Category of soft sets

O. Zahiri

Abstract

The aim of this paper is to introduce a category, whose objects are soft sets, and obtain some basic results of this category, such as existence of product and coproduct. Then we introduce a subcategory of the category of soft sets, whose objects are soft $B C K / B C I$ algebras and develop the theory of soft ideals and soft $B C K / B C I$-subalgebras.

2010 Mathematics Subject Classification. 06D72, 06F35, 03G25.
Key words and phrases. Soft set, Category, Morphism, $B C I / B C K$-algebras, soft ideals.

Introduction

Molodtsov initiated the theory of soft sets as a new mathematical tool for dealing with uncertainties which traditional mathematical tools can not handle. He has shown several applications of this theory in solving many practical problems in economics, engineering, social science, medical science, etc. Later other authors like Maji et al. [11, 12, 13], have further studied the theory of soft sets and used this theory to solve some decision making problems. The most appropriate theory for dealing with uncertainties is the theory of fuzzy sets developed by Zadeh [15]. In 1991, the fuzzy set theory was applied to $B C K$-algebras [8]. Then Y. B. Jun et al. applied and studied the fuzzy set theory to $B C K$-algebras, soft $B C K$-algebras [8, 9, 6], $B C C$ algebras [2], MTL-algebras [10]. Later, other authors such as Y. B. Jun, C. H. Park, H. Aktas et al. study the theory of soft set in some kind of algebras such as groups, $B C K$-algebras and $B C I$-algebras (see $[1,5,7]$).

In this paper, we define the concept of soft morphism and introduce new category, which is called soft set category. Then verify some properties of a subcategory of soft set category, in the last section.

1. Preliminaries

Definition 1.1. [14] Let U be a initial universe set and E be a set of parameters. Let $P(U)$ denote the power set of U and $A \subseteq E$. A pair (f, A) is called a soft set over U, where $f: A \rightarrow P(U)$ is a map. If (f, A) is a soft set over U, we denote it by $(f, A)_{U}$, briefly.

Definition 1.2. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of sets. The map $\pi_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}$, defined by $\pi_{i}\left(\left(x_{i}\right)_{i \in I}\right)=x_{i}$ is called the $i-t h$ canonical projection map, for any $i \in I$.

Definition 1.3. [3, 4] A BCI-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:
$(B C I 1)((x * y) *(x * z)) *(z * y)=0 ;$
(BCI2) $x * 0=x$;
(BCI3) $x * y=0$ and $y * x=0$ imply $y=x$.
We will also use the following notation in brevity: $x * y^{n}=(\ldots(x * \overbrace{y) * \ldots) * y}^{n \text { times }}$, where $x, y \in X$ and $n \in \mathbb{N}$. A BCI-algebra X is called a $B C K$-algebra if $0 * x=0$, for all $x \in X$. A nonempty subset S of $B C K / B C I$-algebra $(X, *, 0)$ is called a subalgebra of X if $x * y \in S$, for all $x, y \in X$. A subset I of X is called an ideal of X if (i) $0 \in I$; (ii) $x * y \in I$ and $x \in I$ imply $y \in I$, for all $x, y \in X$. Let $(x, *, 0)$ and ($y, *, 0$) be two $B C K / B C I$-algebras. The map $f: X \rightarrow Y$ is called a $B C K / B C I$-homomorphism if $f(x * y)=f(x) * f(y)$, for all $x, y \in X$. If $f: X \rightarrow Y$ is a $B C K / B C I$-homomorphism, then $\operatorname{ker}(f)=f^{-1}(0)$ is an ideal of X. For any element $x \in X$, we define the order of x, denoted by $o(x)$, as $o(x)=\min \left\{n \in \mathbb{N} \mid 0 * x^{n}=0\right\}$.
Proposition 1.1. [16] Let $(X, *, 0)$ be a BCI-algebra and $f: X \rightarrow X$ be a map defined by $f(x)=0 * x$, for all $x \in X$. Then
(i) f is a $B C K / B C I$-homomorphism.
(ii) $o(x)=o(f(x))$, for all $x \in X$.

Proposition 1.2. [16] Let $(X, *, 0)$ and $(Y, *, 0)$ be two $B C K / B C I$-algebras and $f: X \rightarrow Y$ be a BCK/BCI-homomorphism.
(i) If S is a subalgebra of X, then $f(S)$ is a subalgebra of Y.
(ii) If T is a subalgebra of Y, then $f^{-1}(T)$ is a subalgebra of X.
(iii) If I is an ideal of Y, then $f^{-1}(I)$ is an ideal of X.
(iv) If f is onto and I be an ideal of X, then $f(I)$ is an ideal of Y.

Definition 1.4. [7] Let $(X, *, 0)$ be a $B C K / B C I$-algebra and $(f, A)_{X}$ be a soft set. Then $(f, A)_{X}$ is called a soft $B C K / B C I$-algebra if $f(x)$ is a $B C K / B C I$-subalgebra of X, for all $x \in X$.

Definition 1.5. [7] Let $(X, *, 0)$ be a $B C K / B C I$-algebra and $(f, A)_{X},(g, B)_{X}$ be two soft $B C K / B C I$-algebras. Then $(f, A)_{X}$ is called a soft subalgebra of $(g, B)_{X}$ if it satisfies:
(i) $A \subseteq B$,
(ii) $f(x)$ is a $B C K / B C I$-subalgebra of $g(x)$, for all $x \in A$.

Definition 1.6. [5] Let $(X, *, 0)$ be a $B C I / B C K$-algebra and $(f, A)_{X}$ be a soft $B C K / B C I$-algebras. A soft set $(g, B)_{X}$ is called a soft ideal of $(f, A)_{X}$, if it satisfies:
(i) $B \subseteq A$,
(ii) $g(x)$ is an ideal of $f(x)$, for all $x \in B$.

Definition 1.7. [7] Let $(X, *, 0)$ be a $B C K / B C I$-algebra and $(f, A)_{X}$ be a soft set. Then $(f, A)_{X}$ is called an idealistic soft BCK/BCI-algebra over X if $f(a)$ is an ideal of X, for any $a \in A$.

Remark 1.1. [16] Let A be an ideal of a $B C I$-algebra X. Define a binary relation θ on X as follows: $(x, y) \in \theta$ if and only if $x * y, y * x \in A$, for all $x, y \in X$. Then θ is a congruence relation and it is called the congruence relation induced by A. Let $[x]=\{y \in X \mid(x, y) \in \theta\}$ and $X / A=\{[x] \mid x \in X\}$. Then $(X / A, *,[0])$ is a $B C I$-algebra, where $[x] *[y]=[x * y]$, for all $x, y \in X$.

2. Category of soft sets

From now on, in this paper, we use $I d_{A}$ to denote the identity map from A to A, for all nonempty set A, unless otherwise stated.

Definition 2.1. Let $(f, A)_{U}$ and $(g, B)_{V}$ be two soft sets. If $\alpha: A \rightarrow B$ and β : $P(U) \rightarrow P(V)$ are two maps such that $\beta \circ f=g \circ \alpha$, then (α, β) is called a soft morphism or briefly morphism from $(f, A)_{U}$ to $(g, B)_{V}$ and we write $(\alpha, \beta):(f, A)_{U} \rightarrow$ $(g, B)_{V}$. Therefore, $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ is a soft morphism, if and only if the following diagram is commutative.

Figure 1. Diagram of soft morphism

If $(f, A)_{U}$ and $(g, B)_{V}$ are two soft sets, then we use $\operatorname{Hom}\left((f, A)_{U},(g, B)_{V}\right)$ to denote the set of all morphisms from $(f, A)_{U}$ to $(g, B)_{V}$.
Definition 2.2. Let X be a set and $f: X \rightarrow P(X)$, defined by $f(x)=\{x\}$, for any $x \in X$. Then the soft set $(f, X)_{X}$ is called a simple soft set generated by X.

Example 2.1. Let A and B be two sets, $\alpha: A \rightarrow B$ be a map, $(f, A)_{A}$ and $(g, B)_{B}$ be simple soft sets generated by A and B, respectively. Then clearly, $(\alpha, \beta):(f, A)_{A} \rightarrow$ $(g, B)_{B}$ is a soft morphism, where $\beta(S)=\{\alpha(s) \mid s \in S\}$, for all nonempty subset $S \in P(A)$ and $\beta(\emptyset)=\emptyset$.

Definition 2.3. Let $(\alpha, \beta),(\lambda, \mu) \in \operatorname{Hom}\left((f, A)_{U},(g, B)_{V}\right)$.
(i) We use $(\alpha, \beta)=(\lambda, \mu)$ to denote $\alpha=\lambda$ and $\beta=\mu$.
(ii) We use $(\alpha, \beta) \sim(\lambda, \mu)$ to denote $g \circ \alpha=g \circ \lambda$ (or equivalently, $\beta \circ f=\mu \circ f$).

Theorem 2.1. The class of all soft sets together with the class of all soft morphisms form a category. It is called a soft set category and is denoted by $\mathfrak{S S}$.

Proof. Let $(f, A)_{U},(g, B)_{V}$ and $(h, C)_{W}$ be soft sets, $(\alpha, \beta) \in \operatorname{Hom}\left((f, A)_{U},(g, B)_{V}\right)$ and $(\gamma, \lambda) \in \operatorname{Hom}\left((g, B)_{V},(h, C)_{W}\right)$. Then $g \circ \alpha=\beta \circ f$ and $h \circ \gamma=\lambda \circ g$ and so $h \circ(\gamma \circ \alpha)=(h \circ \gamma) \circ \alpha=(\lambda \circ g) \circ \alpha=\lambda \circ(g \circ \alpha)=\lambda \circ(\beta \circ f)$. It follows that

$$
(\gamma \circ \alpha, \lambda \circ \beta) \in \operatorname{Hom}\left((f, A)_{U},(h, C)_{W}\right)
$$

Let $(k, D)_{Z}$ and $\left(k^{\prime}, D^{\prime}\right)_{Z^{\prime}}$ be two soft sets and $(\varphi, \psi) \in \operatorname{Hom}\left((f, A)_{U},(k, D)_{Z}\right)$, $\left(\varphi^{\prime}, \psi^{\prime}\right) \in \operatorname{Hom}\left(\left(k^{\prime}, D^{\prime}\right)_{Z^{\prime}},(f, A)_{U}\right)$. Clearly, $\left(I d_{A}, I d_{P(U)}\right):(f, A)_{U} \rightarrow(f, A)_{U}$ is a morphism, $\left(I d_{A}, I d_{P(U)}\right) \circ(\varphi, \psi)=(\varphi, \psi)$ and $\left(\varphi^{\prime}, \psi^{\prime}\right) \circ\left({I d_{A}}, I d_{P(U)}\right)=\left(\varphi^{\prime}, \psi^{\prime}\right)$. Also, $((\alpha, \beta) \circ(\gamma, \lambda)) \circ(\mu, \nu)=(\alpha, \beta) \circ((\gamma, \lambda) \circ(\mu, \nu))$, for any soft set $(d, E)_{Y}$ and any morphism $(\mu, \nu) \in \operatorname{Hom}\left((h, C)_{W},(d, E)_{Y}\right)$, so these classes of morphisms and objects form a category.

Definition 2.4. Let $(g, B)_{V},(f, A)_{U}$ be two soft sets and $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be a morphism.
(i) (α, β) is called a weak monic if $(\alpha, \beta) \circ(\gamma, \eta) \sim(\alpha, \beta) \circ\left(\gamma^{\prime}, \eta^{\prime}\right)$, implies $(\gamma, \eta) \sim$ $\left(\gamma^{\prime}, \eta^{\prime}\right)$, for any $(k, D)_{Z}$ and morphisms $(\gamma, \eta),\left(\gamma^{\prime}, \eta^{\prime}\right) \in \operatorname{Hom}\left((k, D)_{Z},(f, A)_{U}\right)$.
(ii) (α, β) is called a weak epic if $(\lambda, \mu) \circ(\alpha, \beta) \sim\left(\lambda^{\prime}, \mu^{\prime}\right) \circ(\alpha, \beta)$, implies $(\lambda, \mu) \sim$ $\left(\lambda^{\prime}, \mu^{\prime}\right)$, for any $(h, C)_{W}$ and morphisms $(\lambda, \mu),\left(\lambda^{\prime}, \mu^{\prime}\right) \in \operatorname{Hom}\left((g, B)_{V},(h, C)_{W}\right)$.

Proposition 2.2. Let $(g, B)_{V},(f, A)_{U}$ be two soft sets and $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be a morphism.
(i) If β is an one to one map, then (α, β) is a weak monic.
(ii) If α and β are one to one maps, then (α, β) is a monic.
(iii) If α is an onto map, then (α, β) is a weak epic.
(iv) If α and β are onto maps, then (α, β) is an epic.
(v) (α, β) is an isomorphism if and only if α and β are one to one and onto maps.

Proof. (i) Let $(\alpha, \beta) \circ(\gamma, \eta) \sim(\alpha, \beta) \circ\left(\gamma^{\prime}, \eta^{\prime}\right)$, for some soft set $(h, C)_{W}$ and some morphisms $(\gamma, \eta),\left(\gamma^{\prime}, \eta^{\prime}\right) \in \operatorname{Hom}\left((h, C)_{W},(f, A)_{U}\right)$. Then $(\alpha \circ \gamma, \beta \circ \eta) \sim\left(\alpha \circ \gamma^{\prime}, \beta \circ \eta^{\prime}\right)$ and so $(\beta \circ \eta) \circ h=\left(\beta \circ \eta^{\prime}\right) \circ h$. Since β is an one to one map, then $\eta \circ h=\eta^{\prime} \circ h$. Hence $(\gamma, \eta) \sim\left(\gamma^{\prime}, \eta^{\prime}\right)$. Therefore, (α, β) is a weak monic.
(ii) Let $(\alpha, \beta) \circ(\gamma, \eta)=(\alpha, \beta) \circ\left(\gamma^{\prime}, \eta^{\prime}\right)$, for some soft set $(h, C)_{W}$ and some morphisms $(\gamma, \eta),\left(\gamma^{\prime}, \eta^{\prime}\right) \in \operatorname{Hom}\left((h, C)_{W},(f, A)_{U}\right)$. Then $\alpha \circ \gamma=\alpha \circ \gamma^{\prime}$ and $\beta \circ \eta=\beta \circ \eta^{\prime}$. Since α and β are one to one maps, we have $\gamma=\gamma^{\prime}$ and $\eta=\eta^{\prime}$ and so (α, β) is a monic.
(iii) Let $(\varphi, \chi) \circ(\alpha, \beta)=\left(\varphi^{\prime}, \chi^{\prime}\right) \circ(\alpha, \beta)$, for some soft set $(k, D)_{Z}$ and some morphisms $(\varphi, \chi),\left(\varphi^{\prime}, \chi^{\prime}\right) \in \operatorname{Hom}\left((g, B)_{V},(k, D)_{Z}\right)$. Then $(\varphi \circ \alpha, \chi \circ \beta) \sim\left(\varphi^{\prime} \circ \alpha, \chi^{\prime} \circ \beta\right)$ and so $k \circ(\varphi \circ \alpha)=k \circ\left(\varphi^{\prime} \circ \alpha\right)$. Since α is onto, then we obtain $k \circ \varphi=k \circ \varphi^{\prime}$. Hence $(\varphi, \chi) \sim\left(\varphi^{\prime}, \chi^{\prime}\right)$ and so (α, β) is a weak epic.
(iv) Straightforward.
(v) Let (α, β) be an isomorphism. Then there exists a morphism $(\lambda, \mu):(g, B)_{V} \rightarrow$ $(f, A)_{U}$ such that $(\alpha, \beta) \circ(\lambda, \mu)=\left(I d_{B}, I d_{P(V)}\right)$ and $(\lambda, \mu) \circ(\alpha, \beta)=\left(I d_{A}, I d_{P(U)}\right)$. Hence $\alpha o \lambda=I d_{B}$ and $\lambda \circ \alpha=I d_{A}$ and so α is one to one and onto. In a similar way, we obtain β is one to one and onto. Conversely, let α and β be two one to one and onto maps. Then there are $\lambda: B \rightarrow A$ and $\mu: P(V) \rightarrow P(U)$ such that $\alpha \circ \lambda=I d_{B}, \lambda \circ \alpha=$ $I d_{A}, \beta \circ \mu=I d_{P(V)}$ and $\mu \circ \beta=I d_{P(U)}$. We show that $(\lambda, \mu):(g, B)_{V} \rightarrow(f, A)_{U}$ is a morphism. Let $b \in B$. Then there exists an element $a \in A$ such that $b=\alpha(a)$ and so $f(\lambda(b))=f(a)=\mu(\beta(f(a)))=\mu(g(\alpha(a)))=\mu(g(b))$. Hence (λ, μ) is a morphism. Clearly, $(\alpha, \beta) \circ(\lambda, \mu)=\left(I d_{B}, I d_{P(V)}\right)$ and $(\lambda, \mu) \circ(\alpha, \beta)=\left(I d_{A}, I d_{P(U)}\right)$. Therefore, (α, β) is an isomorphism.

Remark 2.1. Let $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be a morphism, $C=\operatorname{Im}(\alpha)$ and $h=\left.g\right|_{C}$. Then $(h, C)_{V}$ is a soft set and $(\alpha, \beta):(f, A)_{U} \rightarrow(h, c)_{V}$ is a soft morphism and so by Proposition 2.2(iii), $(\alpha, \beta):(f, A)_{U} \rightarrow(h, c)_{V}$ is a weak epic.

Example 2.2. (i) Let $f:[0,1] \rightarrow P\{[0,1]\}$ and $g:[0,1] \rightarrow P\{[0,2]\}$ by defined by $f(x)=\{u \in[0,1] \mid u \leq x\}$ and $g(x)=\{u \in[0,2] \mid u \leq 2 x\}$, for all $x \in[0,1]$. Then $(f,[0,1])_{[0,1]}$ and $(g,[0,1])_{[0,2]}$ are two soft sets. Define $\alpha:[0,1] \rightarrow[0,1]$ by $\alpha(x)=x$ and $\beta: P(\{[0,1]\}) \rightarrow P(\{[0,2]\})$, by $\beta(S)=\{u \in[0,2] \mid u \leq 2 x, \exists x \in S\}$. It is easy to see that $(\alpha, \beta):(f,[0,1])_{[0,1]} \rightarrow\left(g,[0,1]_{[0,2]}\right.$ is a soft morphism. Since β is one to one, then by Proposition $2.2(\mathrm{i}),(\alpha, \beta)$ is a weak monic.
(ii) Let $f: \mathbb{N} \rightarrow P(\{1\})$ and $g: \mathbb{N} \rightarrow P(\{1\})$ be two maps was defined by

$$
f(a)=\left\{\begin{array}{ll}
\emptyset & \text { if } a \text { is even }, \\
\{1\} & \text { if } a \text { is odd } .
\end{array} \quad g(a)= \begin{cases}\{1\} & \text { if } a \text { is even } \\
\emptyset & \text { if } a \text { is odd } .\end{cases}\right.
$$

Then $\left(I d_{\mathbb{N}}, \beta\right):(f, \mathbb{N})_{\{1\}} \rightarrow(g, \mathbb{N})_{\{1\}}$ is a soft morphism, where $\beta: P(\{1\}) \rightarrow P(\{1\})$ is a map defined by $\beta(\emptyset)=\{1\}$ and $\beta(\{1\})=\emptyset$. Since $I d_{\mathbb{N}}$ is onto, then by Proposition $2.2(\mathrm{iii}),\left(I d_{\mathbb{N}}, \beta\right)$ is a weak epic.

Theorem 2.3. Let $(g, B)_{V}$ and $(f, A)_{U}$ be two soft sets and $(\alpha, \beta):(f, A)_{U} \rightarrow$ $(g, B)_{V}$ be a monic such that β be one to one. Then α is one to one, too.

Proof. Let $\alpha(x)=\alpha(y)$, for some $x, y \in A$. Let $\gamma: A \rightarrow A$ and $\gamma^{\prime}: A \rightarrow A$ be two maps defined by

$$
\gamma(a)=\left\{\begin{array}{lll}
a & \text { if } a \in A-\{x, y\}, \\
\{y\} & \text { if } a \in\{x, y\} .
\end{array} \quad \gamma^{\prime}(a)= \begin{cases}a & \text { if } a \in A-\{x, y\} \\
\{x\} & \text { if } a \in\{x, y\}\end{cases}\right.
$$

We show that $\left(\gamma, I d_{P(U)}\right):(f, A)_{U} \rightarrow(f, A)_{U}$ and $\left(\gamma^{\prime}, I d_{P(U)}\right):(f, A)_{U} \rightarrow(f, A)_{U}$ are two morphisms. Let $a \in A$. If $a \in A-\{x, y\}$, then $(f \circ \gamma)(a)=f(a)=\left(I d_{P(U)} \circ f\right)(a)$. Since $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ is a morphism, we have $g \circ \alpha=\beta \circ f$ and so $\beta(f(x))=$ $g(\alpha(x))=g(\alpha(y))=\beta(f(y))$. Since β is an one to one map, then $f(x)=f(y)$. Now, let $a \in\{x, y\}$. Then $(f \circ \gamma)(a)=f(y)=f(a)=I d_{P(U)} \circ f(a)$. Therefore, $\left(\gamma, I d_{P(U)}\right) \in \operatorname{Hom}\left((f, A)_{U},(f, A)_{U}\right)$. By the similar way, we obtain $\left(\gamma^{\prime}, I d_{P(U)}\right) \in$ $\operatorname{Hom}\left((f, A)_{U},(f, A)_{U}\right)$. Moreover,

$$
\begin{aligned}
(\alpha, \beta) \circ\left(\gamma, I d_{P(U)}\right) & =\left(\alpha \circ \gamma, \beta \circ I d_{P(U)}\right) \\
& =\left(\alpha \circ \gamma^{\prime}, \beta \circ I d_{P(U)}\right), \text { since } \alpha(x)=\alpha(y) \\
& =(\alpha, \beta) \circ\left(\gamma^{\prime}, I d_{P(U)}\right)
\end{aligned}
$$

Since (α, β) is a monic, then $\left(\gamma, I d_{P(U)}\right)=\left(\gamma^{\prime}, I d_{P(U)}\right)$ and so $y=\gamma(x)=\gamma^{\prime}(x)=x$. Therefore, α is an onto map.

Theorem 2.4. Let $(g, B)_{V}$ and $(f, A)_{U}$ be two soft sets and $(\alpha, \beta):(f, A)_{U} \rightarrow$ $(g, B)_{V}$ be an epic such that α is onto. Then β is onto, too.

Proof. Let $a \in P(V)-\operatorname{Im}(\beta)$ and $\mu^{\prime}=I d_{P(V)}$. Let $\mu: P(V) \rightarrow P(V)$ be a map defined by

$$
\mu(x)= \begin{cases}x & \text { if } x \in \operatorname{Im}(\beta) \\ a & \text { if } x \in P(V)-\operatorname{Im}(\beta)\end{cases}
$$

We show that $\left(I d_{B}, \mu\right),\left(I d_{B}, \mu^{\prime}\right) \in \operatorname{Hom}\left((g, B)_{V},(g, B)_{V}\right)$. Since $g \circ \alpha=\beta \circ f$ and α is onto, then $\operatorname{Im}(g) \subseteq \operatorname{Im}(\beta)$, it follows that $(\mu \circ g)(b)=\mu(g(b))=g(b)$, for any $b \in B$. Hence $g \circ I d_{B}=\mu \circ g$ and so $\left(I d_{B}, \mu\right) \in \operatorname{Hom}\left((g, B)_{V},(g, B)_{V}\right)$. Also, $\mu^{\prime}(g(b))=$ $g(b)=\left(I d_{B} \circ g\right)(b)$, for any $b \in B$, so $\left(I d_{B}, \mu^{\prime}\right) \in \operatorname{Hom}\left((g, B)_{V},(g, B)_{V}\right)$. Now, let $b \in B$. Then $\mu^{\prime}(\beta(b))=\beta(b)=\mu(\beta(b))$ and so $\left(I d_{B}, \mu\right) \circ(\alpha, \beta)=\left(I d_{B}, \mu^{\prime}\right) \circ(\alpha, \beta)$. Since (α, β) is an epic, we have $\left(I d_{B}, \mu\right)=\left(I d_{B}, \mu^{\prime}\right)$ consequently, $\mu=\mu^{\prime}$, which is impossible. Therefore, there is not any $a \in P(V)-\operatorname{Im}(\beta)$ and β is onto.

Definition 2.5. A morphism $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ is called onto morphism, if α and β are onto maps.

Let $f: X \rightarrow Y$ be a maps and $\operatorname{ker}(f)=\{(x, y) \in A \times A \mid f(x)=f(y)\}$. Then $\operatorname{ker}(f)$ is a equivalence relation on X. The set of all equivalent classes of X with respect to $\operatorname{ker}(f)$, is denoted by $X / \operatorname{ker}(f)$. Clearly, the map $\bar{f}: X / \operatorname{ker}(f) \rightarrow \operatorname{Im}(f)$, was defined by $\bar{f}([x])=f(x)$, for any $x \in X$ is a one to one and onto map.
Theorem 2.5. Let $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be an onto morphism. Then the soft set $(\bar{f}, A / \operatorname{ker}(f))_{V}$ is isomorphic to $(g, B)_{V}$, where $\bar{f}([x])=\beta(f(x))$, for any $x \in X$.

Proof. Let $\alpha(x)=\alpha(y)$, for some $x, y \in A$. Then $\beta(f(x))=g(\alpha(x))=g(\alpha(y))=$ $\beta(f(y))$. Hence \bar{f} is well defined. Moreover, $g(\bar{\alpha}([x]))=g(\alpha(x))=\beta(f(x))=$ $I d_{P(V)}(\bar{f}([x]))$, for all $x \in A$ and so $\left(\bar{\alpha}, I d_{P(V)}\right):(\bar{f}, A / \operatorname{ker}(f))_{V} \rightarrow(g, B)_{V}$ is a morphism. Since $\bar{\alpha}$ and $I d_{P(V)}$ are one to one and onto, then by Proposition 2.2(v), $\left(\bar{\alpha}, I d_{P(V)}\right)$ is an isomorphism.

Note that, if $\left\{A_{i}\right\}_{i \in I}$ is a family of sets, then $\prod_{i \in I} A_{i}=\left\{\left(x_{i}\right)_{i \in I} \mid x_{i} \in A_{i}, \forall i \in I\right\}$ is the product of this family of sets. In the next theorem, we use this fact to find the product of $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ in $\mathfrak{S S}$.

Theorem 2.6. Let $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ be a family of soft sets. Then $(f, A)_{W}$ is the product of this family, where $A=\prod_{i \in I} A_{i}, W=\bigcup_{i \in I}\left(U_{i} \times\{i\}\right)$ and $f\left(\left(x_{i}\right)_{i \in I}\right)=$ $\bigcup_{i \in I}\left(f_{i}\left(x_{i}\right) \times\{i\}\right)$, for any $\left(x_{i}\right)_{i \in I} \in A$.

Proof. Let $\alpha_{i}: A \rightarrow A_{i}$ be the i-th canonical projection maps, for all $i \in I$ and $W_{i}=U_{i} \times\{i\}$. Define $\beta_{i}: P(W) \rightarrow P\left(U_{i}\right)$, by $\beta_{i}(Y)=\left\{u \in U_{i} \mid(u, i) \in W_{i} \cap Y\right\}$, for all $Y \subseteq W$ and $i \in I$. We show that $\left(\alpha_{i}, \beta_{i}\right) \in \operatorname{Hom}\left((f, A)_{W},\left(f_{i}, A_{i}\right)_{U_{i}}\right)$, for all $i \in I$. Let $\left(a_{i}\right)_{i \in I} \in A$ and $j \in I$. Then $f_{j}\left(\alpha_{j}\left(\left(a_{i}\right)_{i \in I}\right)\right)=f_{j}\left(a_{j}\right)$ and $\beta_{j}\left(f\left(\left(a_{i}\right)_{i \in I}\right)\right)=$ $\beta_{j}\left(\bigcup_{i \in I}\left(f_{i}\left(a_{i}\right) \times\{i\}\right)\right)=f_{j}\left(a_{j}\right)$ and so $\beta_{j} \circ f\left(\left(a_{i}\right)_{i \in I}\right)=f_{j}\left(\alpha\left(\left(a_{i}\right)_{i \in I}\right)\right)$. Hence $\left(\alpha_{i}, \beta_{i}\right)$ is a morphism, for all $i \in I$. Let $(g, B)_{V}$ be a soft set and $\left(\lambda_{i}, \mu_{i}\right):(g, B)_{V} \rightarrow\left(f_{i}, A_{i}\right)_{U_{i}}$ be a morphism, for all $i \in I$. Then we define $\varphi: B \rightarrow A$ and $\chi: P(V) \rightarrow P(W)$, by $\varphi(b)=\left(\lambda_{i}(b)\right)_{i \in I}$ and $\chi(X)=\bigcup_{i \in I}\left(\mu_{i}(X) \times\{i\}\right)$, for all $b \in B$ and $X \subseteq V$. Clearly, χ and φ are well defined. Let $b \in B$. Then $f(\varphi(b))=f\left(\left(\lambda_{i}(b)\right)_{i \in I}\right)=\bigcup_{i \in I}\left(f_{i}\left(\lambda_{i}(b)\right) \times\{i\}\right)$. Since $\left(\lambda_{i}, \mu_{i}\right) \in \operatorname{Hom}\left((g, B)_{V},\left(f_{i}, A_{i}\right)_{U_{i}}\right)$, then $f_{i} \circ \lambda_{i}=\mu_{i} \circ g$, for all $i \in I$ and so $f(\varphi(b))=\bigcup_{i \in I}\left(\mu_{i} \circ g(b) \times\{i\}\right)=\chi \circ g(b)$. Hence $(\varphi, \psi) \in \operatorname{Hom}\left((g, B)_{V},(f, A)_{W}\right)$. Assume that $x \in B, Y \in P(V)$ and $i \in I$. Then we have

$$
\begin{aligned}
\left(\alpha_{i}, \beta_{i}\right) \circ(\varphi, \chi)(x, Y)=\left(\alpha_{i}(\varphi(x)), \beta_{i}(\chi(Y))\right) & =\left(\lambda_{i}(x), \beta_{i}\left(\bigcup_{i \in I}\left(\mu_{i}(Y) \times\{i\}\right)\right)\right) \\
& =\left(\lambda_{i}(x), \mu_{i}(Y)\right)
\end{aligned}
$$

Hence $\left(\alpha_{i}, \beta_{i}\right) \circ(\varphi, \chi)=\left(\lambda_{i}, \mu_{i}\right)$, for all $i \in I$. Now, we show that (φ, χ) is unique. Let $\left(\varphi^{\prime}, \chi^{\prime}\right):(g, B)_{V} \rightarrow(f, A)_{W}$ be a morphism such that $\left(\alpha_{i}, \beta_{i}\right) \circ\left(\varphi^{\prime}, \chi^{\prime}\right)=\left(\lambda_{i}, \mu_{i}\right)$, for all $i \in I$. Then $\alpha_{i}\left(\varphi^{\prime}(x)\right)=\lambda_{i}(x)=\alpha_{i}(\varphi(x))$, for all $x \in B$ and $i \in I$ and so by definition of α_{i} we get $\varphi=\varphi^{\prime}$. Let $Y \in P(V)$. Since $\chi^{\prime}(Y), \chi(Y) \subseteq W, W=\bigcup_{i \in I} W_{i}$ and $W_{i} \cap W_{j}=\emptyset$, for all distinct elements $i, j \in I$, then $\chi^{\prime}(Y)=\chi(Y)$ if and only if $\chi^{\prime}(Y) \cap W_{i}=\chi(Y) \cap W_{i}$, for all $i \in I$. Let $i \in I$ and $(a, i) \in W_{i}$. Then

$$
\begin{aligned}
(a, i) \in \chi^{\prime}(Y) \cap W_{i} & \Leftrightarrow a \in \beta_{i}\left(\chi^{\prime}(Y)\right), \quad \text { by definition of } \beta_{i} \\
& \Leftrightarrow a \in \beta_{i}(\chi(Y)), \text { since } \beta_{i} \circ \chi=\beta_{i} \circ \chi^{\prime} \\
& \Leftrightarrow(a, i) \in \chi(Y) \cap W_{i}, \quad \text { by definition of } \beta_{i}
\end{aligned}
$$

Hence $\chi^{\prime}(Y) \cap W_{i}=\chi(Y) \cap W_{i}$ and so $\chi^{\prime}(Y)=\chi(Y)$. Therefore, $(\varphi, \chi)=\left(\varphi^{\prime}, \chi^{\prime}\right)$ and so $(f, A)_{W}$ is the product of $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$.

Corollary 2.7. The category $\mathfrak{S S}$ has arbitrary products.
Definition 2.6. A weak coproduct for the family $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ of soft set is a soft set $(g, B)_{V}$ together with a family of morphisms $\left\{\left(\alpha_{i}, \beta_{i}\right):\left(f_{i}, A_{i}\right)_{U_{i}} \rightarrow(g, B)_{V}\right\}_{i \in I}$ such that for any object $(h, C)_{W}$ and family of morphisms $\left\{\left(\varphi_{i}, \chi_{i}\right):\left(f_{i}, A_{i}\right)_{U_{i}} \rightarrow\right.$ $\left.(h, C)_{W}\right\}_{i \in I}$, there exists a morphism $(\varphi, \chi):(g, B)_{V} \rightarrow(h, C)_{W}$ such that for any $i \in I,(\varphi, \chi) \circ\left(\alpha_{i}, \beta_{i}\right)=\left(\varphi_{i}, \chi_{i}\right)$. Moreover, if $\left(\varphi^{\prime}, \chi^{\prime}\right):(g, B)_{V} \rightarrow(h, C)_{W}$ be another morphism such that $\left(\varphi^{\prime}, \chi^{\prime}\right) \circ\left(\alpha_{i}, \beta_{i}\right)=\left(\varphi_{i}, \chi_{i}\right)$, for any $i \in I$, then $(\varphi, \chi) \sim\left(\varphi^{\prime}, \chi^{\prime}\right)$.

Theorem 2.8. Let $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ be a family of soft sets. Then this family has a weak coproduct in $\mathfrak{S S}$.

Proof. Let $U_{i}^{\prime}=U_{i} \times\{i\}, B_{i}=A_{i} \times\{i\}$, for any $i \in I, C=\bigcup_{i \in I} B_{i}$ and $U^{\prime}=\bigcup_{i \in I} U_{i}^{\prime}$.
Let $g_{i}: B_{i} \rightarrow P\left(U_{i}\right)$ defined by $g_{i}(x, i)=f_{i}(x)$, for any $x \in A_{i}$ and $i \in I$. We define $g: C \rightarrow P\left(U^{\prime}\right)$ by $g((x, i))=g_{i}((x, i)) \times\{i\}, \alpha_{i}: A_{i} \rightarrow C$, by $\alpha(y)=(y, i)$ and $\beta_{i}: P\left(U_{i}\right) \rightarrow P\left(U^{\prime}\right)$, by $\beta_{i}(Y)=Y \times\{i\}$, for any $(x, i) \in C, y \in A_{i}, Y \subseteq U^{\prime}$ and $i \in I$. Clearly, g is well defined. We show that $\left(\alpha_{i}, \beta_{i}\right):\left(f_{i}, A_{i}\right)_{U_{i}} \rightarrow(g, C)_{U^{\prime}}$ is a morphism, for any $i \in I$. Let $i \in I$ and $a \in A_{i}$. Then $\beta_{i}\left(f_{i}(a)\right)=f_{i}(a) \times\{i\}=$ $g_{i}((a, i)) \times\{i\}=g((a, i))=g\left(\alpha_{i}(a)\right)$. Hence $\beta_{i} \circ f_{i}=g \circ \alpha_{i}$, for any $i \in I$. Now, let $(h, X)_{V}$ be a soft set and $\left(\lambda_{i}, \mu_{i}\right):\left(f_{i}, A_{i}\right)_{U_{i}} \rightarrow(h, X)_{V}$ be a morphism, for any $i \in I$. Then we define two maps $\varphi: C \rightarrow X$ and $\chi: P\left(U^{\prime}\right) \rightarrow P(V)$ by

$$
\begin{aligned}
\varphi((x, i)) & =\lambda_{i}(x), \text { for all }(x, i) \in C, i \in I \\
\chi(Y) & =\bigcup_{i \in I}\left\{\mu_{i}\left(X_{i}\right) \mid X_{i}=\left\{x \mid(x, i) \in Y \cap U_{i}\right\}, \text { for all } Y \subseteq U^{\prime}\right\}
\end{aligned}
$$

Let $(x, i) \in C$. Then $h(\varphi((x, i)))=h\left(\lambda_{i}(x)\right)=\mu_{i}\left(f_{i}(x)\right)=\chi\left(g_{i}((x, i)) \times\{i\}\right)=$ $\chi(g((x, i)))$. Hence $h \circ \varphi=\chi \circ g$ and so $(\varphi, \chi) \in \operatorname{Hom}\left((g, C)_{U^{\prime}},(h, X)_{V}\right)$. Moreover, $(\varphi, \chi) \circ\left(\alpha_{i}, \beta_{i}\right)(a, Y)=\left(\varphi\left(\alpha_{i}(a)\right), \chi\left(\beta_{i}(Y)\right)\right)=(\varphi((a, i)), \chi(Y \times\{i\}))=\left(\lambda_{i}(a), \mu_{i}(Y)\right)$, for any $a \in A_{i}, Y \subseteq U_{i}$ and $i \in I$. Therefore, $(\varphi, \chi) \circ\left(\alpha_{i}, \beta_{i}\right)=\left(\lambda_{i}, \mu_{i}\right)$, for any $i \in I$. Now, let $\left(\varphi^{\prime}, \chi^{\prime}\right):(g, C)_{U^{\prime}} \rightarrow(h, X)_{V}$ be a morphism, such that $\left(\varphi^{\prime}, \chi^{\prime}\right) \circ\left(\alpha_{i}, \beta_{i}\right)=$ $\left(\lambda_{i}, \mu_{i}\right)$, for any $i \in I$. Let $x \in C$. Then there exists $i \in I$ and $y \in A_{i}$ such that $x=$ (y, i). Hence $\varphi^{\prime}(x)=\varphi^{\prime}((y, i))=\varphi^{\prime}\left(\alpha_{i}(y)\right)=\lambda_{i}(y)=\varphi\left(\alpha_{i}(y)\right)=\varphi((y, i))=\varphi(x)$. Hence $\varphi=\varphi^{\prime}$. Since $\left(\varphi^{\prime}, \chi^{\prime}\right) \in \operatorname{Hom}\left((g, C)_{U^{\prime}},(h, X)_{V}\right)$, then $\chi^{\prime} \circ g=h \circ \varphi^{\prime}$ and so $\chi^{\prime} \circ g=h \circ \varphi^{\prime}=h \circ \varphi=\chi \circ g$, whence $(\varphi, \chi) \sim\left(\varphi^{\prime}, \chi^{\prime}\right)$. Therefore, $(g, C)_{U^{\prime}}$ is a weak coproduct of the family $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ in $\mathfrak{S S}$.

Note that, in the proof of the last theorem, if $U_{i} \cap U_{j}=\emptyset,\left(A_{i} \cap A_{j}=\emptyset\right)$, for any $i, j \in I$, then we can use $U_{i}\left(A_{i}\right)$ instead of $U_{i}^{\prime}\left(B_{i}\right)$.
In Example 2.3, we show that $(g, C)_{U^{\prime}}$ is not coproduct of the family $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ in general, where $(g, c)_{U^{\prime}}$ is a soft set, defined in the Theorem 2.8.

Remark 2.2. Let $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be a morphism. If $f^{\prime}: A \rightarrow P(P(U))$, $g^{\prime}: B \rightarrow P(P(V))$ and $\beta^{\prime}: P(P(U)) \rightarrow P(P(V))$ defined by $f(a)=\{f(a)\}, g(b)=$ $\{g(b)\}$ and $\beta^{\prime}(Y)=\{\beta(y) \mid y \in Y\}$, for any $a \in A, b \in B$ and $Y \subseteq P(U)$. Then $\beta^{\prime}\left(f^{\prime}(a)\right)=\beta^{\prime}\left(\{f(a)\}=\{\beta(f(a))\}=\{g \circ \alpha(a)\}=g^{\prime}(\alpha(a))\right.$, for any $a \in A$. Therefore, $\left(\alpha, \beta^{\prime}\right) \in \operatorname{Hom}\left(\left(f^{\prime}, A\right)_{P(U)},\left(g^{\prime}, B\right)_{P(V)}\right)$.

Example 2.3. Let $A_{1}=\{1,2,3\}, A_{2}=\{4,5,6\}, U_{1}=\{a, b, c\}, U_{2}=\{e, f, g\}$, $C=\{1,2,3,4,5,6\}$ and $U=\{a, b, c, e, f, g\}$. Define the maps $f_{1}: A_{1} \rightarrow P\left(U_{1}\right)$,
$f_{2}: A_{2} \rightarrow P\left(U_{2}\right)$ and $g: C \rightarrow P(U)$ by
$f_{1}(x)=\left\{\begin{array}{ll}\{a\} & x=1, \\ \{b\} & x=2, \\ \{c\} & x=3 .\end{array} \quad f_{2}(x)=\left\{\begin{array}{ll}\{e\} & x=4, \\ \{f\} & x=5, \\ \{g\} & x=6 .\end{array} \quad g(x)= \begin{cases}f_{1}(x) & x \in A_{1}, \\ f_{2}(x) & x \in A_{2} .\end{cases}\right.\right.$
Let $\alpha_{1}: A_{1} \rightarrow C, \alpha_{2}: A_{2} \rightarrow C, \beta_{1}: P\left(U_{1}\right) \rightarrow P(U)$ and $\beta_{2}: P\left(U_{2}\right) \rightarrow P(U)$ be the inclusion maps. Then it is easy to check that $\left(\alpha_{1}, \beta_{1}\right) \in \operatorname{Hom}\left(\left(f_{1}, A_{1}\right)_{U_{1}},(g, B)_{C}\right)$ and $\left(\alpha_{2}, \beta_{2}\right) \in \operatorname{Hom}\left(\left(f_{2}, A_{2}\right)_{U_{2}},(g, B)_{C}\right)$. Let $X=\{7,8,9\}, W=\{m, n, o\}$ and $h: X \rightarrow P(W), \lambda_{1}: A_{1} \rightarrow X, \lambda_{2}: A_{2} \rightarrow X, \mu_{1}: U_{1} \rightarrow W$ and $\mu_{2}: U_{2} \rightarrow W$ defined by

$$
\begin{gathered}
h(x)=\left\{\begin{array}{ll}
\{m\} & x=7, \\
\{n\} & x=8, \\
\{o\} & x=9 .
\end{array} \quad \lambda_{1}(x)=\left\{\begin{array}{ll}
7 & x=1, \\
8 & x=2, \\
9 & x=3 .
\end{array} \quad \lambda_{2}(x)= \begin{cases}7 & x=4, \\
8 & x=5, \\
9 & x=6 .\end{cases} \right.\right. \\
\mu_{1}(x)= \begin{cases}m & x=a, \\
n & x=b, \\
o & x=c .\end{cases}
\end{gathered} \quad \mu_{2}(x)= \begin{cases}m & x=e, \\
n & x=f, \\
o & x=g .\end{cases}
$$

Then clearly, $\left(\lambda_{i}, \bar{\mu}_{i}\right) \in \operatorname{Hom}\left(\left(f_{i}, A_{i}\right)_{U_{i}},(h, X)_{W}\right)$, for any $i \in\{1,2\}$, where $\bar{\mu}_{i}(S)=$ $\left\{\mu_{i}(s) \mid s \in S\right\}$, for all $S \subseteq U_{i}, i \in\{1,2\}$. Let $\varphi: C \rightarrow X, \chi: P(U) \rightarrow P(W)$, $\varphi^{\prime}: C \rightarrow X$ and $\chi^{\prime}: P(U) \rightarrow P(W)$, were defined by

$$
\begin{array}{cc}
\varphi(x)=\left\{\begin{array}{lll}
7 & x \in\{1,4\}, \\
8 & x \in\{2,5\}, \\
9 & x \in\{3,6\} .
\end{array}\right. & \chi(x)= \begin{cases}\{m\} & x \in\{\{a\},\{e\}\}, \\
\{n\} & x \in\{\{b\},\{f\}\}, \\
\{o\} & x \in\{\{c\},\{g\}\}, \\
\{m, n\} & \text { otherwise. }\end{cases} \\
\chi^{\prime}(x)= \begin{cases}\{m\} & x \in\{\{a\},\{e\}\}, \\
\{n\} & x \in\{\{b\},\{f\}\}, \\
\{o\} & x \in\{\{c\},\{g\}\}, \\
\{o, n\} & \text { otherwise. }\end{cases}
\end{array}
$$

and $\varphi(x)=\varphi^{\prime}(x)$, for any $x \in C$. Then $(\varphi, \chi),\left(\varphi^{\prime}, \chi^{\prime}\right) \in \operatorname{Hom}\left((g, C)_{U},(h, C)_{W}\right)$ and $(\varphi, \chi) \circ\left(\alpha_{i}, \beta_{i}\right)=\left(\lambda_{i}, \mu_{i}\right)$, for any $i \in\{1,2\}$. But $(\varphi, \chi) \neq\left(\varphi^{\prime}, \chi^{\prime}\right)$. Therefore, $(g, C)_{U}$ may not be coproduct of the family $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in\{1,2\}}$.
Corollary 2.9. The category $\mathfrak{S S}$ has arbitrary weak coproducts.
Proposition 2.10. The category $\mathfrak{S S}$ has a terminal object.
Proof. Let $A=\{a\}, U=\emptyset$ and $f: A \rightarrow P(U)$ defined by $f(a)=\emptyset$. Then $(f, A)_{U}$ is a soft set. Now, let $(g, B)_{V}$ be an other soft set. Define $\alpha: B \rightarrow A$ and β : $P(V) \rightarrow P(U)$ by $\alpha(b)=a$ and $\beta(Y)=\emptyset$, for all $b \in B$ and $Y \in P(V)$. Clearly, $(\alpha, \beta):(g, B)_{V} \rightarrow(f, A)_{U}$ is a morphism. It is easy to see that (α, β) is a terminal object.
Definition 2.7. Let $(f, A)_{U}$ and $(g, B)_{V}$ be two soft sets. The soft set $(f, A)_{U}$ is called a soft subset of $(g, B)_{V}$ if the following conditions are satisfied:
(i) $U \subseteq V$;
(ii) $A \subseteq B$;
(iii) $f(x) \subseteq g(x)$, for any $x \in A$.

Proposition 2.11. Let $F: P(U) \rightarrow P(V)$ be a map and $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be a morphism such that β preserve the inclusion. Then
(i) $(F \circ f, A)_{V}$ is a soft set too.
(ii) $\left(I d_{A}, F\right):(f, A)_{U} \rightarrow(F \circ f, A)_{V}$ is a morphism.
(iii) If $\left(f^{\prime}, A^{\prime}\right)_{U^{\prime}}$ is a soft subset of $(f, A)_{U}$, then $\left(g^{\prime}, \alpha\left(A^{\prime}\right)\right)_{\beta\left(U^{\prime}\right)}$ is a soft subset of $(g, B)_{V}$, where $\left.g^{\prime}(b)=\cup\left\{\beta\left(f^{\prime}(a)\right) \mid \alpha(a)=b\right)\right\}$, for any $b \in \alpha\left(A^{\prime}\right)$.
Proof. The proof of (i) and (ii) are straightforward.
(iii) Clearly, the maps $g^{\prime}: \alpha\left(A^{\prime}\right) \rightarrow P(V)$ is well defined. Let $b \in \alpha\left(A^{\prime}\right)$. Then there is $a \in A^{\prime}$ such that $\alpha(a)=b$. Since $f^{\prime}(a) \subseteq f(a)$ and β preserve the inclusion, then $g(b)=g(\alpha(a))=\beta(f(a)) \supseteq \beta\left(f^{\prime}(a)\right)$. Hence $\left.g^{\prime}(b)=\cup\left\{\beta\left(f^{\prime}(a)\right) \mid \alpha(a)=b\right)\right\} \subseteq g(b)$. Moreover, $f^{\prime}(a) \subseteq U^{\prime}$, for any $a \in A^{\prime}$ and β preserve the inclusion and so $\beta\left(f^{\prime}(a)\right) \subseteq$ $\beta\left(U^{\prime}\right)$, for any $a \in A^{\prime}$. Hence $g^{\prime}(b) \subseteq U^{\prime}$. Therefore, $\left(g^{\prime}, \alpha\left(A^{\prime}\right)\right)_{\beta\left(U^{\prime}\right)}$ is a soft subset of $(g, B)_{V}$.

Definition 2.8. Let $(f, A)_{U}$ and $(g, B)_{V}$ be two soft sets. If $\alpha: A \rightarrow B$ and $\beta: U \rightarrow$ V are two maps such that $\beta \circ f=g \circ \alpha$, then (α, β) is called normal soft morphism or briefly normal morphism from $(f, A)_{U}$ to $(g, B)_{V}$ and we write $(\alpha, \beta):(f, A)_{U} \rightarrow$ $(g, B)_{V}$, where $\beta(X)=\{\beta(x) \mid x \in X\}$, for all $X \in P(U)$.

Proposition 2.12. The class of all soft sets and all normal morphisms forms a subcategory of $\mathfrak{S S}$. It is denoted by $\mathfrak{N S S}$.
Proof. Similar to the proof of Theorem 2.1.
Theorem 2.13. NSS has arbitrary coporoducts.
Proof. Let $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ be a family of soft sets and $(g, C)_{U^{\prime}}$ be the soft set defined in the proof of Theorem 2.8. Define $\alpha_{i}: A_{i} \rightarrow C$, by $\alpha(x)=(x, i)$ and $\beta_{i}: U_{i} \rightarrow U^{\prime}$, by $\beta_{i}(y)=(y, i)$, for any $x \in A_{i}, y \in U^{\prime}$ and $i \in I$, where B_{i} is a set defined in the proof of Theorem 2.8. Then clearly, $\left(\alpha_{i}, \beta_{i}\right):\left(f_{i}, A_{i}\right)_{U_{i}} \rightarrow(g, C)_{U^{\prime}}$ is a normal soft morphism. Now, let $(h, X)_{V}$ be a soft set and $\left(\lambda_{i}, \mu_{i}\right):\left(f_{i}, A_{i}\right)_{U_{i}} \rightarrow(h, X)_{V}$ be a normal soft morphism, for any $i \in I$. Then we define two maps $\varphi: C \rightarrow X$ and $\chi: U^{\prime} \rightarrow V$ by

$$
\begin{aligned}
& \varphi((x, i))=\lambda_{i}(x), \text { for all }(x, i) \in C, i \in I \\
& \chi((y, i))=\mu_{i}(x), \text { for all }(y, i) \in U^{\prime}, i \in I
\end{aligned}
$$

Let $(x, j) \in C$, for some $j \in I$. Then

$$
\begin{aligned}
h(\varphi((x, j)))=h\left(\lambda_{j}(x)\right) & =\mu_{j}\left(f_{j}(x)\right), \quad\left(\lambda_{j}, \mu_{j}\right):\left(f_{j}, A_{j}\right)_{U_{j}} \rightarrow(h, X)_{V} \text { is a morphism } \\
& =\left\{\mu_{j}(u) \mid u \in f_{j}(x)\right\} \\
& =\left\{\chi(x, j) \mid u \in f_{j}(x)\right\}, \quad \text { by definition of } \chi \\
& =\chi\left(f_{j}(x) \times\{j\}\right) \\
& =\chi\left(g_{j}((x, j)) \times\{j\}\right)=\chi(g((x, j))) .
\end{aligned}
$$

Hence $h \circ \varphi=\chi \circ g$ and so $(\varphi, \chi):(g, C)_{U^{\prime}} \rightarrow(h, X)_{V}$ is a normal soft morphism. Moreover,
$(\varphi, \chi) \circ\left(\alpha_{i}, \beta_{i}\right)(a, Y)=\left(\varphi\left(\alpha_{i}(a)\right), \chi\left(\beta_{i}(Y)\right)\right)=(\varphi((a, i)), \chi(Y \times\{i\}))=\left(\lambda_{i}(a), \mu_{i}(Y)\right)$, for any $a \in A_{i}, Y \subseteq U_{i}$ and $i \in I$. Therefore, $(\varphi, \chi) \circ\left(\alpha_{i}, \beta_{i}\right)=\left(\lambda_{i}, \mu_{i}\right)$, for any $i \in I$. Now, let $\left(\varphi^{\prime}, \chi^{\prime}\right):(g, C)_{U^{\prime}} \rightarrow(h, X)_{V}$ be a normal soft morphism, such that $\left(\varphi^{\prime}, \chi^{\prime}\right) \circ\left(\alpha_{i}, \beta_{i}\right)=\left(\lambda_{i}, \mu_{i}\right)$, for any $i \in I$. Similar to the proof of Theorem 2.8, we can show that $\varphi=\varphi^{\prime}$. Let $y \in U^{\prime}$. Then there are $i \in I$ and $x \in U_{i}$ such that $y=(x, i)$.

$$
\chi(y)=\chi(x, i)=\chi\left(\beta_{i}(x)\right)=\mu_{i}(x)=\chi^{\prime}\left(\beta_{i}(x)\right)=\chi^{\prime}(x, i)=\chi^{\prime}(y)
$$

Hence $\chi=\chi^{\prime}$ and so $(\varphi, \chi)=\left(\varphi^{\prime}, \chi^{\prime}\right)$. Therefore, $(g, C)_{U^{\prime}}$ is a coproduct of the family $\left\{\left(f_{i}, A_{i}\right)_{U_{i}}\right\}_{i \in I}$ in $\mathfrak{N S S}$.

In the next section we want to verify a subcategory of $\mathfrak{S S}$, which its morphism are normal.

3. Some results on soft $B C K / B C I$-morphisms

In this section, we define the concept of soft $B C K / B C I$-morphism and give some results about soft subalgebras, soft ideals and soft $B C K / B C I$-morphisms.
From now on, in this paper, U and V will denote two $B C K / B C I$-algebras, unless otherwise stated.

Definition 3.1. Let $(f, A)_{U}$ and $(g, B)_{V}$ be two soft $B C K / B C I$-algebras. If α : $A \rightarrow B$ and $\beta: U \rightarrow V$ are two maps such that β is a $B C K / B C I$-homomorphism and $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ is a normal soft morphism, then (α, β) is called a soft $B C K / B C I$-morphism.
Example 3.1. Let U, V be two $B C K$-algebras and $\alpha: U \rightarrow V$ be a $B C K / B C I$ homomorphism. If $f(u)=\{0, u\}$ and $g(v)=\{0, v\}$, then $(f, U)_{U}$ and $(g, V)_{V}$ are soft $B C K / B C I$-algebras and $(\alpha, \beta):(f, U)_{U} \rightarrow(g, V)_{V}$ is a soft $B C K / B C I$-morphism, where $\beta: P(U) \rightarrow P(V)$, was defined by $\beta(X)=\{\alpha(x) \mid x \in X\}$, for any $X \in P(U)$. Therefore, for any $B C I$-homomorphism we can obtain a soft $B C K / B C I$-morphism.
Example 3.2. Let $A=X=\{0, a, b, c, d, e, f, g\}$ and consider the following table:
Table 1

$*$	0	a	b	c	d	e	f	g
0	0	0	0	0	d	d	d	d
a	a	0	0	0	e	d	d	d
b	b	b	0	0	f	f	d	d
c	c	b	a	0	g	f	e	d
d	d	d	d	d	0	0	0	0
e	e	d	d	d	a	0	0	0
f	f	f	d	d	b	b	0	0
g	g	f	e	d	c	b	a	0

Then $(X, *, 0)$ is a $B C I$-algebra. Let $(f, A)_{X}$ be a soft set, where $f: A \rightarrow P(X)$ is a map defined by $f(a)=\{0\} \cup\{b \in A \mid o(a)=o(b)\}$, for all $a \in A$ (see [5, Example 4.4]). Let $\beta: X \rightarrow X$ be a map defined by $\beta(x)=0 * x$, for all $x \in X$. Then by Proposition 1.1(i) and (ii), β is a $B C K / B C I$-homomorphism and $f\left(I d_{A}(a)\right)=\beta(f(a))$ (note that, by [16, Proposition 1.3.9], $o(x)=o(0 * x)$, for all $x \in X)$. Therefore, $\left(I d_{A}, \beta\right)$: $(f, A)_{X} \rightarrow(f, A)_{X}$ is a soft $B C K / B C I$-morphism.
Example 3.3. Let $X=\{0,1,2,3\}$ and $Y=\{0,1\}$ and consider the following tables:

Table 2

$*_{1}$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	3	2	1	0

Table 3

$*_{2}$	0	1
0	0	0
1	0	1

Then $\left(X, *_{1}, 0\right)$ and $\left(Y, *_{2}, 0\right)$ are two $B C K$-algebras (see [16, Appendix A]). Define a map $\alpha: X \rightarrow Y$, by $\alpha(0)=\alpha(1)=0$ and $\alpha(2)=\alpha(3)=1$. It is easy to check that α is a $B C K / B C I$-homomorphism. Let $f: X \rightarrow P(X)$ and $g: Y \rightarrow P(Y)$ be two maps defined by $f(x)=\{u \in X \mid u * x=0\}$ and $g(y)=\{u \in Y \mid u * y=0\}$,
for all $x \in X$ and $y \in Y$. Routine calculations show that $(f, X)_{X}$ and $(g, Y)_{Y}$ are soft BCK/BCI-algebras. Moreover, $g(\alpha(1))=g(\alpha(0))=\{0\}=\alpha(f(0))=\alpha(f(1))$ and $g(\alpha(2))=g(\alpha(3))=\{0,1\}=\alpha(f(2))=\alpha(f(3))$. Therefore, $(\alpha, \alpha):(f, X)_{X} \rightarrow$ $(g, Y)_{Y}$ is a soft $B C K / B C I$-morphism.

Theorem 3.1. The class of all soft $B C K / B C I$-algebras with the class of all soft $B C K / B C I$-morphisms form a subcategory of $\mathfrak{S S}$, which is called category of soft $B C K / B C I$-algebras.
Proof. The proof is straightforward. In fact, if $(f, A)_{U},(g, B)_{V}$ and $(h, C)_{W}$ are three soft $B C K / B C I$-algebras and $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ and $(\gamma, \lambda):(g, B)_{V} \rightarrow$ $(h, C)_{W}$ are soft $B C K / B C I$-morphisms, then by Theorem 2.1,

$$
(\gamma, \lambda) \circ(\alpha, \beta)=(\gamma \circ \alpha, \lambda \circ \beta) \in \operatorname{Hom}\left((f, A)_{U},(h, C)_{W}\right)
$$

Since $\lambda \circ \beta$ is a $B C K / B C I$-homomorphism, then $(\gamma \circ \alpha, \lambda \circ \beta)$ is a soft $B C K / B C I$ morphism. Moreover, $\left(I d_{A}, I d_{P(U)}\right):(f, A)_{U} \rightarrow(f, A)_{U}$ is a soft BCK/BCImorphism.

Proposition 3.2. Let $(f, A)_{U}$ and $(g, B)_{V}$ be two soft BCK/BCI-algebras and $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be a soft BCK/BCI-morphism.
(i) $\left(\beta^{-1} \circ \beta \circ f, A\right)_{U}$ is a soft $B C K / B C I$-algebra and $(f, A)_{U}$ is a soft subalgebra of $\left(\beta^{-1} \circ \beta \circ f, A\right)_{U}$.
(ii) If $\left(f^{\prime}, A^{\prime}\right)_{U}$ is a soft subalgebra of $(f, A)_{U}$, then $\left(g^{\prime}, B^{\prime}\right)_{V}$ is a soft subalgebra of $(g, B)_{V}$, where $B^{\prime}=\alpha(A)$ and $g^{\prime}(\alpha(a))=\beta\left(f^{\prime}(a)\right)$, for all $a \in A .\left(g^{\prime}, B^{\prime}\right)_{V}$ is called the image of $\left(f^{\prime}, A^{\prime}\right)_{U}$ with respect to (α, β). Moreover, if β is an onto map and $\left(f^{\prime}, A^{\prime}\right)_{U}$ is a soft ideal of $(f, A)_{U}$, then the $\left(g^{\prime}, B^{\prime}\right)_{V}$ is a soft ideal of $(g, B)_{V}$.
(iii) If β is an one to one map and $\left(g^{\prime}, B^{\prime}\right)_{V}$ is a soft subalgebra of $(g, B)_{V}$, then $\left(f^{\prime}, A^{\prime}\right)_{U}$ is a soft subalgebra of $(f, A)_{U}$, where $A^{\prime}=\alpha^{-1}\left(B^{\prime}\right)$ and $f^{\prime}(x)=$ $\beta^{-1}\left(g^{\prime}(\alpha(a))\right)$, for all $x \in A^{\prime}$.
(iv) If β is an one to one map and $\left(g^{\prime}, B^{\prime}\right)_{V}$ is a soft ideal of $(g, B)_{V}$, then $\left(f^{\prime}, A^{\prime}\right)_{U}$ is a soft ideal of $(f, A)_{V}$, where $A^{\prime}=\alpha^{-1}\left(B^{\prime}\right)$ and $f^{\prime}(x)=\beta^{-1}(g(\alpha(a)))$, for all $x \in A^{\prime}$.

Proof. (i) It is suffices to show that $\beta^{-1}(\beta(f(x)))$ is a $B C K / B C I$ subalgebra of U, for all $x \in A$. Let $x \in A$. Since $(f, A)_{U}$ is a soft $B C K / B C I$-algebra, then $f(x)$ is a $B C K / B C I$-algebra of U and so by Proposition 1.2(i) and (ii), $\beta^{-1}(\beta(f(x)))$ is a $B C K / B C I$ subalgebra of U. Clearly, $f(x) \subseteq \beta^{-1}(\beta(f(x))) \subseteq U$ and $f(x)$ is a $B C K / B C I$-subalgebra of U, for all $x \in U$. Hence $(f, A)_{U}$ is a soft subalgebra of $\left(\beta^{-1} \circ \beta \circ f, A\right)_{U}$.
(ii) By (α, β) is a soft $B C K / B C I$-morphism, it follows that $g \circ \alpha=\beta \circ f$, so

$$
g^{\prime}(\alpha(a))=\beta\left(f^{\prime}(a)\right) \subseteq \beta(f(a))=g(\alpha(a))
$$

Since $f^{\prime}(a)$ is a subalgebra of $f(a)$, then by Proposition 1.2(i), we have $\beta\left(f^{\prime}(a)\right)$ is a subalgebra of $\beta(f(a))$ and so $\left(g^{\prime}, B^{\prime}\right)_{V}$ is a soft subalgebra of $(g, B)_{V}$. Now, let β be an onto map, $\left(f^{\prime}, A^{\prime}\right)_{U}$ be a soft ideal of $(f, A)_{U}$ and $y \in B^{\prime}$. Then there is $x \in A^{\prime}$ such that $y=\alpha(x)$. By the first step of the proof, $g^{\prime}(y) \subseteq g(y)$. Since $\left(f^{\prime}, A^{\prime}\right)_{U}$ is a soft ideal of $(f, A)_{U}$, then $f^{\prime}(x)$ is an ideal of $f(x)$ and so by Proposition 1.2(iv), $\beta\left(f^{\prime}(x)\right)$ is an ideal of $\beta(f(x))=g(\alpha(x))=g(y)$ and so $g^{\prime}(y)$ is an ideal of $g(y)$. Therefore, $\left(g^{\prime}, B^{\prime}\right)_{V}$ is a soft ideal of $(g, B)_{V}$.
(iii) Let $x \in A^{\prime}$. Then $\alpha(x) \in B^{\prime}$. Since $\left(g^{\prime}, B^{\prime}\right)_{V}$ is a soft subalgebra of $(g, B)_{V}$, then $g^{\prime}(\alpha(x))$ is a soft subalgebra of $g(\alpha(x))=\beta(f(x))$. Hence by Proposition 1.2(ii),
$\beta^{-1}\left(g^{\prime}(\alpha(x))\right)$ is a subalgebra of U. Moreover, by $g^{\prime}(\alpha(x)) \subseteq g(\alpha(x))=\beta(f(x))$, we conclude that $f^{\prime}(x)=\beta^{-1}\left(g^{\prime}(\alpha(x))\right) \subseteq \beta^{-1}(\beta(f(x)))$. Since β is an one to one map, we get $f^{\prime}(x) \subseteq f(x)$, whence $\left(f^{\prime}, A^{\prime}\right)_{U}$ is a soft subalgebra of $(f, A)_{U}$.
(iv) Similar to the proof of (ii), we can show that $f^{\prime}(x) \subseteq f(x)$, for all $x \in A^{\prime}=$ $\alpha^{-1}\left(B^{\prime}\right)$. Let $x \in A^{\prime}$. Then $\alpha(x) \in B^{\prime}$ and so $g^{\prime}(\alpha(x))$ is an ideal of $g(\alpha(x))$. Since $(g, B)_{V}$ is a soft $B C K / B C I$-algebra, then by Proposition 1.2(iii), we conclude that $\beta^{-1}\left(g^{\prime}(\alpha(x))\right)$ is a ideal of $\beta^{-1}(g(\alpha(x)))=\beta^{-1}(\beta(f(x)))=f(x)$. Therefore, $\left(f^{\prime}, A^{\prime}\right)_{U}$ is a soft ideal of $(f, A)_{U}$.

Proposition 3.3. Let $(f, A)_{U}$ and $(g, B)_{V}$ be two soft sets and $(\alpha, \beta):(f, A)_{U} \rightarrow$ $(g, B)_{V}$ be a normal soft morphism such that β is a BCK/BCI-algebra homomorphism.
(i) If $(g, B)_{V}$ is an idealistic soft $B C K / B C I$-algebra over V, then $\left(\beta^{-1} \circ \beta \circ f, \alpha^{-1}(B)\right)_{U}$ is an idealistic soft $B C K / B C I$-algebra over U. Moreover, if β is one to one, then $\left(f, \alpha^{-1}(B)\right)_{U}$ is an idealistic soft BCK/BCI-algebra over U.
(ii) If β is onto and $(f, A)_{U}$ is an idealistic soft $B C K / B C I$-algebra over U, then $(g, \alpha(A))_{V}$ is an idealistic soft BCK/BCI-algebra over V.
Proof. (i) Let $(g, B)_{V}$ is an idealistic soft $B C K / B C I$-algebra over V and $a \in \alpha^{-1}(B)$. Then $\alpha(a) \in B$ and so $\beta(f(a))=g(\alpha(a))$ is an ideal of V. Since β is a $B C K / B C I$ homomorphism, then by Proposition $1.2($ iii $), \beta^{-1}(\beta(f(a)))$ is an ideal of U. Hence $\left(\beta^{-1} \circ \beta \circ f, \alpha^{-1}(B)\right)_{U}$ is an idealistic soft $B C K / B C I$-algebra over U. Now, let β be one to one map. Then $\beta^{-1} \circ \beta \circ f=f$. Therefore, $\left(f, \alpha^{-1}(B)\right)_{U}$ is an idealistic soft $B C K / B C I$-algebra over U.
(ii) Let β is onto, $(f, A)_{U}$ is an idealistic soft $B C K / B C I$-algebra over U and $b \in \alpha(A)$. Then there exists $a \in A$ such that $b=\alpha(a)$. Since $f(a)$ is an ideal of U and β is a $B C K / B C I$-homomorphism, then by Proposition $1.2(\mathrm{iv}), \beta(f(a))$ is an ideal of V and so $g(\alpha(a))=g(b)$ is an ideal of V.

Let θ be an equivalence relation on a set X. Then we use $[x]_{\theta}$ to denote $\{u \in$ $X \mid u \theta x\}$. Moreover, if A is a subset of X, the $[A]_{\theta}=\left\{[a]_{\theta} \mid a \in A\right\}$.

Theorem 3.4. Let $(\alpha, \beta):(f, A)_{U} \rightarrow(g, B)_{V}$ be a soft BCK/BCI-morphism, $\theta=$ $\{(x, y) \in A \times A \mid \alpha(x)=\alpha(y)\}$ and ϕ be a congruence relation induced by $\operatorname{ker}(\beta)$. Then the following hold:
(i) θ is an equivalence relation on A, ϕ is a congruence relation on U and $(\bar{f}, \bar{A})_{\bar{U}}$ is a soft $B C K / B C I$-algebra, where $\bar{A}=\left\{[a]_{\theta} \mid a \in A\right\}, \bar{U}=\left\{[u]_{\phi} \mid u \in U\right\}$ and $\bar{f}\left([a]_{\theta}\right)=[f(a)]_{\phi}$, for all $a \in A$.
(ii) if $\bar{\alpha}: \bar{A} \rightarrow B$ and $\bar{B}: \bar{U} \rightarrow V$ are two maps defined by $\bar{\alpha}([x])=\alpha(x)$ and $\bar{\beta}\left([u]_{\phi}\right)=\beta(u)$, for all $x \in A$ and $u \in U$, then $(\bar{\alpha}, \bar{\beta}):(\bar{f}, \bar{A})_{\bar{U}} \rightarrow(g, B)_{V}$ is a soft BCK/BCI-monic.

Proof. Clearly, θ is an equivalence relation on A and ϕ is a congruence relation on U. Let $[a]=[b]$, for some $a, b \in A$. Then $\alpha(a)=\alpha(b)$ and so $\beta(f(a))=g(\alpha(a))=$ $g(\alpha(b))=\beta(f(b))$. Hence $[f(a)]_{\phi}=[f(b)]_{\phi}$ whence \bar{f} is well defined. By Remark 1.1, $U / \operatorname{ker}(\beta)$ is a $B C I$-algebra. Let $a \in A$. Since $f(a)$ is a subalgebra of U, then $0 \in f(a)$ and so $[0]_{\phi} \in[f(a)]_{\phi}=\bar{f}\left([a]_{\theta}\right)$. Now, let $[x]_{\phi},[y]_{\phi} \in \bar{f}\left([a]_{\theta}\right)$. Then there exist $s, t \in f(a)$ such that $(x, s) \in \phi$ and $(y, t) \in \phi$. Since $f(a)$ is a subalgebra of U and ϕ is a congruence relation on U, then $s * t \in f(a)$ and $(x * y, s * t) \in \phi$ and so $[x]_{\phi} *[y]_{\phi}=[x * y]_{\phi} \in[f(a)]_{\phi}=\bar{f}\left([a]_{\theta}\right)$. Therefore, $\bar{f}\left([a]_{\theta}\right)$ is a subalgebra of \bar{U} and $(\bar{f}, \bar{A})_{\bar{U}}$ is a soft $B C K / B C I$-algebra.
(ii) Clearly, α is well defined. Since
$(x, y) \in U \Leftrightarrow x * y, y * x \in \beta^{-1}(0) \Leftrightarrow \beta(x * y)=\beta(y * x)=0 \Leftrightarrow \beta(x) * \beta(y)=0=\beta(y) * \beta(x)$
then by BCI3, we get $\beta(x)=\beta(y)$. Hence $U=\{(x, y) \in U \times U \mid \beta(x)=\beta(y)\}$. Hence $\bar{\beta}$ is well defined. Moreover, $\bar{B}\left([x]_{\phi} *[y]_{\phi}\right)=\bar{\beta}\left([x * y]_{\phi}\right)=\beta(x * y)=\beta(x) *$ $\beta(y)=\bar{\beta}\left([x]_{\phi}\right) * \bar{\beta}\left([y]_{\phi}\right)$ and so $\bar{\beta}$ is a $B C K / B C I$-homomorphism. Finally, we show that $g\left(\bar{\alpha}\left([a]_{\theta}\right)\right)=\bar{\beta}\left(\bar{f}\left([a]_{\theta}\right)\right)$, for all $[a]_{\theta} \in \bar{A}$. Let $[a]_{\theta} \in \bar{A}$. Then $g\left(\bar{\alpha}\left([a]_{\theta}\right)\right)=$ $g(\alpha(a))=\beta(f(a))=\bar{\beta}\left([f(a)]_{\phi}\right)=\bar{\beta}\left(\bar{f}\left([a]_{\theta}\right)\right)$. Hence, $(\bar{\alpha}, \bar{\beta}):(\bar{f}, \bar{A})_{\bar{U}} \rightarrow(g, B)_{V}$ is a soft $B C K / B C I$-morphism. Clearly, $\bar{\alpha}$ and $\bar{\beta}$ are one to one maps. Therefore, by Proposition 2.2(ii), $(\bar{\alpha}, \bar{\beta}):(\bar{f}, \bar{A})_{\bar{U}} \rightarrow(g, B)_{V}$ is a soft $B C K / B C I$-monic.

4. Conclusions and future works

In this paper, we introduced category of soft sets and presented some properties of this category, such as existence of product, terminal object and coproduct. Then we verified category of soft $B C K / B C I$-algebras, and obtained some theorems about soft $B C K / B C I$ ideals and soft subalgebras. For future research, we can study the category of soft $B C K / B C I$-algebras, in more details and find limits, colimits and other special elements of this category.

References

[1] H. Aktaş and N. Çağman, Soft sets and soft groups, Inform. Sci. 177 (2007), no. 13, 2726-2735.
[2] W. A. Dudek, Y. B. Jun and Z. Stojaković, On fuzzy ideals in BCC-algebras, Fuzzy Sets and Systems 123 (2001), no. 2, 251-258.
[3] Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, Proc. Japan Acad. 42 (1966), no. 1, 19-22.
[4] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), no. 1, 26-29.
[5] Y. B. Jun, Soft $B C K / B C I$-algebras, Comput. Math. Appl. 56 (2008), no.5, 1408-1413.
[6] Y. B. Jun, K. J. Lee and C. H. Park, Fuzzy soft set theory applied to $B C K / B C I$-algebras, Comput. Math. Appl. 59 (2010), no. 8, 3180-3192.
[7] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of $B C K / B C I$-algebras, Inform. Sci. 177 (2008), 2466-2475.
[8] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems 117 (2001), no. 3, 463-469.
[9] Y. B. Jun and X. L. Xin, Fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras, Fuzzy Sets and Systems, 117 (2001), no. 3, 471-476.
[10] Y. B. Jun, Y. Xu and X. H. Zhang, Fuzzy filters of MTL-algebras, Inform. Sci. 175 (2005), no. 1-2, 120-138.
[11] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft-sets, J. of Fuzzy Math. 9 (2001), no. 3, 589-602.
[12] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decisionmaking problem, Comput. Math. Appl. 44,(2002), no. 8-9, 1077-1083.
[13] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), no. 4-5, 555-562.
[14] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999), no. 4-5, 19-31.
[15] O. G. Xi, Fuzzy BCK-algebras, Math. Japonica, 36 (1991), no. 5, 935-942.
[16] H. Yisheng, BCI-algebra, Science Press, Beijing, China, 2006.
[17] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), no. 3, 338-353.
(O. Zahiri) Department of Mathematics, Shahid Beheshti University, G. C., Tehran, Iran E-mail address: om.zahiri@gmail.com

