Properties of the Closure Operator in Peano Algebras

Nicolae Ţăndăreanu and Irina Tudor (Preda)

Abstract

A Peano σ-algebra generated by a set M, denoted by \bar{M}, is a set of words over the alphabet $M \cup\{\sigma\}$ satisfying some rules. The set M is the support set of \bar{M}. The symbol σ is a distinguished symbol to build these words. In this paper we study several properties of the closure operator in Peano algebras. If M_{0} is a subset of the support set M then the closure operator f is defined by $f\left(M_{0}\right)=\overline{M_{0}}$. The main results show that f is a monotone operator under inclusion and satisfies the morphism property under intersection. Several properties concerning the layers of the Peano σ-algebras are also presented.

2010 Mathematics Subject Classification. Primary 08A30; Secondary 08A70.
Key words and phrases. Peano algebra, morphism, closure operator.

1. Introduction

The concept of Peano σ-algebra is a basic one to define two mathematical structures for knowledge representation: the stratified graphs and the semantic schemas. We mention that these concepts are obtained by incorporating the concept of labeled graph into an algebraic environment given by a tuple of components, which are obtained applying several concepts of Peano algebras. These concepts were introduced in [11] and [16] respectively. Various algebraic properties are presented in [12], [13], [14] and [15] for stratified graphs. The concept of semantic schema was implied into various research papers treating several aspects of distributed computing ([17], [21]) and cooperating structures based on maximal paths, maximal graphs and master-slave cooperation [18], [19], [20], [22].

By a labeled graph we understand a tuple $G=\left(S, L_{0}, T_{0}, f_{0}\right)$, where S is a finite set of nodes, L_{0} is a set of elements named labels, T_{0} is a set of binary relations on S and $f_{0}: L_{0} \longrightarrow T_{0}$ is a surjective function.

Let M be an arbitrary nonempty set. We consider the set B given by

$$
\begin{equation*}
B=\bigcup_{n \geq 0} B_{n} \tag{1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
B_{0}=M \tag{2}\\
B_{n+1}=B_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in B_{n} \times B_{n}\right\}, n \geq 0
\end{array}\right.
$$

and $\sigma\left(x_{1}, x_{2}\right)$ is the word $\sigma x_{1} x_{2}$ over the alphabet $\{\sigma\} \cup M$. The pair $\bar{M}=(B, \sigma)$ is a Peano σ-algebra over $M([1],[2],[3],[7])$. Two Peano σ-algebras over the same set M are isomorphic algebras ([2], [5], [6]). For this reason in this paper we use the Peano algebra given by (1). Everywhere in this paper we suppose that the set

Received November 11, 2012.
This work was partially supported by the strategic grant POSDRU/ 88/1.5/S/52826, Project ID52826 (2009), co-financed by the European Social Fund - Investing in People, within the Sectoral Operational Programme Human Resources Development 2007-2013.
M does not contain words containing the symbol σ. Particularly the set does not contain elements of the form $\sigma(u, v)$.

The Peano σ-algebra \bar{M} contains several disjoint layers: $B_{0}=M$ gives the layer of order $0, B_{1} \backslash B_{0}$ is the layer of order 1 and so on. The set M is the support set of the Peano algebra \bar{M}. The symbol σ gives the type of the Peano algebra \bar{M}.

We consider the Peano σ-algebra $\bar{M}=(B, \sigma)$. The main problems treated in this paper can be summarized as follows:

- If $K \subseteq M$ then $\bar{K} \subseteq \bar{M}$.
- The previous property allows to consider the operator $f:(\mathcal{P}(M), \cap) \longrightarrow(\mathcal{P}(\bar{M}), \cap)$ defined by $f(K)=\bar{K}$.
- The operator $f:(\mathcal{P}(M), \subseteq) \longrightarrow(\mathcal{P}(\bar{M}), \subseteq)$ is monotone.
- The operator $f:(\mathcal{P}(M), \cap) \longrightarrow(\mathcal{P}(\bar{M}), \cap)$ is a morphism of universal algebras, i.e. $f\left(L_{01} \cap L_{02}\right)=f\left(L_{01}\right) \cap f\left(L_{02}\right)$.

The results presented in this paper can be viewed as independent results from the domain of the universal algebras. But these results are useful to prove several properties to study the closure properties of the family of languages generated by stratified graphs ([9], [10]).

2. The closure operator is monotone with respect to inclusion

In this section we define the closure operator in Peano algebras.
Proposition 2.1. Suppose that $M_{0} \subseteq N_{0}$. If we consider the sets
$M_{n+1}=M_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in M_{n} \times M_{n}\right\}, n \geq 0$,
$N_{n+1}=N_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in N_{n} \times N_{n}\right\}, n \geq 0$,
then for every $n \geq 0$ we have

$$
\left\{\begin{array}{l}
M_{n} \subseteq N_{n} \tag{3}\\
M_{n+1} \backslash M_{n} \subseteq N_{n+1} \backslash N_{n}
\end{array}\right.
$$

As a consequence $\overline{M_{0}} \subseteq \overline{N_{0}}$.
Proof. If $M_{0}=\emptyset$ then $M_{n}=\emptyset$ for every $n \geq 0$. In this case the proposition is true.
Suppose $M_{0} \neq \emptyset$. We prove (3) by induction on $n \geq 0$.
For $n=0$ we have to verify the property

$$
\left\{\begin{array}{l}
M_{0} \subseteq N_{0} \\
M_{1} \backslash M_{0} \subseteq N_{1} \backslash N_{0}
\end{array}\right.
$$

Really, we have $M_{0} \subseteq N_{0}$. On the other hand if $\sigma(\alpha, \beta) \in M_{1} \backslash M_{0}, \alpha \in \overline{M_{0}}, \beta \in \overline{M_{0}}$ then $\alpha \in M_{0}, \beta \in M_{0}$. It follows that $\alpha \in N_{0}, \beta \in N_{0}$ therefore $\sigma(\alpha, \beta) \in N_{1} \backslash N_{0}$. Thus (3) is true for $n=0$.
Suppose that (3) is true for some $n \geq 0$ and we prove now that

$$
\left\{\begin{array}{l}
M_{n+1} \subseteq N_{n+1} \tag{4}\\
M_{n+2} \backslash M_{n+1} \subseteq N_{n+2} \backslash N_{n+1}
\end{array}\right.
$$

But $M_{n} \subseteq M_{n+1}$ and $N_{n} \subseteq N_{n+1}$, therefore we have $M_{n+1}=\left(M_{n+1} \backslash M_{n}\right) \cup M_{n}$ and $N_{n+1}=\left(N_{n+1} \backslash N_{n}\right) \cup N_{n}$. We use (3) and obtain $M_{n+1} \subseteq\left(N_{n+1} \backslash N_{n}\right) \cup N_{n}=N_{n+1}$. It follows that

$$
\begin{equation*}
M_{n+1} \subseteq N_{n+1} \tag{5}
\end{equation*}
$$

This is the first relation of (4).
Now consider $\sigma(\alpha, \beta) \in M_{n+2} \backslash M_{n+1}$. We have the following two cases:
(1) $\alpha \in M_{n+1} \backslash M_{n}$ and $\beta \in M_{n+1}$.

From (3) we obtain $\alpha \in N_{n+1} \backslash N_{n}$ and from (5) we obtain $\beta \in N_{n+1}$. Thus $\sigma(\alpha, \beta) \in N_{n+2} \backslash N_{n+1}$.
(2) $\alpha \in M_{n+1}$ and $\beta \in M_{n+1} \backslash M_{n}$.

From (5) we have $\alpha \in N_{n+1}$ and from (3) we have $\beta \in N_{n+1} \backslash N_{n}$. It follows that $\sigma(\alpha, \beta) \in N_{n+2} \backslash N_{n+1}$.
Thus the second relation of (4) is proved.
Corollary 2.1. Using the same notations as in Proposition 2.1 we have

$$
\begin{equation*}
\left(M_{n+1} \backslash M_{n}\right) \cap \bigcup_{k \geq 0, k \neq n}\left(N_{k+1} \backslash N_{k}\right)=\emptyset . \tag{6}
\end{equation*}
$$

Proof. Immediate from Proposition 2.1. Really,

$$
\left(M_{n+1} \backslash M_{n}\right) \cap \bigcup_{k \geq 0, k \neq n}\left(N_{k+1} \backslash N_{k}\right) \subseteq\left(N_{n+1} \backslash N_{n}\right) \cap \bigcup_{k \geq 0, k \neq n}\left(N_{k+1} \backslash N_{k}\right)
$$

and $\left(N_{n+1} \backslash N_{n}\right) \cap \bigcup_{k \geq 0, k \neq n}\left(N_{k+1} \backslash N_{k}\right)=\emptyset$ because $\left(N_{n+1} \backslash N_{n}\right) \cap\left(N_{k+1} \backslash N_{k}\right)=\emptyset$ for $k \neq n$.

Proposition 2.2. Using the same notations as in Proposition 2.1 we have

$$
\left(M_{n+1} \backslash M_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right) \neq \emptyset \Longleftrightarrow j=n .
$$

Proof. We prove the direct and the converse implication as follows:

- Suppose that $\left(M_{n+1} \backslash M_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right) \neq \emptyset$.

By contrary, suppose that $j \neq n$. If this is the case then by Proposition 2.1 we obtain $\left(M_{n+1} \backslash M_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right) \subseteq\left(N_{n+1} \backslash N_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right)=\emptyset$, therefore $\left(M_{n+1} \backslash M_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right)=\emptyset$, which is not true because we supposed ($M_{n+1} \backslash$ $\left.M_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right) \neq \emptyset$. It follows that $j=n$.

- Suppose $j=n$. By Proposition 2.1 we have $\left(M_{n+1} \backslash M_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right)=$ $\left(M_{n+1} \backslash M_{n}\right) \cap\left(N_{n+1} \backslash N_{n}\right)=M_{n+1} \backslash M_{n}$. But $M_{n+1} \backslash M_{n} \neq \emptyset$, therefore $\left(M_{n+1} \backslash M_{n}\right) \cap\left(N_{j+1} \backslash N_{j}\right) \neq \emptyset$.
Based on Proposition 2.1 we can define the operator

$$
\left\{\begin{array}{l}
f: \mathcal{P}(M) \longrightarrow \mathcal{P}(\bar{M}) \tag{7}\\
f(K)=\bar{K}
\end{array}\right.
$$

Really, if $k \subseteq M$ then $\bar{K} \subseteq \bar{M}$, therefore $f(K) \in \mathcal{P}(\bar{M})$ for every $K \in \mathcal{P}(M)$.
Definition 2.1. The operator $f: \mathcal{P}(M) \longrightarrow \mathcal{P}(\bar{M})$ defined by (7) is the closure operator of the Peano algebra \bar{M}.
Proposition 2.3. The closure operator $f:(\mathcal{P}(M), \subseteq) \longrightarrow(\mathcal{P}(\bar{M}), \subseteq)$ is monotone.
Proof. If $M_{0} \subseteq N_{0} \subseteq M$, by Proposition 2.1 we obtain $f\left(M_{0}\right) \subseteq f\left(N_{0}\right)$.

3. The closure operator is a morphism of universal algebras

We consider two label sets L_{01} and L_{02} of two labeled graphs and the Peano σ algebras generated by $L_{01}, L_{02}, L_{01} \cup L_{02}$ and $L_{01} \cap L_{02}$:

- We denote $\overline{B_{0}}=\bigcup_{n \geq 0} B_{n}$, where

$$
\left\{\begin{array}{l}
B_{0}=L_{01} \tag{8}\\
B_{n+1}=B_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in B_{n} \times B_{n}\right\}, n \geq 0
\end{array}\right.
$$

- We denote $\overline{H_{0}}=\bigcup_{n \geq 0} H_{n}$, where

$$
\left\{\begin{array}{l}
H_{0}=L_{02}, \tag{9}\\
H_{n+1}=H_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in H_{n} \times H_{n}\right\}, n \geq 0 .
\end{array}\right.
$$

- We denote $\overline{\Gamma_{0}}=\bigcup_{n \geq 0} \Gamma_{n}$, where

$$
\left\{\begin{array}{l}
\Gamma_{0}=L_{01} \cup L_{02}, \tag{10}\\
\Gamma_{n+1}=\Gamma_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in \Gamma_{n} \times \Gamma_{n}\right\}, n \geq 0
\end{array}\right.
$$

- We denote $\overline{K_{0}}=\bigcup_{n \geq 0} K_{n}$, where

$$
\left\{\begin{array}{l}
K_{0}=L_{01} \cap L_{02}, \tag{11}\\
K_{n+1}=K_{n} \cup\left\{\sigma\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in K_{n} \times K_{n}\right\}, n \geq 0 .
\end{array}\right.
$$

Proposition 3.1. For every $n \geq 0$ we have

$$
\left\{\begin{array}{l}
K_{n} \subseteq B_{n} \cap H_{n}, \tag{12}\\
K_{n+1} \backslash K_{n} \subseteq\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right) .
\end{array}\right.
$$

Proof. We apply Proposition 2.1 and obtain:

$$
\left\{\begin{array}{l}
K_{n} \subseteq B_{n} \tag{13}\\
K_{n+1} \backslash K_{n} \subseteq B_{n+1} \backslash B_{n}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
K_{n} \subseteq H_{n} \tag{14}\\
K_{n+1} \backslash K_{n} \subseteq H_{n+1} \backslash H_{n} .
\end{array}\right.
$$

Now from (13) and (14) we obtain (12).
Proposition 3.2. Suppose that $L_{01} \cap L_{02} \neq \emptyset$. Then

$$
\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{n+1} \backslash H_{n}\right) \neq \emptyset \Longleftrightarrow j=n
$$

Proof. Suppose that $j=n$. Then $\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{n+1} \backslash H_{n}\right)=\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{j+1} \backslash H_{j}\right)$. By Proposition 3.1 we have $\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{j+1} \backslash H_{j}\right) \supseteq K_{j+1} \backslash K_{j}$. But $K_{j+1} \backslash K_{j} \neq \emptyset$ because $L_{01} \cap L_{02} \neq \emptyset$. It follows that $\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{n+1} \backslash H_{n}\right) \neq \emptyset$. The implication from right to left is proved.
Let us prove the implication from left to right. We suppose that $\left(B_{j+1} \backslash B_{j}\right) \cap$ $\left(H_{n+1} \backslash H_{n}\right) \neq \emptyset$. We suppose by contrary, $j \neq n$. By Proposition 2.1 we have $B_{j+1} \backslash B_{j} \subseteq \Gamma_{j+1} \backslash \Gamma_{j}$ and $H_{n+1} \backslash H_{n} \subseteq \Gamma_{n+1} \backslash \Gamma_{n}$. It follows that $\left(B_{j+1} \backslash B_{j}\right) \cap$ $\left(H_{n+1} \backslash H_{n}\right) \subseteq\left(\Gamma_{j+1} \backslash \Gamma_{j}\right) \cap\left(\Gamma_{n+1} \backslash \Gamma_{n}\right)$. But $\left(\Gamma_{j+1} \backslash \Gamma_{j}\right) \cap\left(\Gamma_{n+1} \backslash \Gamma_{n}\right)=\emptyset$, therefore $\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{n+1} \backslash H_{n}\right)=\emptyset$, which is not true. Our assumption that $j \neq n$ is false, therefore $j=n$.

Proposition 3.3. Suppose $L_{01} \cap L_{02} \neq \emptyset$. Consider the sequences $\left\{B_{i}\right\}_{i \geq 0}$ and $\left\{H_{i}\right\}_{i \geq 0}$ defined in (8) and (9) respectively. For every $i \geq 0$ we have

$$
\begin{equation*}
\left(B_{i+1} \backslash B_{i}\right) \cap\left(H_{i+1} \backslash H_{i}\right) \subseteq \overline{L_{01} \cap L_{02}} . \tag{15}
\end{equation*}
$$

Proof. We prove (15) by induction on $i \geq 0$.
Let us verify this property for $i=0$. Take $x \in\left(B_{1} \backslash B_{0}\right) \cap\left(H_{1} \backslash H_{0}\right)$. From $x \in B_{1} \backslash B_{0}$ we deduce that there are $a_{1}, b_{1} \in B_{0}$ such that $x=\sigma\left(a_{1}, b_{1}\right)$. Similarly there are $a_{2}, b_{2} \in H_{0}$ such that $x=\sigma\left(a_{2}, b_{2}\right)$ because $x \in H_{1} \backslash H_{0}$. We can say that $x=\sigma\left(a_{1}, b_{1}\right)=\sigma\left(a_{2}, b_{2}\right)$, where $a_{1}, b_{1} \in B_{0} \cup H_{0}$ and $a_{2}, b_{2} \in B_{0} \cup H_{0}$. Thus $x \in \overline{B_{0} \cup H_{0}}$. From the properties of the Peano algebras we deduce that $a_{1}=a_{2}$ and $b_{1}=b_{2}$. It follows that $a_{1} \in B_{0} \cap H_{0}$ and $b_{1} \in B_{0} \cap H_{0}$. Thus $x=\sigma\left(a_{1}, b_{1}\right) \in$ $\overline{B_{0} \cap H_{0}}=\overline{L_{01} \cap L_{02}}$ and (15) is true for $i=0$.
Suppose that (15) is true for $i \in\{0, \ldots, n\}$. Take $x \in\left(B_{n+2} \backslash B_{n+1}\right) \cap\left(H_{n+2} \backslash H_{n+1}\right)$.

There are $p, q \in \overline{B_{0}}$ such that $x=\sigma(p, q)$ because $x \in B_{n+2} \backslash B_{n+1}$. There are $\alpha, \beta \in$ $\overline{H_{0}}$ such that $x=\sigma(\alpha, \beta)$ because $x \in H_{n+2} \backslash H_{n+1}$. We have $p, q \in \overline{B_{0}}$, therefore $p, q \in \overline{B_{0} \cup H_{0}}$. Similarly we have $\alpha, \beta \in \overline{B_{0} \cup H_{0}}$. It follows that $\sigma(p, q) \in \overline{B_{0} \cup H_{0}}$ and $\sigma(\alpha, \beta) \in \overline{B_{0} \cup H_{0}}$. Using the same property of the Peano algebras we deduce $p=\alpha$ and $q=\beta$. Thus

$$
\begin{gathered}
\sigma(p, q) \in\left(B_{n+2} \backslash B_{n+1}\right) \cap\left(H_{n+2} \backslash H_{n+1}\right), \\
p, q \in \overline{B_{0}} \cap \overline{H_{0}} .
\end{gathered}
$$

From $\sigma(p, q) \in\left(B_{n+2} \backslash B_{n+1}\right), p, q \in \overline{B_{0}}$, we deduce that the following two cases are possible:
a1) $p \in\left(B_{n+1} \backslash B_{n}\right)$ and $q \in B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)$;
a2) $p \in B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)$ and $q \in\left(B_{n+1} \backslash B_{n}\right)$.
Similarly, from $\sigma(p, q) \in\left(H_{n+2} \backslash H_{n+1}\right), p, q \in \overline{H_{0}}$, we deduce that one of the following cases is possible:
a3) $p \in\left(H_{n+1} \backslash H_{n}\right)$ and $q \in H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)$;
a4) $p \in H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)$ and $q \in\left(H_{n+1} \backslash H_{n}\right)$.
Combining these cases we obtain:

- Suppose we have $a 1$) and $a 3$).

In this case we have

$$
\begin{aligned}
& p \in\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right), \\
& q \in\left[B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right] \cap\left[H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right] .
\end{aligned}
$$

Applying the distributivity of the set operations we obtain

$$
\begin{aligned}
& {\left[B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right] \cap\left[H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash B_{j}\right)\right]} \\
& \quad=\left(B_{0} \cap H_{0}\right) \cup\left(B_{0} \cap \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right) \cup\left(H_{0} \cap \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right) \\
& \quad \cup\left(\bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right) \cap \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right) \\
& \quad=\left(B_{0} \cap H_{0}\right) \cup \bigcup_{j=0}^{n}\left(\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{j+1} \backslash H_{j}\right)\right)
\end{aligned}
$$

Thus in this case we have

$$
\begin{gather*}
p \in\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right), \tag{16}\\
q \in\left(B_{0} \cap H_{0}\right) \cup \bigcup_{j=0}^{n}\left[\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{j+1} \backslash H_{j}\right)\right] . \tag{17}
\end{gather*}
$$

By the inductive assumption we have $\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{j+1} \backslash H_{j}\right) \subseteq \overline{L_{01} \cap L_{02}}$ for every $j \in\{0, \ldots, n\}$, therefore (16) and (17) show that

$$
p \in \overline{L_{01} \cap L_{02}}
$$

$$
q \in\left(L_{01} \cap L_{02}\right) \cup \overline{L_{01} \cap L_{02}}
$$

We know that $L_{01} \cap L_{02} \subseteq \overline{L_{01} \cap L_{02}}$, therefore in this case we have $p, q \in \overline{L_{01} \cap L_{02}}$. Thus $x=\sigma(p, q) \in \overline{L_{01} \cap L_{02}}$.

- Suppose we have $a 1$) and $a 4$).

If this is the case then

$$
\begin{align*}
& p \in\left(B_{n+1} \backslash B_{n}\right) \cap\left[H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right], \tag{18}\\
& q \in\left[B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right] \cap\left(H_{n+1} \backslash H_{n}\right) . \tag{19}
\end{align*}
$$

But

$$
\begin{gathered}
\left(B_{n+1} \backslash B_{n}\right) \cap\left[H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right]=\left[\left(B_{n+1} \backslash B_{n}\right) \cap H_{0}\right] \cup\left[\left(B_{n+1} \backslash B_{n}\right) \cap \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right], \\
\left(B_{n+1} \backslash B_{n}\right) \cap H_{0}=\emptyset .
\end{gathered}
$$

By Proposition 3.2 we have

$$
\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{j+1} \backslash H_{j}\right) \neq \emptyset \Longleftrightarrow j=n
$$

On the other hand,

$$
\begin{gathered}
{\left[B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right] \cap\left(H_{n+1} \backslash H_{n}\right)=\left[B_{0} \cap\left(H_{n+1} \backslash H_{n}\right)\right] \cup\left[\left(H_{n+1} \backslash H_{n}\right) \cap \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right],} \\
\left(H_{n+1} \backslash H_{n}\right) \cap B_{0}=\emptyset,
\end{gathered}
$$

and by Proposition 3.2 we have

$$
\left(H_{n+1} \backslash H_{n}\right) \cap\left(B_{j+1} \backslash B_{j}\right) \neq \emptyset \Longleftrightarrow j=n
$$

Thus the relations (18) and (19) show that

$$
\begin{aligned}
& p \in\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right), \\
& q \in\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right) .
\end{aligned}
$$

Now we use the inductive assumption and deduce that $p, q \in \overline{L_{01} \cap L_{02}}$. Thus $x=$ $\sigma(p, q) \in \overline{L_{01} \cap L_{02}}$.

- Suppose we have $a 2$) and $a 3$).

In this case we have

$$
\begin{aligned}
& p \in\left[B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right] \cap\left(H_{n+1} \backslash H_{n}\right), \\
& q \in\left(B_{n+1} \backslash B_{n}\right) \cap\left[H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right] .
\end{aligned}
$$

Using the same relations as in the previous cases we obtain again $p \in\left(B_{n+1} \backslash B_{n}\right) \cap$ $\left(H_{n+1} \backslash H_{n}\right)$ and $q \in\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right)$ and finally by the inductive assumption we obtain $x=\sigma(p, q) \in \overline{L_{01} \cap L_{02}}$.

- Suppose we have $a 2$) and $a 4$).

In this case we have

$$
\begin{aligned}
& p \in\left[B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right] \cap\left[H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right], \\
& q \in\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right) .
\end{aligned}
$$

We proceed as in the case $a 1$) and $a 3$). We obtain $x=\sigma(p, q) \in \overline{L_{01} \cap L_{02}}$.

Proposition 3.4. If $L_{01} \cap L_{02}=\emptyset$ then for every $n \geq 0, r \geq 0$ we have

$$
\begin{equation*}
B_{n} \cap H_{r}=\emptyset . \tag{20}
\end{equation*}
$$

Proof. Let's consider first the case $n=r$. We prove by induction on $k \geq 0$ the property

$$
\begin{equation*}
B_{k} \cap H_{k}=\emptyset \tag{21}
\end{equation*}
$$

For $k=0$ the relation (21) is true because $L_{01} \cap L_{02}=\emptyset$. Suppose that (21) is true for $k \in\{0, \ldots, n\}$. We have

$$
B_{n+1} \cap H_{n+1}=\left[\left(B_{n+1} \backslash B_{n}\right) \cup B_{n}\right] \cap\left[\left(H_{n+1} \backslash H_{n}\right) \cup H_{n}\right]=
$$

$$
\left[\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right)\right] \cup\left[B_{n} \cap\left(H_{n+1} \backslash H_{n}\right)\right] \cup\left[\left(B_{n+1} \backslash B_{n}\right) \cap H_{n}\right] \cup\left(B_{n} \cap H_{n}\right)
$$

But $B_{n} \cap H_{n}=\emptyset$ by the inductive assumption. We have also $B_{n} \cap\left(H_{n+1} \backslash H_{n}\right) \subseteq$ $\Gamma_{n} \cap\left(\Gamma_{n+1} \backslash \Gamma_{n}\right)=\emptyset$ and similarly, $\left(B_{n+1} \backslash B_{n}\right) \cap H_{n}=\emptyset$. It follows that

$$
\begin{equation*}
B_{n+1} \cap H_{n+1}=\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right) \tag{22}
\end{equation*}
$$

Suppose that $n=0$ in (22). In other words we have

$$
B_{1} \cap H_{1}=\left(B_{1} \backslash B_{0}\right) \cap\left(H_{1} \backslash H_{0}\right)
$$

Suppose that $\left(B_{1} \backslash B_{0}\right) \cap\left(H_{1} \backslash H_{0}\right) \neq \emptyset$. Take $y \in\left(B_{1} \backslash B_{0}\right) \cap\left(H_{1} \backslash H_{0}\right)$. There exist $p_{1}, q_{1} \in B_{0}$ such that $y=\sigma\left(p_{1}, q_{1}\right)$ and there exist $p_{2}, q_{2} \in H_{0}$ such that $y=\sigma\left(p_{2}, q_{2}\right)$. We have $p_{1}, q_{1}, p_{2}, q_{2} \in B_{0} \cup H_{0} \subseteq \overline{B_{0} \cup H_{0}}$. Thus $y=\sigma\left(p_{1}, q_{1}\right)=\sigma\left(p_{2}, q_{2}\right) \in \overline{B_{0} \cup H_{0}}$. It follows that $p_{1}=p_{2}$ and $q_{1}=q_{2}$. Thus $p_{1} \in B_{0} \cap H_{0}$. But this is not possible because $B_{0} \cap H_{0}=\emptyset$.
Suppose that $n \geq 1$ in (22). Suppose that there exists $y \in\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right)$. Because $y \in B_{n+1} \backslash B_{n}$ we deduce that there are a_{1}, a_{2} such that $y=\sigma\left(a_{1}, a_{2}\right)$ and the following two cases are possible:

- $a_{1} \in B_{n} \backslash B_{n-1}, a_{2} \in B_{n-1}$;
- $a_{1} \in B_{n-1}, a_{2} \in B_{n} \backslash B_{n-1}$.

From $y \in H_{n+1} \backslash H_{n}$ we deduce that there are b_{1}, b_{2} such that $b_{1} \in H_{n} \backslash H_{n-1}, b_{2} \in H_{n-1}$, $b_{1} \in H_{n-1}, b_{2} \in H_{n} \backslash H_{n-1}$.
Let us observe that $a_{1}, a_{2}, b_{1}, b_{2} \in \overline{B_{0} \cup H_{0}}$ and $\sigma\left(a_{1}, a_{2}\right)=\sigma\left(b_{1}, b_{2}\right)$. By a basic property of a Peano algebra we deduce that $a_{1}=b_{1}$ and $a_{2}=b_{2}$.
It follows that we have the following four cases:

- $a_{1} \in\left(B_{n} \backslash B_{n-1}\right) \cap\left(H_{n} \backslash H_{n-1}\right), a_{2} \in B_{n-1} \cap H_{n-1}$; but $B_{n-1} \cap H_{n-1}=\emptyset$.
- $a_{1} \in\left(B_{n} \backslash B_{n-1}\right) \cap H_{n-1}, a_{2} \in B_{n-1} \cap\left(H_{n} \backslash H_{n-1}\right)$; but $\left(B_{n} \backslash B_{n-1}\right) \cap H_{n-1} \subseteq$ $B_{n} \cap H_{n}=\emptyset$ by the inductive assumption.
- $a_{1} \in B_{n-1} \cap\left(H_{n} \backslash H_{n-1}\right), a_{2} \in\left(B_{n} \backslash B_{n-1}\right) \cap H_{n-1}$; but $B_{n-1} \cap\left(H_{n} \backslash H_{n-1}\right) \subseteq$ $B_{n-1} \cap H_{n} \subseteq B_{n} \cap H_{n}=\emptyset$.
- $a_{1} \in B_{n-1} \cap H_{n-1}, a_{2} \in\left(B_{n} \backslash B_{n-1}\right) \cap\left(H_{n} \backslash H_{n-1}\right)$; but $B_{n-1} \cap H_{n-1}=\emptyset$ by the inductive assumption.
It follows that our assumption $\left(B_{n+1} \backslash B_{n}\right) \cap\left(H_{n+1} \backslash H_{n}\right) \neq \emptyset$ is false, therefore $B_{n+1} \cap H_{n+1}=\emptyset$ 。

For $n \neq r$ we will consider only the case $r<n$ as the proof is similar to the case $n<r$. We have

$$
\begin{aligned}
B_{n} \cap H_{r} & =\left[B_{0} \cup \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right] \cap\left[H_{0} \cup \bigcup_{k=0}^{r}\left(H_{k+1} \backslash H_{k}\right)\right] \\
& =\left(B_{0} \cap H_{0}\right) \cup\left(B_{0} \cap \bigcup_{k=0}^{r}\left(H_{k+1} \backslash H_{k}\right)\right) \cup\left(H_{0} \cap \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)\right) \\
& \cup\left[\bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right) \cap \bigcup_{k=0}^{r}\left(H_{k+1} \backslash H_{k}\right)\right] .
\end{aligned}
$$

We obtain $B_{0} \cap H_{0}=L_{01} \cap L_{02}=\emptyset, B_{0} \cap \bigcup_{k=0}^{r}\left(H_{k+1} \backslash H_{k}\right)=\emptyset$ and similarly $H_{0} \cap \bigcup_{j=0}^{n}\left(B_{j+1} \backslash B_{j}\right)=\emptyset$. So we have

$$
B_{n} \cap H_{r}=\bigcup_{j=0}^{n} \bigcup_{k=0}^{r}\left[\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{k+1} \backslash H_{k}\right)\right]
$$

For every $j \neq k$ we have $\left(B_{j+1} \backslash B_{j}\right) \cap\left(H_{k+1} \backslash H_{k}\right) \subseteq\left(\Gamma_{j+1} \backslash \Gamma_{j}\right) \cap\left(\Gamma_{k+1} \backslash \Gamma_{k}\right)=\emptyset$. So we are left with the case $j=k$. But $r<n$ therefore we obtain

$$
B_{n} \cap H_{r}=\bigcup_{k=0}^{r}\left[\left(B_{k+1} \backslash B_{k}\right) \cap\left(H_{k+1} \backslash H_{k}\right)\right]
$$

And this case is now similar to the previous case when $n=r$. Thus the proposition is proved.

The concept of morphism of universal algebra ([4], [8]) is used by the next proposition.

Proposition 3.5. The diagram from Figure 1 is commutative. In other words, the

Figure 1. The operator f is a morphism.
closure operator is a morphism of universal algebras:

$$
\begin{equation*}
\overline{L_{01} \cap L_{02}}=\overline{L_{01}} \cap \overline{L_{02}} . \tag{23}
\end{equation*}
$$

Proof. Suppose $L_{01} \cap L_{02} \neq \emptyset$. By Proposition 2.1 we have $\overline{L_{01} \cap L_{02}} \subseteq \overline{L_{01}}$ and $\overline{L_{01} \cap L_{02}} \subseteq \overline{L_{02}}$, therefore

$$
\begin{equation*}
\overline{L_{01} \cap L_{02}} \subseteq \overline{L_{01}} \cap \overline{L_{02}} \tag{24}
\end{equation*}
$$

In order to prove the reverse implication we observe that

$$
\begin{aligned}
& \overline{L_{01}} \cap \overline{L_{02}}= {\left[B_{0} \cup \bigcup_{i=0}^{n}\left(B_{i+1} \backslash B_{i}\right)\right] \cap\left[H_{0} \cup \bigcup_{j=0}^{n}\left(H_{j+1} \backslash H_{j}\right)\right] } \\
&=\left(B_{0} \cap H_{0}\right) \cup \bigcup_{j \geq 0}\left[B_{0} \cap\left(H_{j+1} \backslash H_{j}\right)\right] \cup \bigcup_{i \geq 0}\left[H_{0} \cap\left(B_{i+1} \backslash B_{i}\right)\right] \\
& \cup \bigcup_{i, j \geq 0}\left[\left(B_{i+1} \backslash B_{i}\right) \cap\left(H_{j+1} \backslash H_{j}\right)\right] .
\end{aligned}
$$

But $B_{0} \cap\left(H_{j+1} \backslash H_{j}\right)=\emptyset$ for every $j \geq 0, H_{0} \cap\left(B_{i+1} \backslash B_{i}\right)=\emptyset$ for every $i \geq 0$ and $\left(B_{i+1} \backslash B_{i}\right) \cap\left(H_{j+1} \backslash H_{j}\right) \neq \emptyset$ if and only if $i=j$ by Proposition 3.2. It follows that

$$
\overline{L_{01}} \cap \overline{L_{02}}=\left(B_{0} \cap H_{0}\right) \cup \bigcup_{i \geq 0}\left[\left(B_{i+1} \backslash B_{i}\right) \cap\left(H_{i+1} \backslash H_{i}\right)\right]
$$

If we use Proposition 3.3 and the inclusion $B_{0} \cap H_{0} \subseteq \overline{L_{01} \cap L_{02}}$ then we obtain

$$
\begin{equation*}
\overline{L_{01}} \cap \overline{L_{02}} \subseteq \overline{L_{01} \cap L_{02}} \tag{25}
\end{equation*}
$$

From (24) and (25) we obtain $\overline{L_{01} \cap L_{02}}=\overline{L_{01}} \cap \overline{L_{02}}$.
Now suppose that $L_{01} \cap L_{02}=\emptyset$. We have $\overline{L_{01}}=\bigcup_{n \geq 0} B_{n}$ and $\overline{L_{02}}=\bigcup_{k \geq 0} H_{k}$. We have $\overline{L_{01}} \cap \overline{L_{02}}=\bigcup_{n \geq 0, k \geq 0}\left(B_{n} \cap H_{k}\right)=\emptyset$ by Proposition 3.4. It follows that (23) is also true in this case.
Proposition 3.6. If $L_{01} \cap L_{02}=\emptyset$ then $\left(H_{r+1} \backslash H_{r}\right) \cap\left(B_{n+1} \backslash B_{n}\right)=\emptyset$ for every $r \geq 0$ and $n \geq 0$.

Proof. Suppose that $L_{01} \cap L_{02}=\emptyset$. Let us consider $r \geq 0$ and $n \geq 0$. We have $\left(H_{r+1} \backslash H_{r}\right) \cap\left(B_{n+1} \backslash B_{n}\right) \subseteq \overline{H_{0}} \cap \overline{B_{0}}=\overline{B_{0} \cap H_{0}}=\bar{\emptyset}=\emptyset$. It follows that $\left(H_{r+1} \backslash\right.$ $\left.H_{r}\right) \cap\left(B_{n+1} \backslash B_{n}\right)=\emptyset$.

Remark 3.1. From Proposition 3.6 we see that Proposition 3.3 is true also if $L_{01} \cap$ $L_{02}=\emptyset$.

4. Conclusions and future work

In this paper we studied several properties of the closure operator in Peano algebras. The main results include the monotony under inclusion and the morphism property with respect to intersection. We intend to study the morphism property under union operation. We know that the stratified graphs can generate formal languages. We intend to apply these results to prove the closure properties of this family of languages ([9], [10]).

References

[1] V. Boicescu, A. Filipoiu, G. Georgescu and R. Rudeanu, Lukasiewicz-Moisil Algebra, Annals of Discrete Mathematics 49, North-Holland, 1991.
[2] V.E. Căzănescu, Course of Computer Science Fundamentals, Bucharest University, Lesson I, University Publishing Center (in Romanian), 1975.
[3] P. M. Cohn, Universal algebra, Springer, 1981.
[4] S. N. Burris and H.P. Sankappanavar, A Course in Universal Algebra - The Millennium Edition, http://www.math.uwaterloo.ca/ snburris/htdocs/UALG/univ-algebra.pdf, Springer-Verlag, 1981.
[5] S. Rudeanu, Lattice Functions and Equations, Springer (Discrete Mathematics and Theoretical Computer Science), 2001.
[6] N. Ţăndăreanu, Lecture Notes on Universal Algebra, Basic Concepts of Peano Algebras and Lattices, Research Report in Artificial Intelligence, no. 301, Research Center for Artificial Intelligence, University of Craiova, Universitaria Publishing House, 2006.
[7] G. Grätzer, Universal algebra, Springer, 2008.
[8] J. Jeẑek, Universal algebra, http://www.karlin.mff.cuni.cz/ jezek/ua.pdf, 2008.
[9] I.V. Tudor Preda, Labelled Stratified Graphs can Generate Formal Languages, European Conference for the Applied Mathematics and Informatics, Athens, Greece, 29-31 December, 2010, WSEAS Press (2010), 184-189.
[10] I.V. Tudor Preda, Considerations Regarding Formal Languages Generation Using Labelled Stratified Graphs, International Journal of Applied Mathematics and Informatics 5 (2011), no. 2, 101-108.
[11] N. Ţăndăreanu, Knowledge Bases with Output, Knowledge and Information Systems 2 (2000), no. 4, 438-460.
[12] N. Ţăndăreanu, Proving the Existence of Labelled Stratified Graphs, Annals of the University of Craiova 27 (2000), 81-92.
[13] N. Tुăndăreanu, Distinguished Representatives for Equivalent Labelled Stratified Graphs and Applications, Discrete Applied Mathematics 144 (2004), 183-208.
[14] N. Tुăndăreanu, Knowledge Representation by Labeled Stratified Graphs, The 8th World MultiConference on Systemics, Cybernetics and Informatics, July 18-21, 2004, Orlando, Florida, USA, Vol. V: Computer Science and Engineering (2004), 345-350.
[15] N. Ţăndăreanu and M. Ghindeanu, Hierarchical Reasoning Based on Stratified Graphs. Application in Image Synthesis, 15th International Workshop on Database and Expert Systems Applications, Proceedings of DEXA2004, Zaragoza, Spania, 2004, IEEE Computer Society, Los Alamitos California (2004), 498-502.
[16] N. Ţăndăreanu, Semantic Schemas and Applications in Logical representation of Knowledge, Proceedings of the 10th International Conference on Cybernetics and Information Technologies, Systems and Applications, July 21-25, USA, 2004, Vol.III, 82-87.
[17] N. Ţăndăreanu and M. Ghindeanu, A three-level distributed knowledge system based on semantic schemas, 16 th International Workshop on Database and Expert Systems Applications, Proceedings of DEXA'05 (TAKMA2005), Copenhagen, 2005, 423-427.
[18] N. Ţăndăreanu, Cross-Deduction Based on Maximal Elements in Semantic Schemas, 11th World Multiconference on Systemics, Cybernetics and Informatics (WMSCI 2007), Orlando, USA, July 8-11, 2007, Vol. I, 97-102.
[19] N. Ţăndăreanu, Cooperating Systems Based on Maximal Graphs in Semantic Schemas, Proceedings of the 11th WSEAS International Multiconference CSCC (Circuits, Systems, Communications, Computers), Crete Island, Greece, July 23-28, 2007, Vol. 4, 517-522,
[20] N. Tăndăreanu, Master-Slave Systems of Semantic Schemas and Applications, The 10th IASTED International Conference on Intelligent Systems and Control (ISC 2007), November 1921, Cambridge, Massachusetts, USA, 2007, 150-155.
[21] N. Ţăndăreanu, M.V. Ghindeanu and S.A. Nicolescu, Hierarchical Distributed Reasoning System for Geometric Image Generation, Int.J. of Computers, Communications \& Control IV (2009), no. 2, 167-177.
[22] N. Ţăndăreanu and C. Zamfir, New Computational Aspects in Master-Slave Systems of Semantic Schemas, 23rd IEEE International Conference on Tools with Artificial Intelligence ICTAI 2011, Nov.7-9, 2011, Boca Raton, Florida, USA, 665-668.
(Nicolae Ţăndăreanu) Department of Computer Science, University of Craiova, Romania E-mail address: ntand@rdslink.ro
(Irina Tudor (Preda)) Department of Computer Science, University of Piteşti, Romania E-mail address: irisxiphium@yahoo.com

