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Fundamental BCC-algebras
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Abstract. In this paper, we consider the notions of BCC-algebras and hyper BCC-algebras,
give some related results, introduce the relation β on hyper BCC-algebras and let β∗ be the
transitive closure of β. Then by considering the concept of strongly regular equivalence relation

(fundamental relation) β∗ on hyper BCC-algebras, we define the notion of fundamental BCC-
algebra and we prove that any countable BCC-algebra is a fundamental BCC-algebra.
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Introduction

The theory of hyperstructures has been introduced by Marty in 1934 during the 8th

Congress of the Scandinavian Mathematicians [12]. Marty introduced hypergroups as
a generalization of groups. He published some notes on hypergroups, using them in
different contexts as algebraic functions, rational fractions, non commutative groups
and then many researchers have been worked on this new field of modern algebra and
developed it. The study of BCK-algebras was initiated by Y. Imai and K. Iseki [7]
in 1966 as a generalization of the concept of set-theoretic difference and propositional
calculi. Since a great deal of literature has been produced on the theory of BCK-
algebras. In [10] Borzooei, et al. applied the hyperstructures to BCK-algebras, and
introduced the concept of a hyper BCK-algebras which is a generalization of a BCK-
algebra and investigated some related properties. They introduced the notions of
hyper BCK-ideals and weak hyper BCK-ideals and gave relations between theorem.
Y.B. Jun et al, [9] gave a condition for a hyper BCK-algebra to be a BCK-algebra
and introduced the notion of strong hyper BCK-ideal and reflexive hyper BCK-ideal.
In connection with this problem Komori introduced in [11] a notion of BCC-algebra
which is a generalization of a BCK-algebra and proved that the class of all BCC-
algebras is not a variety. Dudek [6] followed this theory and has got a lot of related
results. BCC-algebras are algebraic models of BCC-logic, implicational logic whose
axiom schemes are the principal-type schemes of the combinators B, I, and K, and
whose inference rules are modus ponens and modus ponens 2. So, in fact, such algebras
ought to have been named BCK-algebras. In this convention, a BCK-algebra is a
BCC-algebra satisfying the identity y −→ (x −→ z) = x −→ (y −→ z). In [2],
Borzooei, W. A. dudek and N. Koohestani, have introduced the concept of hyper
BCC-algebra as common generalization of BCC-algebras and hyper BCK-algebras.
In particular, they have investigated different types of hyper BCC-ideals and have
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described the relationship among them. Now, in this paper, we prove that any BCC-
algebra is a fundamental BCC-algebra. But, we show that any finite BCC-algebra
is not a fundamental BCC-algebra of itself.

1. Preliminaries

Definition 1.1. [7] Let X be a set with a binary operation ” ∗ ” and a constant ”0”.
Then, (X, ∗, 0) is called a BCK-algebra if it satisfies the following conditions:
(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI-2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCI-3) x ∗ x = 0,
(BCI-4) x ∗ y = 0 and y ∗ x = 0 imply x = y,
(BCK-5) 0 ∗ x = 0.
We define a binary relation ” ≤ ” on X by x ≤ y if and only if x ∗ y = 0. Then,
(X, ∗, 0) is a BCK-algebra if and only if it satisfies the following conditions:
(BCI-1′) ((x ∗ y) ∗ (x ∗ z)) ≤ (z ∗ y),
(BCI-2′) (x ∗ (x ∗ y)) ≤ y,
(BCI-3′) x ≤ x,
(BCI-4′) x ≤ y and y ≤ x imply x = y,
(BCK-5′) 0 ≤ x.

Theorem 1.1. [7] Let (X, ∗, 0) be a BCK-algebra. Then we have the following
properties:
(a) x ≤ y implies z ∗ y ≤ z ∗ x,
(b) x ≤ y implies x ∗ z ≤ y ∗ z,
(c) x ≤ y and y ≤ z imply x ≤ z,
(d) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(e) x ∗ y ≤ z implies x ∗ z ≤ y,
(f) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
(g) x ∗ y ≤ x,
(h) x ∗ 0 = x.

Definition 1.2. [6] Let X be a set with a binary operation ” ∗ ” and a constant ”0”.
Then, (X, ∗, 0) is called a BCC-algebra if it satisfies the following conditions:
(C1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(C2) x ∗ 0 = x,
(C3) x ∗ x = 0,
(C4) 0 ∗ x = 0,
(C5) x ∗ y = 0 and y ∗ x = 0 imply x = y.
We define a binary relation ” ≤ ” on X by x ≤ y if and only if x ∗ y = 0. Then, the
BCK-algebra (X, ∗, 0) satisfies in the following conditions:
(a) 0 ≤ x,
(b) x ≤ x,
(c) x ∗ y ≤ x,
(d) (x ∗ y) ∗ (z ∗ y) ≤ x ∗ z,
(e) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.
A BCC-algebra is called commutative if for all x, y ∈ X, x ∗ (x ∗ y) = y ∗ (y ∗ x).
Definition 1.3. Let (X, ∗, 0) and (X ′, ∗′, 0′) be two BCC-algebras. A mapping
f : X → X ′ is called a homomorphism from X into X ′, if for any x, y ∈ X, f(x∗ y) =
f(x) ∗′ f(y). The homomorphism f , is called an isomorphism, if it is onto and one to
one.
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Definition 1.4. [5] LetH be a nonempty set and P ∗(H) be the family of all nonempty
subsets of H. Functions ∗i

H
: H × H −→ P ∗(H), where i ∈ {1, 2, . . . , n} and

n ∈ N, are called binary hyperoperations. For all x, y of H, ∗i
H
(x, y) is called the

hyperproduct of x and y. An algebraic system (H, ∗1
H
, ∗2

H
, . . . , ∗n

H
) is called an n-

algebraic hyperstructure and structure (H, ∗H ) endowed with only one hyperoperation
is called a hypergroupoid. For any two nonempty subsets A and B of hypergropoid H
and x ∈ H, we define

A ∗H B =
∪

a∈A,b∈B

a ∗H b, A ∗H x =
∪
a∈A

a∗Hx and x ∗H B =
∪
b∈B

x ∗H b

Definition 1.5. [2] Let H be a non-empty set, endowed with a binary hyperoperation
” ◦ ” and a constant ”0”. Then, (H, ◦, 0) is called a hyper BCC-algebra if satisfies the
following axioms:
(HC1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y,
(HC2) 0 ◦ x = 0,
(HC3) x ◦ 0 = x,
(HC4) x≪ y and y ≪ x imply x = y,
for all x, y, z in H, where x ≪ y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H,
A≪ B is defined by ∀a ∈ A,∃b ∈ B such that a≪ b.

Nontrivial hyper BCC-algebra means that the hyperoperation ”◦” is not singleton
and hyper BCC-algebra H is called a proper hyper BCC-algebra if H is not a hyper
BCK-algebra.

Theorem 1.2. [2] In any hyper BCC-algebra H, the following hold:
(a1) 0 ◦ 0 = {0},
(a2) 0 ≪ x,
(a3) x≪ x,
(a4) x ◦ y ≪ x,
(a5) A ◦ 0 = A,
(a6) 0 ◦A = 0,
for all x, y, z ∈ H and A ⊆ H.

Theorem 1.3. [2] Let H be a hyper BCC-algebra. Then H is a hyper BCK-algebra
if and only if (x ◦ y) ◦ z = (x ◦ z) ◦ y, for all x, y, z ∈ H.

A totally ordered set (X, 0) is said to be well-ordered (or have a well-founded order)
if every nonempty subset of X, has a least element. Every finite totally ordered set
is well ordered.

Theorem 1.4. [8] ( Zermelo’s Well-Ordering Theorem) Every set can be well-ordered.

2. Some results on BCC-algebras and weak commutative hyper BCC-
algebras

In this section, we get some results that we need in the next section. Specially, we
construct a BCC-algebra and a hyper BCC-algebra from a nonempty set.

By Theorem 1.4, any set can be well-ordered. But in Theorem 2.2, for any count-
able set X, we need to well-ordered set by a new way. Then we define a special binary
relation ” ≤ ” and zero element x0 ∈ X, such that (X,≤, x0) is well-ordered set.

Theorem 2.1. Let X and Y be two sets such that |X| = |Y |. If (Y,≤, 0) is a well-
ordered set, then there exist a binary order relation ” ≤ ” on X and x0 ∈ X, such
that (X,≤, x0), is a well-ordered set.
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Proof. Since |X| = |Y |, then there exists a bijection ψ : Y → X and so for any
x, y ∈ X, there exist x′, y′ ∈ Y such that x = ψ(x′) and y = ψ(y′). Now, for any
x, y ∈ X, we define the relation ” ≤ ” on X as follows:

x ≤ y ⇐⇒ x′ ≤ y′ (2.1)

Then, by (2.1), for any x, y ∈ X, we have

ψ(x) ≤ ψ(y) ⇐⇒ x ≤ y (2.2)

Hence (X,≤, x0) is a well-ordered set, where x0 = ψ(0). �

Theorem 2.2. Every countable set can be well-ordered.

Proof. Let X be a countable set. Then, |X| = |W|, where W = {0, 1, 2, 3, ...} or there
exists k ∈ N such that |X| = |Nk|. If X is finite then clearly there exists a binary
relation ” ≤ ” on X and x0 ∈ X, such that (X,≤, x0) is a well-ordered set. Now, let
|X| = |W|. Since, (W,≤, 0) is a well-ordered set, then by Theorem 2.1, there exist
a bijection ψ : W → X, binary order relation ” ≤ ” on X and x0 ∈ X such that
x0 = ψ(0) and (X,≤, x0) is a well-ordered set. �

Lemma 2.3. Let (X,≤, 0) be a totally ordered set. Then there exists a binary oper-
ation ” ∗ ” on X such that (X, ∗, 0) is a BCC-algebra.

Proof. For any x, y ∈ X, we define the binary operation ” ∗ ” on X, as follows:

x ∗ y =

{
0 , if x ≤ y

x , otherwise

Then by some modification, we can prove that (X, ∗, 0) is a BCC-algebra. �

Corollary 2.4. Every countable set can be a BCC-algebra.

Proof. Let X be a nonempty countable set. By Theorem 2.2, there exists a special
order relation ” ≤ ” and zero element x0 ∈ X such that (X,≤, x0) is a well-ordered
set and by Lemma 2.3, there exists the binary relation ” ∗ ” on (X,≤, x0) such that
(X, ∗, x0) is a BCC-algebra. �

Theorem 2.5. Let X be an infinite countable set. Then there exist x0 ∈ X and a
binary operation ”∗” on X and W, such that (X, ∗, x0) and (W, ∗, 0) are BCC-algebras
and (X, ∗, x0)

∼= (W, ∗, 0).

Proof. Since X is an infinite countable set, then |X| = |W|. Now, by Theorem 2.2,
there exist x0 ∈ X, a bijection ψ : W → X and an order relation ” ≤ ” on X, such
that (X,≤, x0) is a well-ordered set and by Lemma 2.3, there exists a binary operation
”∗” on X and W such that (X, ∗, x0) and (W, ∗, 0) are BCC-algebras. Now, we show
that (X, ∗, x0) and (W, ∗, x0) are isomorphic BCC-algebras. Let φ : W → X be
defined by φ(n) = ψ(n), for any n ∈ W. It is easy to see that φ is a bijection and
φ(0) = x0 . Now, we show that φ is a homomorphism. If m = 0 or n = 0, then it is
easy to check that φ is a homomorphism. Now, let m ̸= 0, n ̸= 0 ∈ W. If m > n, then
by (3.2), ψ(m) > ψ(n) and so

φ(m ∗ n) = φ(m) = ψ(m) = ψ(m) ∗ ψ(n) = φ(m) ∗ φ(n)
Now, let m ≤ n. Then by (3.2), ψ(m) ≤ ψ(n) and so

φ(m ∗ n) = φ(0) = ψ(0) = x0 = ψ(m) ∗ ψ(n) = φ(m) ∗ φ(n)
Therefore, φ is a homomorphism and so it is an isomorphism. �
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Theorem 2.6. Every set can be a commutative BCC-algebra.

Proof. Let X be a nonempty set and x0 ∈ X. For any x, y ∈ X, we define the binary
operation ” ∗ ” on X as follows:

x ∗ y =

{
x

0
, if x = y

x , otherwise

Then by some modification, it is easy to see that (X, ∗, x0) is a BCC-algebra. �

Definition 2.1. Let (X, ◦, 0) be a hyper BCC-algebra. Then, (X, ◦, 0) is called a
weak commutative hyperBCC-algebra, if for any x, y ∈ X, (x◦(x◦y))

∩
(y◦(y◦x)) ̸= ∅.

Example 2.1. Let X = {0, 1, 2}. Then, (X, ◦) is a hyper BCC-algebra which is
defined as follows:

◦ 0 a b c
0 0 0 0 0
a a 0 0 0
b b b 0 0
c c c c {0, c}

We have a ◦ (a ◦ c) = a, while c ◦ (c ◦ a) = {0, c}. Then, a ◦ (a ◦ c) ̸= c ◦ (c ◦ a) and
a ◦ (a ◦ c)

∩
c ◦ (c ◦ a) = ∅. Therefore, if (X, ◦) is a hyper BCC-algebra, it necessarily

dose not hold that x ◦ (x ◦ y)
∩
y ◦ (y ◦ x) ̸= ∅.

Theorem 2.7. Every nonempty set can be a weak commutative hyper BCC-algebra.

Proof. Let X be a nonempty set and x0 ∈ X. For any x, y ∈ X, we define the binary
hyperoperation ” ◦ ” on X as follows:

x ◦ y =

{
{x0 , x} , if x = y

x , otherwise

Moreover, for any x, y ∈ X, we define x ≪ y by x0 ∈ x ◦ y. Clearly for any x ∈
X, x0 ∈ x ◦ x, and x0 ∈ x0 ◦ x. Then, x ≪ x and x0 ≪ x. Now, we show that
(X, ◦, x0) is a hyper BCC-algebra.

(HC1): Let x, y, z ∈ X. We consider the following cases:

Case 1: x = y ̸= z. Then, (x ◦ z) ◦ (y ◦ z) = x ◦ y = x ◦ x = {x0 , x} ≪ {x0 , x} = x ◦ y.
Case 2: x = z ̸= y. Then, (x ◦ z) ◦ (y ◦ z) = {x0 , x} ◦ y = {x0 , x} ≪ x = x ◦ y.
Case 3: y = z ̸= x. Then, (x ◦ z) ◦ (y ◦ z) = x ◦ {x0 , x} = {x0 , x} ≪ x = x ◦ y.
Case 4: x = y = z. Then, (x ◦ z) ◦ (y ◦ z) = {x0 , x} ≪ {x0 , x} = x ◦ y.

(HC2): Let x ∈ X. Then x0 ◦ x = {x0}.
(HC3): Let x ∈ X. Then x ◦ x0 = {x}.
(HC4): Let x, y ∈ X. If x ≪ y and y ≪ x, then x0 ∈ x ◦ y and x0 ∈ y ◦ x and so

x = y. Now, we show that it is weak commutative. For x = y, the proof is clear. Let
x ̸= y. Then x ◦ (x ◦ y) = x ◦ x = {x0 , x} = y ◦ y = y ◦ (y ◦ x).
Therefore, (X, ◦, x0) is a weak commutative hyper BCC-algebra. �

Theorem 2.8. Let X and Y be two nonempty sets and |X| = |Y |. Then for x0 ∈ X
and y0 ∈ Y , there exists a binary hyperoperation ”◦” on X and Y , such that (X, ◦, x0)
and (Y, ◦, y0) are two isomorphic weak commutative hyper BCC-algebras.

Proof. Let x0 ∈ X and y0 ∈ Y . By Theorem 2.7, there exists a binary hyperoperation
” ◦ ” on X and Y , such that (X, ◦, x0) and (Y, ◦, y0) are weak commutative hyper
BCC-algebras. Now, since |X| = |Y |, then there exists a bijection ψ : X → Y . Let
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φ : X → Y is defined by φ(x) = ψ(x), for any x ∈ X and φ(x0) = y0 . It is easy to
see that φ is a bijection. Now, we show that φ is a homomorphism. Let x, y ∈ X. If
x ̸= y, then ψ(x) ̸= ψ(y) and so ψ(x) ◦ψ(y) = ψ(x). Now, if x = y, then ψ(x) = ψ(y)
and ψ(x) ◦ ψ(y) = {y0 , ψ(x)}. Hence,

φ(x ◦ y) = φ(x ◦ x) = {φ(x0), φ(x)} = {y0 , φ(x)}
= {y0 , ψ(x)} = ψ(x) ◦ ψ(x)
= ψ(x) ◦ ψ(y) = φ(x) ◦ φ(y)

Therefore, φ is a homomorphism and so it is an isomorphism. �

Theorem 2.9. Let (A, ∗A , 0A) and (B, ∗B , 0B ) be two BCC-algebras. Then there
exists a hyperoperation ” ◦ ” on A × B, such that (A × B, ◦, (0

A
, 0

B
)) is a hyper

BCC-algebra.

Proof. Let (A, ∗
A
, 0

A
) and (B, ∗

B
, 0

B
) be twoBCC-algebras. For any (x1 , y1), (x2 , y2) ∈

A×B, we define the binary hyperoperation ” ◦ ” on A×B as follows:

(x1 , y1) ◦ (x2 , y2) = {(x1 ∗A x2 , y1), (x1 ∗A x2 , y1 ∗B y2)}
and for (x, y), (z, w) ∈ A×B, we define

(x, y) ≪ (z, w) ⇐⇒ (0A , 0B ) ∈ (x, y) ◦ (z, w)
First, we show that the hyperoperation ” ◦ ” is well defined. Let (x

1
, y

1
) = (x′

1
, y′

1
)

and (x2 , y2) = (x′
2
, y′

2
). Then,

(x1 , y1) ◦ (x2 , y2) = {(x1 ∗A
x2 , y1), (x1 ∗A

x2 , y1 ∗B
y2)}

= {(x′
1
∗
A
x′

2
, y′

1
), (x′

1
∗
A
x′

2
, y′

1
∗

B
y′
2
)}

= (x′
1
, y′

1
) ◦ (x′

2
, y′

2
) (2.3)

Moreover, we show that for any (x, y), (z, w) ∈ A×B,

(x, y) ≪ (z, w) if and only if x ≤ z and y ≤ w (2.4)

For this, let (x, y) ≪ (z, w). Then by the hypotheses, (0
A
, 0

B
) ∈ (x, y) ◦ (z, w) =

{(x∗
A
z, y), (x∗

A
z, y∗

B
w)}, and so (0

A
, 0

B
) = (x∗

A
z, y) or (0

A
, 0

B
) = (x∗

A
z, y∗

B
w).

If (0
A
, 0

B
) = (x ∗

A
z, y), then x ≤ z and y = 0

B
≤ w. If (0

A
, 0

B
) = (x ∗

A
z, y ∗

B
w),

then x ≤ z and y ≤ w = 0. Therefore, for any cases, we have, x ≤ z and y ≤ w.
Conversely, let x ≤ z and y ≤ w. Then x ∗A z = 0A and y ∗B w = 0B . Hence
(0

A
, 0

B
) ∈ (x, y) ◦ (z, w). Therefore, (x, y) ≪ (z, w).

Now, we show that (A×B, ◦, (0A , 0B )) is a hyper BCC-algebra.
(HC1): Let (x1 , y1), (x2 , y2), (x3 , y3) ∈ A×B. Since, (A, ∗

A
) and (B, ∗

B
) are BCC-

algebras, then by (2.4),

((x1 , y1) ◦ (x2 , y2)) ◦ ((x3 , y3) ◦ (x2 , y2))

= {(x1 ∗A
x2 , y1), (x1 ∗A

x2 , y1 ∗B
y2)} ◦ {(x3 ∗A

x2 , y3), (x3 ∗A
x2 , y3 ∗B

y2)}
= {((x1 ∗A x2) ∗A (x3 ∗A x2), y1), ((x1 ∗A x2) ∗A (x3 ∗A x2), y1 ∗B y3),

((x1 ∗A x2) ∗A (x3 ∗A x2), y1 ∗B (y3 ∗B y2)),

((x1 ∗A x2) ∗A (x3 ∗A x2), y1 ∗B y2), ((x1 ∗A x2) ∗A (x3 ∗A x2), (y1 ∗B y2) ∗B (y3 ∗B y2))}
≪ {(x1 ∗A

x3 , y1), (x1 ∗A
x3 , y1 ∗B

y3)}
= (x1 , y1) ◦ (x3 , y3)

(HC2): Let (x, y) ∈ A×B. Then,

(0, 0) ◦ (x, y) = {(0 ∗ 0, 0), (0 ∗ 0, 0 ∗ y)} = {(0, 0)}
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(HC3): Let (x, y) ∈ A×B. Then,

(x, y) ◦ (0, 0) = {(x ∗ 0, y), (x ∗ 0, y ∗ 0)} = {(x, y)}

(HC4): Let (x, y), (z, w) ∈ A × B. If (x, y) ≪ (z, w) and (z, w) ≪ (x, y), then by

(2.4), we have x ≤ z, y ≤ w and z ≤ x,w ≤ y. Then x = z and w = y and so
(x, y) = (z, w).

Therefore, (A×B, ◦, (0
A
, 0

B
)) is a hyper BCC-algebra. �

Theorem 2.10. Let (A, ∗
A
, 0

A
) and (B, ∗

B
, 0

B
) be two BCC-algebras such that

(A, ∗
A
, 0

A
) is commutative. Then there exists a hyperoperation ” ◦ ” on A× B, such

that (A×B, ◦, (0
A
, 0

B
)) is a weak commutative hyper BCC-algebra.

Proof. Since, (A, ∗
A
, 0

A
) and (B, ∗

B
, 0

B
) are two BCC-algebras and (A, ∗

A
, 0

A
) is

commutative, then for any a, a′ ∈ A we have a∗(a∗a′) = a′∗(a′∗a). By Theorem 2.9,
(A×B, ◦, (0

A
, 0

B
)) is a hyper BCC-algebra. Now, we show that (A×B, ◦, (0

A
, 0

B
))

is a weak commutative hyper BCC-algebra. For any (x1 , y1), (x2 , y2) ∈ A×B, since
(A, ∗

A
, 0

A
) is commutative, then

(x1 , y1) ◦ ((x1 , y1) ◦ (x2 , y2)) = (x1 , y1) ◦ {(x1 ∗A
x2 , y1), (x1 ∗A

x2 , y1 ∗B
y2)}

= {(x1 ∗A (x1 ∗A x2), y1)), (x1 ∗A (x1 ∗A x2), 0B )

, (x1 ∗A
(x1 ∗A

x2), y1 ∗A
(y1 ∗A

y2))}.

Moreover,

(x2 , y2) ◦ ((x2 , y2) ◦ (x1 , y1)) = (x2 , y2) ◦ {(x2 ∗A
x1 , y2), (x2 ∗A

x1 , y2 ∗B
y1)}

= {(x2 ∗A (x2 ∗A x1), y2)), (x2 ∗A (x2 ∗A x1), 0B )

, (x2 ∗A
(x2 ∗A

x1), y2 ∗B
(y2 ∗B

y1))}.

Then,

(x1 , y1) ◦ ((x1 , y1) ◦ (x2 , y2)) ∩ (x2 , y2) ◦ ((x2 , y2) ◦ (x1 , y1)) ̸= ∅.
Therefore, (A×B, ◦, (0A , 0B )) is a weak commutative hyper BCC-algebra. �

3. Fundamental BCC-algebras

In this section, we define the notion of fundamental relation (strongly regular equiv-
alence relation) on (weak commutative) hyper BCC-algebras, we define the concept
of fundamental BCC-algebra and we prove that any countable BCC-algebra is a
fundamental BCC-algebra.

Definition 3.1. Let (X, ◦) be a hyper BCC-algebra and R be an equivalence relation
on X. If A and B are nonempty subsets of X, then
(i) ARB means that for all a ∈ A, there exists b ∈ B such that aRb and for all b′ ∈ B,
there exists a′ ∈ A such that b′Ra′.
(ii) ARB means that for all a ∈ A, and b ∈ B, we have aRb.
(iii) R is called regular on the right (on the left) if for all x of X, from aRb, it follows
that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively).
(iv) R is called strongly regular on the right (on the left) if for all x of X, from aRb,

it follows that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively).
(v) R is called regular (strongly regular) if it is regular (strongly regular) on the right
and on the left. (vi) R is called good, if (a ◦ b)R0 and (b ◦ a)R0 imply aRb, for all
a, b ∈ X.
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Let (X, ◦) be a hyper BCC-algebra and A a subset of X. Then we let L(A), denote
the set of all finite combinations of elements A with ◦. Now, in the following, the
well-known idea of β∗ relation on hyperstructure [5, 15, 16] is transferred and applied
to hyper BCC-algebras.

Definition 3.2. Let (X, ◦) be a hyper BCC-algebra. Then we set:

β1 = {(x, x) | x ∈ X}
and, for every integer n ≥ 1, βn is the relation defined as follows:

xβny ⇐⇒ ∃(a1, a2, . . . , an) ∈ Xn, ∃u ∈ L(a1, a2, . . . , an) such that {x, y} ⊆ u.

Obviously, for every n ≥ 1, the relations βn are symmetric and the relation β =
∪
n≥1

βn

is reflexive and symmetric. Let β∗ be the transitive closure of β. Then in the
following theorem we show that β∗ is a strongly regular relation.

Theorem 3.1. Let (X, ◦) be a hyper BCC-algebra. Then β∗ is a strongly regular
relation on X.

Proof. Let x, y ∈ X and xβ∗y. Then there exist a0, a1, . . . , an ∈ X such that a0 =
x, an = y and there exist βq1 , βq2 , . . . , βqn ∈ N such that x = a0βq1a1βq2a2 . . . an−2βqn−1

an−1βqnan = y, where n ∈ N. Since for any 1 ≤ i ≤ n, ai−1βqiai, then there exist

zjt ∈ X such that {ai, ai+1} ⊆
qi+1∏
t=1

zi+1
t , where for 1 ≤ m ≤ n− 1, we have 1 ≤ t ≤ qm

and 1 ≤ j ≤ n− 1. Now, let s ∈ X. Then for all 0 ≤ i ≤ n− 1, ai ◦ s ⊆
qi+1∏
t=1

zi+1
t ◦ s =

zi+1
1 ◦zi+1

2 ◦ . . .◦zi+1
qi+1

◦s and similarly ai+1◦s ⊆
qi+1∏
t=1

zi+1
t ◦s = zi+1

1 ◦zi+1
2 ◦ . . .◦zi+1

qi+1
◦s.

Then for all 0 ≤ i ≤ n and for all u ∈ ai ◦ s, v ∈ ai+1 ◦ s we have uβqi+1v, and so for
all z ∈ a0 ◦ s = x ◦ s, w ∈ an ◦ s = y ◦ s we have zβ∗w. Then β∗ is a right strongly
regular and similarly is a left strongly regular relation. Therefore, β∗ is a strongly
regular relation. �
Theorem 3.2. Let (X, ◦) be a weak commutative hyper BCC-algebra. Then, β∗ is
a good strongly regular relation on X.

Proof. Since, (X, ◦) is a hyper BCC-algebra, then by Theorem 3.1, β∗ is a strongly
regular relation on X. Now, we show that β∗ is good. Let 0β∗(a ◦ b) and 0β∗(b ◦ a).
Since, β∗ is strongly regular relation, then (a◦0)β∗(a◦(a◦b)) and similarly (b◦0)β∗(b◦
(b ◦ a)). Since (X, ◦) is a weak commutative hyper BCC-algebra, then there exists

t ∈ (a◦(a◦b))
∩
(b◦(b◦a)). Now, by Theorem 1.2, we have, a ∈ (a◦0)β∗(a◦(a◦b)), b ∈

(b ◦ 0)β∗(b ◦ (a ◦ b)) and there exists, t ∈ (a ◦ (a ◦ b))
∩
(b ◦ (b ◦ a)). Now, since β∗

is strongly regular, then by Definition 3.1, aβ∗tβ∗b and since β∗ is transitive, then
aβ∗b. Therefore, β∗ is a good strongly regular relation on X. �

Now, we define the product ”◦” on X
β∗ in the usual manner:

β∗(x)◦β∗(y) = {β∗(z) | z ∈ x◦y}
for all x, y ∈ X.

Theorem 3.3. Let (X, ◦) be a weak commutative hyper BCC-algebra. Then, ( X
β∗ , ◦)

is a BCC-algebra.
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Proof. By Theorem 3.1, β∗ is a strongly regular equivalence relation. Then for any
x, y ∈ X,β∗(x)◦β∗(y) is singleton and so,

β∗(x)◦β∗(y) = β∗(z)

for all z ∈ β∗(x)◦β∗(y). First, we show that ( X
β∗ , ◦) satisfies in the conditions (C-1),

(C-2), (C-3) and (C-4).
(C-1): Let x, y, z ∈ X. Then ((β∗(x)◦β∗(y)))◦((β∗(x)◦β∗(z))) = β∗(r)◦β∗(s) =

β∗(t), for all t ∈ r ◦ s, r ∈ x ◦ y and s ∈ x ◦ z. Then for all t ∈ r ◦ s ⊆ ((x ◦ y) ◦ (x ◦ z)),
we have ((β∗(x)◦β∗(y)))◦((β∗(x)◦β∗(z))) = β∗(t). Since (X, ◦) is a hyper BCC-
algebra, then by (H1), (x ◦ y) ◦ (x ◦ z) ≪ z ◦ y, and so for all t ∈ (x ◦ y) ◦ (x ◦ z), there
exist m ∈ z ◦ y such that t ≪ m, and so 0 ∈ t ◦m. Now, since t ∈ r ◦ s, r ∈ x ◦ y,
s ∈ x ◦ z, m ∈ z ◦ y and 0 ∈ t ◦m, then by the definition, we have,

β∗(0) = β∗(t)◦β∗(m) = (((β∗(x)◦β∗(y)))◦((β∗(x)◦β∗(z)))◦(β∗(z)◦β∗(y)).

Therefore,

(((β∗(x)◦β∗(y)))◦((β∗(x)◦β∗(z)))◦(β∗(z)◦β∗(y)) = β∗(0).

(C-2): Let x ∈ X. Then β∗(x)◦β∗(0) = β∗(t), for all t ∈ x ◦ 0. By Definition 1.5,

x ◦ 0 = {x}, then β∗(x)◦β∗(0) = β∗(x).
(C-3): Let x ∈ X. Then, β∗(x)◦β∗(x) = β∗(t), for all t ∈ x ◦ x. By Theorem 1.2,

0 ∈ x ◦ x, then β∗(t) = β∗(0) and so β∗(x)◦β∗(x) = β∗(0).
(C-4): Let x ∈ X. Then, β∗(0)◦β∗(x) = β∗(t), for all t ∈ 0 ◦ x. By Theorem 1.2,

0 ∈ 0 ◦ x, then β∗(t) = β∗(0) and so β∗(0)◦β∗(x) = β∗(0).
Secondly, we use the concept of weak commutative hyper BCC-algebra and prove the
property (C-5).

(C-5): Let x, y ∈ X. If β∗(x)◦β∗(y) = β∗(0) and β∗(y)◦β∗(x) = β∗(0), then

respectively we have (x◦y)β∗0 and (y◦x)β∗0. Now, since (X, ◦) is a weak commutative
hyper BCC-algebra, by Theorem 3.2, β∗ is good, then β∗(x) = β∗(y). Therefore,
( X
β∗ , ◦) is a BCC-algebra. �

Remark 3.1. We consider the hyper BCC-algebra (X, ◦) that is defined in Ex-
ample 2.1. Clearly β∗(0) = {0, c}, β∗(a) = {a}, β∗(b) = {b} and for any x ∈
X,β∗(0)◦β∗(x) = β∗(0). Now, β∗(a)◦β∗(c) = β∗(0) and β∗(c)◦β∗(a) = β∗(0), but
β∗(a) ̸= β∗(c).
If (X, ◦, 0) is a hyper BCC-algebra, then for the strongly regular β∗, structure X

β∗

necessarily does not satisfy in the condition (C-5). For this, we need if β∗(x)◦β∗(y) =
β∗(0) and β∗(y)◦β∗(x) = β∗(0), then 0β∗(x◦y) and 0β∗(y ◦x), and so β∗(x) = β∗(y).
Therefore, must be for any x, y ∈ X, (x ◦ (x ◦ y))

∩
(y ◦ (y ◦ x)) ̸= ∅.

Theorem 3.4. Let (X, ◦) be a weak commutative hyper BCC-algebra. Then β∗ is the
smallest strongly regular equivalence relation on X, such that X

β∗ is a BCC-algebra.

Proof. By Theorem 3.1, β∗ is a strongly regular equivalence relation on X and so X
β∗

is a BCC-algebra. Now, we show that it is the smallest. Let R be a strongly regular
equivalence relation on X, such that X

R is a BCC-algebra. By induction, we prove
that for all n ∈ N, βn ⊆ R. Since R is an equivalence relation, then β1 ⊆ R. Let
for all k < n, βk ⊆ R, then we show that βn ⊆ R. For x, y ∈ X, if xβny, then there

exist a1, a2, . . . , an ∈ X, such that {x, y} ⊆
n∏

i=1

ai =
k−1∏
i=1

ai ◦
n∏

i=k+1

ai. Then there exist
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{u, u′} ⊆
k−1∏
i=1

ai and {v, v′} ⊆
n∏

i=k+1

ai, such that x ∈ u ◦ v and y ∈ u′ ◦ v′. Moreover,

uβku
′ and vβk+1v

′. Now, since k < n and n− k < n, then by induction hypotheses,

uRu′ and vRv′. But R is strongly regular then u ◦ vRu′ ◦ v′, and then xRy. Hence,

for all n ≥ 1, βn ⊆ R and so β =
∪
n≥1

βn ⊆ R. By Theorem 3.1, β∗ = β and since

R is transitive, then β∗ = β ⊆ R = R. Therefore, β∗ is the smallest strongly regular
equivalence relation on X, such that X

β∗ is a BCC-algebra. �

Lemma 3.5. Let (A, ◦
A
) and (B, ◦

B
) be two hyper BCC-algebras. Then for any

(a, c) ∈ A2, (b, d) ∈ B2, (a, b)β∗
A×B

(c, d) if and only if aβ∗
A
c and bβ∗

B
d.

Proof. We know that,

L(A) = {u | u = x1 ◦A x2 ◦A . . . ◦A xn , (x1 , x2 , . . . , xn) ∈ An, n ∈ N} (3.1)

Now, let (a, c) ∈ A2 and (b, d) ∈ B2. Then aβ∗
A
c and bβ∗

B
d if and only if there

exist u ∈ L(A) and v ∈ L(B) such that {a, c} ⊆ u and {b, d} ⊆ v, if and only if
{(a, b), (c, d)} ⊆ u× v if and only if (a, c)β∗

A×B
(b, d). Then the proof is complete. �

Lemma 3.6. Let (A, ◦A , 0A ,≪A) and (B, ◦B , 0B ,≪A) be two hyper BCC-algebras.
Then there exists a binary hyperoperation ”◦” on A×B such that (A×B, ◦

A×B
, (0

A
, 0

B
),

≪) is a hyper BCC-algebra.

Proof. For two hyper BCC-algebras (A, ◦A , 0A ,≪A) and (B, ◦B , 0B ,≪A), we define
the hyperoperation ” ◦ ” as follows:

(a1 , b1) ◦ (a′1 , b
′
1
) = {(a, b) | a ∈ a1 ◦A a

′
1
, b ∈ b1 ◦B b

′
1
}

for any (a1 , a
′
1
) ∈ A2 and (b1 , b

′
1
) ∈ B2. First we show that is well-defined. For any

((a1 , b1), (a2 , b2)) ∈ A × B, have ((a1 , b1), (a2 , b2)) = ((a′
1
, b′

1
), (a′

2
, b′

2
)) if and only if

a1 = a′
1
, a2 = a′

2
and b1 = b′

1
, b2 = b′

2
, if and only if {(a, b) | a ∈ a1◦A

a′
1
, b ∈ b1◦B

b′
1
} =

{(a, b) | a ∈ a2 ◦A
a′

2
, b ∈ b2 ◦B

b′
2
} if and only if (a1 , b1) ◦ (a′1 , b

′
1
) = (a2 , b2) ◦ (a′2 , b

′
2
).

Now, we define, (a, b) ≪ (c, d) if and only if (0
A
, 0

B
) ∈ (a, b) ◦

A×B
(c, d). Clearly

(a, b) ≪ (c, d) if and only if 0
A
∈ a ◦

A
c and 0

B
∈ b ◦

B
d if and only if a ≪

A
c and

b≪
B
d, for all (a, b), (c, d) ∈ A×B. Then,

(a, b) ≪ (c, d) ⇐⇒ a≪
A
c and b≪

B
d (3.2)

Now, since (A, ◦A) and (B, ◦B ) are two hyper BCC-algebras, then by (3.2), clearly
(A×B, ◦

A×B
, (0

A
, 0

B
),≪) is a hyper BCC-algebra. �

Theorem 3.7. Let (A, ◦
A
) and (B, ◦

B
) be two hyper BCC-algebras. Then,

(A×B, ◦A×B)

β∗
A×B

∼=
(A, ◦A)
β∗

A

× (B, ◦B)
β∗

B

.

Proof. Let

φ : (
A×B

β∗
A×B

, ◦) −→ (
A

β∗
A

× B

β∗
B

, ◦)

be defined by φ(β∗
A×B(a, b)) = (β∗

A(a), β
∗
B(b)). First, we show that φ is well defined

and one to one. By Lemma 3.5, β∗
A×B(a1 , b1) = β∗

A×B(a2 , b2) if and only if β∗
A
(a1) =
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β∗
A
(a2) and β

∗
B
(b1) = β∗

B
(b2) if and only if φ(β∗

A×B(a1 , b1)) = φ(β∗
A×B(a2 , b2)). Now,

we show that φ is a homomorphism. By Lemma 3.6,

φ(β∗
A×B(a1 , b1)◦(β∗

A×B(a2 , b2)) = φ(β∗
A×B(c, d))

= (β∗
A(c), β

∗
B(d))

= (β∗
A(a1), β

∗
B(b1))◦(β∗

A(a2), β
∗
B(b2))

= φ(β∗
A×B(a1 , b1))◦φ(β∗

A×B(a2 , b2)) (3.3)

for any c ∈ β∗
A(a1)◦β∗

A(a2) and d ∈ β∗
B(b1)◦β∗

B(b2). Clearly φ is a bijection. Therefore,
φ is an isomorphism. �

Corollary 3.8. Let (Xi , ◦i) be a hyper BCC-algebra and β∗
i be a fundamental relation

on Xi, for any i = 1, 2, . . . , n. Then,

X1 ×X2 × . . .×Xn

β∗
X1×X2×...×Xn

∼=
X1

β∗
1

× X2

β∗
2

× . . .× Xn

β∗
n

.

Proof. By Theorem 3.7, the proof is clear. �

Theorem 3.9. Let X and Y be two nonempty sets and |X| = |Y |. Then there exists

a binary hyperoperation ” ◦ ” on X and Y , such that ( (X,◦)
β∗ , ◦) ∼= ( (Y,◦)β∗ , ◦).

Proof. By Theorem 2.8, for x0 ∈ X and y0 ∈ Y , there exist a binary hyperoperation
” ◦ ” and an isomorphism f : (X, ◦, x0) −→ (Y, ◦, y0), such that f(x0) = y0 . Now,
we show that β∗(x0) = X and for any x0 ̸= x ∈ X, β∗(x) = β∗(x0). Let u =
n∏

i=1

ai ∈ L(X). If a1 = a2 , then u = {x0 , a1}
∪ n∏

i=3

ai. In this case, since for any

x ∈ X, {x0 , x} ◦ x = {x0 , x}, then u = {x0 , a1}. Since a1 is arbitrary then for any

x ∈ X,β∗(x) = β∗(x
0
). Now, if a

1
̸= a

2
, then u =

n∏
i=1

ai = a
1
and so |u| = 1. Hence

in X, β∗(x0) = X and for any x, y ∈ X, we have β∗(x) = β∗(y). By the similar way,
for weak commutative hyper BCC-algebra (Y, ◦, y0), we have β

∗(y0) = Y and for any

x, y ∈ Y , we have β∗(x) = β∗(y). Now, we define φ : (
(X,◦,x0 )

β∗ , ◦) → (
(Y,◦,y0 )

β∗ , ◦)
by φ(β∗(x)) = β∗(f(x)). First, we show that φ is well-defined and one to one. Let
x, y ∈ X. Since for any x, y,∈ X,β∗(x) = β∗(y), and for any x′, y′ ∈ Y, β∗(x′) =
β∗(y′), then φ(β∗(x)) = φ(β∗(y)) if and only if β∗(f(x)) = β∗(f(y)). Therefore, φ is
well-defined and one to one. Since f is onto then φ is onto. Now, we show that φ is
a homomorphism. Let x, y ∈ X. Since for any x, y,∈ X,β∗(x) = β∗(y) and for any
x′, y′ ∈ Y, β∗(x′) = β∗(y′), then

φ(β∗(x)◦β∗(y)) = φ(β∗(x)◦β∗(x))

= φ(β∗(x0)) = β∗(f(x0)) = β∗(y0)

= β∗(f(x)◦f(x)) = β∗(f(x))◦β∗(f(x))

= β∗(f(x))◦β∗(f(y)) = φ(β∗(x))◦φ(β∗(y)) (3.4)

Hence, φ is a homomorphism and so it is an isomorphism. Therefore, ( (X,◦)
β∗ , ◦) ∼=

( (Y,◦)β∗ , ◦). �

Definition 3.3. A BCC-algebra (X, ∗), is called a fundamental BCC-algebra, if
there exists a nontrivial weak commutative hyper BCC-algebra (H, ◦), such that

( (H,◦)
β∗ , ◦) ∼= (X, ∗).
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Theorem 3.10. Every commutative BCC-algebra is a fundamental BCC-algebra.

Proof. Let (A, ∗A , 0A) be a commutative BCC-algebra. Then by Theorem 2.10, for
any BCC-algebra (B, ∗

B
, 0

B
), (A × B, ◦, (0

A
, 0

B
),≪) is a weak commutative hyper

BCC-algebra. First, we show that for any (a, b) ∈ A×B, β∗(a, b) = {(a, x) | x ∈ B}.

For this, let u =

n∏
i=1

(ai, bi) ∈ L(A×B), where (ai, bi) ∈ A×B. We have

u = ((
n∏

i=1

ai,
n∏

i=1

bi))
∪

(
n∏

i=1

ai, bi) = {(
n∏

i=1

ai, t) | (ai, t) ∈ A×B}

Then for any product u in L(A×B), u = {(a, bi) | a ∈ A is fixed and bi ∈ B}. Hence,
for any (a, b), (c, d) ∈ A × B, (a, b)β∗(c, d) if and only if a = c. Now, we define the
map

φ : (
(A×B, ◦, (0A , 0B ))

β∗ , ◦) −→ (A, ∗A , 0A)

by φ(β∗(a, b)) = a. It is clear that β∗((a, b)) = β∗((a′, b′)) if and only if a = a′ if and
only if φ(β∗(a, b)) = φ(β∗(a′, b′)). Then, φ is well defined and one to one. Now, we
show that φ is a homomorphism. For this we have,

φ(β∗(a, b)◦(β∗(a′, b′))) = φ(β∗(a ∗
A
a′, b)) = a ∗

A
a′ = φ(β∗(a, b)) ∗

A
φ(β∗(a′, b′))

Clearly φ is onto. Therefore, φ is a homomorphism and so it is an isomorphism. �

Corollary 3.11. Every nonempty set can be a fundamental BCC-algebra.

Proof. By Theorem 2.6, there exists a binary operation ” ∗ ”, such that (X, ∗, 0) is
a commutative BCC-algebra and so by Theorem 3.10, (X, ∗, 0) is a fundamental
BCC-algebra. �

Theorem 3.12. Let (X, ∗, 0) be any finite BCC-algebra. Then for any hyperoperation
” ◦ ” on X, such that (X, ◦, 0) is a weak commutative hyper BCC-algebra, there is

not any isomorphic between (X, ∗) and ( (X,◦)
β∗ , ◦), that is (X, ◦, 0) � ( (X,◦,0)

β∗ , ◦).

Proof. Let (X, ∗, 0) be a finite BCC-algebra, |X| = n and ” ◦ ” be a hyperoperation
on X, such that (X, ◦, 0) be a weak commutative hyper BCC-algebra. Then there
exist x, y ∈ X such that |x ◦ y| ≥ 2. Hence, there are m,n ∈ x ◦ y such that
β∗(m) = β∗(n). Since X

β∗ = {β∗(x) | x ∈ X}, then, | Xβ∗ | < n = |X|. Therefore,

( (X,◦,0)
β∗ , ◦) � (X, ∗, 0). �

Now, in what follows we try to show that for any infinite countable set X, there
exist an operation ” ∗ ” and a hyperoperation ” ◦ ” on X, such that (X, ∗) is a BCC-
algebra and (X, ◦) is a weak commutative hyper BCC-algebra and (X,◦)

β∗
∼= (X, ∗).

Theorem 3.13. Let X be an infinite countable set. Then there exist an operation

” ∗ ” and a hyperoperation ” ◦ ” on X, such that ( (X,◦,0)
β∗ , ◦) ∼= (X, ∗, 0). That is X is

a fundamental BCC-algebra of itself.

Proof. By Theorem 2.2, there exist a binary relation ” ≤ ” on X and x
0
∈ X such

that (X,≤, x0) is well-ordered. Moreover, by Theorem 2.5, there exists a binary
operation ” ∗ ” on X and W, such that (X, ∗, x0) and (W, ∗, 0) are BCC-algebras and
(X, ∗, x0)

∼= (W, ∗, 0). Let ψ : (W, ∗, 0) → (X, ∗, x0) be an isomorphism. Since ”ψ”
is a monotone and for any 0 ̸= x ∈ W, 1 ≤ x, then for any x ∈ X, ψ(1) ≤ ψ(x).
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Let a = ψ(1), then for any x0 ̸= x, a ≤ x. Now, for any x, y ∈ X, define a binary
hyperoperation ” ◦ ” on X, as follows,

x ◦ y =


x0 , if x = x0

{x0 , a} , if x = y and x ̸= x0

x , otherwise

Clearly ” ◦ ” is well-defined. Now, we define, x ≪ y if and only if x0 ∈ x ◦ y. Since,
x0 ∈ x ◦ y if and only if x = y or x = x0 , if and only if x ≤ y, Then for any x, y ∈ X,

x≪ y if and only if x ≤ y (3.5)

Hence, for any x ∈ X, x0 ≪ x, x ≪ x. In the follow, we show that (X, ◦, x0) is a
hyper BCC-algebra.

(HC1): Let x, y, z ∈ X. We consider the following cases:

Case 1: x = x0 . Then for any y, z ∈ X, (x◦z)◦(y◦z) = x0 ◦(y◦z) = x0 ≪ x0 = x◦y.
Case 2: x = y ̸= z. Then, (x ◦ z) ◦ (y ◦ z) = x ◦ y = x0 ≪ x0 = x ◦ y.
Case 3: x = z ̸= y. Then, (x ◦ z) ◦ (y ◦ z) = x0 ◦ y = x0 ≪ x = x ◦ y.
Case 4: y = z ̸= x. Then, (x ◦ z) ◦ (y ◦ z) = x ◦ x0 = x≪ x = x ◦ y.
Case 5: x = y = z. Then, (x ◦ z) ◦ (y ◦ z) = x0 ◦ x0 = x0 ≪ x0 = x ◦ y.

(HC2): Let x ∈ X. Then by hypotheses x0 ◦ x = {x0}.
(HC3): Let x ∈ X. Then by hypotheses x ◦ x0 = {x}.
(HC4): Let x, y ∈ X. If x ≪ y and y ≪ x, then x ≤ y and y ≤ x and so by, (3.5)

x = y. Therefore, (X, ◦, x0) is a hyper BCC-algebra.
Now, we show that (X, ◦, x0) is a weak commutative hyper BCC-algebra. Let

x, y ∈ X. If x = y, then clearly x ◦ (x ◦ y) = y ◦ (y ◦ x). If x = x0 and y ̸=
x, then x ◦ (x ◦ y) = x0 ◦ x0 = x0 . Moreover, y ◦ (y ◦ x) = y ◦ y = x0 . Then,
(x ◦ (x ◦ y))

∩
(y ◦ (y ◦x)) ̸= ∅. If x ̸= x0 , and y = x, then x ◦ (x ◦ y) = x ◦ {x0 , a} = x.

Moreover, y ◦ (y ◦x) = y ◦{x0 , a} = y. Then, (x◦ (x◦ y))
∩
(y ◦ (y ◦x)) ̸= ∅. If x ̸= x0 ,

and y ̸= x, then x ◦ (x ◦ y) = x ◦ x = {x0 , a}. Moreover, y ◦ (y ◦ x) = y ◦ y = {x0 , a}.
Then, (x◦(x◦y))

∩
(y◦(y◦x)) ̸= ∅. Therefore, (X, ◦, x0) is a weak commutative hyper

BCC-algebra. Clearly, β∗(x0) = {x0 , a} and for any x ̸∈ β∗(x0), β
∗(x) = {x}. Hence,

we define the map θ : (
(X,◦,x0 )

β∗ , ◦) −→ (X \ {a}, ∗, x0) by, θ(β
∗(x0)) = θ(β∗(a)) = x0

and for any x ̸∈ β∗(x0), θ(β
∗(x)) = x. Since, θ(β∗(x0)) = θ(β∗(a)) = x0 and for any

x ̸∈ β∗(x0), |β∗(x0)| = 1, then, θ(β∗(x)) = θ(β∗(y)) if and only if x = y. Hence, θ, is
well defined and one to one. Moreover, θ(β∗(a)) = x0 and for any x ∈ X \ {a}, since
x ̸= a and θ(β∗(x)) = x, then θ is onto. Now, we show that θ is a homomorphism. If
x ∈ β∗(x0), then for any y ∈ X

θ(β∗(x)◦β∗(y)) = θ(β∗(x0)) = x0 = x0 ∗ y = θ(β∗(x)) ∗ θ(β∗(y))

If x ̸∈ β∗(x0) and x = y, then

θ(β∗(x)◦β∗(y)) = θ(β∗(x)◦β∗(x)) = θ(β∗(x0)) = x0 = x ∗ x = θ(β∗(x)) ∗ θ(β∗(y))

If x ̸= y, then

θ(β∗(x)◦β∗(y)) = θ(β∗(x)) = x = x ∗ y = θ(β∗(x)) ∗ θ(β∗(y))

Hence, θ is a homomorphism and so it is an isomorphism. Moreover, since X is
an infinite countable set and |X \ {a}| = |X|, for a ∈ X. Then by Theorem 2.5,
(X \ {a}, ∗, 0) ∼= (W, ∗, 0) ∼= (X, ∗, 0). Therefore, there exist a binary operation ” ∗ ”
and hyperoperation ” ◦ ” on X, such that (X, ∗, x0)

∼= (
(X,◦,x

0
)

β∗ , ◦). �
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4. Conclusions and further research

In this paper we proved that for any nonempty set X we can construct a BCC-
algebra and a hyper BCC-algebra on X. Moreover, we shown that for any infinite
countable BCC-algebra X, then X is as a fundamental BCC-algebra of itself. Now,
in the further research, we should investigate that if X is an infinite non-countable
BCC-algebra, then is it X as a fundamental BCC-algebra of itself?
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