homomorphism. If f(u) = {0, u} and g(v) = {0, v}, then (f, U)U and (g, V )V are soft
BCK/BCI-algebras and (α, β) : (f, U)U → (g, V )V is a soft BCK/BCI-morphism,
where β : P (U) → P (V ), was defined by β(X) = {α(x)| x ∈ X}, for any X ∈ P (U).
Therefore, for any BCI-homomorphism we can obtain a soft BCK/BCI-morphism.

Example 3.2. Let A = X = {0, a, b, c, d, e, f, g} and consider the following table:

Table 1
∗ 0 a b c d e f g
0 0 0 0 0 d d d d
a a 0 0 0 e d d d
b b b 0 0 f f d d
c c b a 0 g f e d
d d d d d 0 0 0 0
e e d d d a 0 0 0
f f f d d b b 0 0
g g f e d c b a 0

Then (X, ∗, 0) is a BCI-algebra. Let (f,A)X be a soft set, where f : A→ P (X) is a
map defined by f(a) = {0}∪{b ∈ A| o(a) = o(b)}, for all a ∈ A (see [5, Example 4.4]).
Let β : X → X be a map defined by β(x) = 0 ∗x, for all x ∈ X. Then by Proposition
1.1(i) and (ii), β is a BCK/BCI-homomorphism and f(IdA(a)) = β(f(a)) (note
that, by [16, Proposition 1.3.9], o(x) = o(0 ∗ x), for all x ∈ X). Therefore, (IdA, β) :
(f,A)X → (f,A)X is a soft BCK/BCI-morphism.

Example 3.3. Let X = {0, 1, 2, 3} and Y = {0, 1} and consider the following tables:

Table 2 Table 3
∗1 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 3 2 1 0

∗2 0 1
0 0 0
1 0 1

Then (X, ∗1, 0) and (Y, ∗2, 0) are two BCK-algebras (see [16, Appendix A]). Define
a map α : X → Y , by α(0) = α(1) = 0 and α(2) = α(3) = 1. It is easy to check
that α is a BCK/BCI-homomorphism. Let f : X → P (X) and g : Y → P (Y ) be
two maps defined by f(x) = {u ∈ X| u ∗ x = 0} and g(y) = {u ∈ Y | u ∗ y = 0},
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for all x ∈ X and y ∈ Y . Routine calculations show that (f,X)X and (g, Y )Y are
soft BCK/BCI-algebras. Moreover, g(α(1)) = g(α(0)) = {0} = α(f(0)) = α(f(1))
and g(α(2)) = g(α(3)) = {0, 1} = α(f(2)) = α(f(3)). Therefore, (α, α) : (f,X)X →
(g, Y )Y is a soft BCK/BCI-morphism.

Theorem 3.1. The class of all soft BCK/BCI-algebras with the class of all soft
BCK/BCI-morphisms form a subcategory of SS, which is called category of soft
BCK/BCI-algebras.

Proof. The proof is straightforward. In fact, if (f,A)U , (g,B)V and (h,C)W are three
soft BCK/BCI-algebras and (α, β) : (f,A)U → (g,B)V and (γ, λ) : (g,B)V →
(h,C)W are soft BCK/BCI-morphisms, then by Theorem 2.1,

(γ, λ) ◦ (α, β) = (γ ◦ α, λ ◦ β) ∈ Hom((f,A)U , (h,C)W ).

Since λ ◦ β is a BCK/BCI-homomorphism, then (γ ◦ α, λ ◦ β) is a soft BCK/BCI-
morphism. Moreover, (IdA, IdP (U)) : (f,A)U → (f,A)U is a soft BCK/BCI-
morphism. �

Proposition 3.2. Let (f,A)U and (g,B)V be two soft BCK/BCI-algebras and
(α, β) : (f,A)U → (g,B)V be a soft BCK/BCI-morphism.
(i) (β−1 ◦ β ◦ f,A)U is a soft BCK/BCI-algebra and (f,A)U is a soft subalgebra of

(β−1 ◦ β ◦ f,A)U .
(ii) If (f ′, A′)U is a soft subalgebra of (f,A)U , then (g′, B′)V is a soft subalgebra of

(g,B)V , where B
′ = α(A) and g′(α(a)) = β(f ′(a)), for all a ∈ A. (g′, B′)V is

called the image of (f ′, A′)U with respect to (α, β). Moreover, if β is an onto
map and (f ′, A′)U is a soft ideal of (f,A)U , then the (g′, B′)V is a soft ideal of
(g,B)V .

(iii) If β is an one to one map and (g′, B′)V is a soft subalgebra of (g,B)V , then
(f ′, A′)U is a soft subalgebra of (f,A)U , where A′ = α−1(B′) and f ′(x) =
β−1(g′(α(a))), for all x ∈ A′.

(iv) If β is an one to one map and (g′, B′)V is a soft ideal of (g,B)V , then (f ′, A′)U
is a soft ideal of (f,A)V , where A

′ = α−1(B′) and f ′(x) = β−1(g(α(a))), for all
x ∈ A′.

Proof. (i) It is suffices to show that β−1(β(f(x))) is a BCK/BCI subalgebra of U ,
for all x ∈ A. Let x ∈ A. Since (f,A)U is a soft BCK/BCI-algebra, then f(x)
is a BCK/BCI-algebra of U and so by Proposition 1.2(i) and (ii), β−1(β(f(x))) is
a BCK/BCI subalgebra of U . Clearly, f(x) ⊆ β−1(β(f(x))) ⊆ U and f(x) is a
BCK/BCI-subalgebra of U , for all x ∈ U . Hence (f,A)U is a soft subalgebra of
(β−1 ◦ β ◦ f,A)U .
(ii) By (α, β) is a soft BCK/BCI-morphism, it follows that g ◦ α = β ◦ f , so

g′(α(a)) = β(f ′(a)) ⊆ β(f(a)) = g(α(a)).

Since f ′(a) is a subalgebra of f(a), then by Proposition 1.2(i), we have β(f ′(a)) is a
subalgebra of β(f(a)) and so (g′, B′)V is a soft subalgebra of (g,B)V . Now, let β be
an onto map, (f ′, A′)U be a soft ideal of (f,A)U and y ∈ B′. Then there is x ∈ A′

such that y = α(x). By the first step of the proof, g′(y) ⊆ g(y). Since (f ′, A′)U is
a soft ideal of (f,A)U , then f

′(x) is an ideal of f(x) and so by Proposition 1.2(iv),
β(f ′(x)) is an ideal of β(f(x)) = g(α(x)) = g(y) and so g′(y) is an ideal of g(y).
Therefore, (g′, B′)V is a soft ideal of (g,B)V .
(iii) Let x ∈ A′. Then α(x) ∈ B′. Since (g′, B′)V is a soft subalgebra of (g,B)V ,
then g′(α(x)) is a soft subalgebra of g(α(x)) = β(f(x)). Hence by Proposition 1.2(ii),
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β−1(g′(α(x))) is a subalgebra of U . Moreover, by g′(α(x)) ⊆ g(α(x)) = β(f(x)), we
conclude that f ′(x) = β−1(g′(α(x))) ⊆ β−1(β(f(x))). Since β is an one to one map,
we get f ′(x) ⊆ f(x), whence (f ′, A′)U is a soft subalgebra of (f,A)U .
(iv) Similar to the proof of (ii), we can show that f ′(x) ⊆ f(x), for all x ∈ A′ =
α−1(B′). Let x ∈ A′. Then α(x) ∈ B′ and so g′(α(x)) is an ideal of g(α(x)). Since
(g,B)V is a soft BCK/BCI-algebra, then by Proposition 1.2(iii), we conclude that
β−1(g′(α(x))) is a ideal of β−1(g(α(x))) = β−1(β(f(x))) = f(x). Therefore, (f ′, A′)U
is a soft ideal of (f,A)U . �

Proposition 3.3. Let (f,A)U and (g,B)V be two soft sets and (α, β) : (f,A)U →
(g,B)V be a normal soft morphism such that β is a BCK/BCI-algebra homomor-
phism.
(i) If (g,B)V is an idealistic soft BCK/BCI-algebra over V , then (β−1◦β◦f, α−1(B))U

is an idealistic soft BCK/BCI-algebra over U . Moreover, if β is one to one,
then (f, α−1(B))U is an idealistic soft BCK/BCI-algebra over U .

(ii) If β is onto and (f,A)U is an idealistic soft BCK/BCI-algebra over U , then
(g, α(A))V is an idealistic soft BCK/BCI-algebra over V .

Proof. (i) Let (g,B)V is an idealistic soft BCK/BCI-algebra over V and a ∈ α−1(B).
Then α(a) ∈ B and so β(f(a)) = g(α(a)) is an ideal of V . Since β is a BCK/BCI-
homomorphism, then by Proposition 1.2(iii), β−1(β(f(a))) is an ideal of U . Hence
(β−1 ◦ β ◦ f, α−1(B))U is an idealistic soft BCK/BCI-algebra over U . Now, let β be
one to one map. Then β−1 ◦ β ◦ f = f . Therefore, (f, α−1(B))U is an idealistic soft
BCK/BCI-algebra over U .
(ii) Let β is onto, (f,A)U is an idealistic soft BCK/BCI-algebra over U and b ∈ α(A).
Then there exists a ∈ A such that b = α(a). Since f(a) is an ideal of U and β is
a BCK/BCI-homomorphism, then by Proposition 1.2(iv), β(f(a)) is an ideal of V
and so g(α(a)) = g(b) is an ideal of V . �

Let θ be an equivalence relation on a set X. Then we use [x]θ to denote {u ∈
X| uθx}. Moreover, if A is a subset of X, the [A]θ = {[a]θ| a ∈ A}.

Theorem 3.4. Let (α, β) : (f,A)U → (g,B)V be a soft BCK/BCI-morphism, θ =
{(x, y) ∈ A × A| α(x) = α(y)} and ϕ be a congruence relation induced by ker(β).
Then the following hold:
(i) θ is an equivalence relation on A, ϕ is a congruence relation on U and (f,A)U

is a soft BCK/BCI-algebra, where A = {[a]θ| a ∈ A}, U = {[u]ϕ| u ∈ U} and

f([a]θ) = [f(a)]ϕ, for all a ∈ A.

(ii) if α : A → B and B : U → V are two maps defined by α([x]) = α(x) and
β([u]ϕ) = β(u), for all x ∈ A and u ∈ U , then (α, β) : (f,A)U → (g,B)V is a
soft BCK/BCI-monic.

Proof. Clearly, θ is an equivalence relation on A and ϕ is a congruence relation on
U . Let [a] = [b], for some a, b ∈ A. Then α(a) = α(b) and so β(f(a)) = g(α(a)) =
g(α(b)) = β(f(b)). Hence [f(a)]ϕ = [f(b)]ϕ whence f is well defined. By Remark
1.1, U/ ker(β) is a BCI-algebra. Let a ∈ A. Since f(a) is a subalgebra of U , then
0 ∈ f(a) and so [0]ϕ ∈ [f(a)]ϕ = f([a]θ). Now, let [x]ϕ, [y]ϕ ∈ f([a]θ). Then there
exist s, t ∈ f(a) such that (x, s) ∈ ϕ and (y, t) ∈ ϕ. Since f(a) is a subalgebra of U
and ϕ is a congruence relation on U , then s ∗ t ∈ f(a) and (x ∗ y, s ∗ t) ∈ ϕ and so
[x]ϕ ∗ [y]ϕ = [x ∗ y]ϕ ∈ [f(a)]ϕ = f([a]θ). Therefore, f([a]θ) is a subalgebra of U and

(f,A)U is a soft BCK/BCI-algebra.



166 O. ZAHIRI

(ii) Clearly, α is well defined. Since

(x, y) ∈ U ⇔ x∗y, y∗x ∈ β−1(0) ⇔ β(x∗y) = β(y∗x) = 0 ⇔ β(x)∗β(y) = 0 = β(y)∗β(x)
then by BCI3, we get β(x) = β(y). Hence U = {(x, y) ∈ U × U | β(x) = β(y)}.
Hence β is well defined. Moreover, B([x]ϕ ∗ [y]ϕ) = β([x ∗ y]ϕ) = β(x ∗ y) = β(x) ∗
β(y) = β([x]ϕ) ∗ β([y]ϕ) and so β is a BCK/BCI-homomorphism. Finally, we show

that g(α([a]θ)) = β(f([a]θ)), for all [a]θ ∈ A. Let [a]θ ∈ A. Then g(α([a]θ)) =
g(α(a)) = β(f(a)) = β([f(a)]ϕ) = β(f([a]θ)). Hence, (α, β) : (f,A)U → (g,B)V is

a soft BCK/BCI-morphism. Clearly, α and β are one to one maps. Therefore, by
Proposition 2.2(ii), (α, β) : (f,A)U → (g,B)V is a soft BCK/BCI-monic. �

4. Conclusions and future works

In this paper, we introduced category of soft sets and presented some properties
of this category, such as existence of product, terminal object and coproduct. Then
we verified category of soft BCK/BCI-algebras, and obtained some theorems about
soft BCK/BCI ideals and soft subalgebras. For future research, we can study the
category of soft BCK/BCI-algebras, in more details and find limits, colimits and
other special elements of this category.
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