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Co–Stone residuated lattices

Claudia Mureşan

Abstract. In this paper we present some applications of the reticulation of a residuated lattice, in

the form of a transfer of properties between the category of bounded distributive lattices and that
of residuated lattices through the reticulation functor. The results we are presenting are related to
co–Stone algebras; among other applications, we transfer a known characterization of m–co–Stone
bounded distributive lattices to residuated lattices and we prove that the reticulation functor for

residuated lattices preserves a certain construction, that we conjecture to be the strongly co–Stone
hull.
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1. Introduction

In [21] we gave an axiomatic purely algebraic definition for the reticulation of a resid-
uated lattice, which turned out to be very useful in practice. In this work we present
several applications of the reticulation, related to co–Stone algebras, applications in the
form of transfers of properties between the category of bounded distributive lattices and
the category of residuated lattices through the reticulation functor.

We have introduced the co–Stone structures as duals of Stone structures. In Section
2 we introduce their definition and we recall other definitions and results that the reader
might find necessary for understanding the results in the next sections.

Sections 3 and 4 are entirely made of original results.
In Section 3 we prove the fact that a residuated lattice is co–Stone iff its reticulation is

co–Stone and the same is valid for strongly co–Stone structures, then we obtain a struc-
ture theorem for m–co–Stone residuated lattices, by transferring through the reticulation
a known characterization of m–co–Stone bounded distributive lattices to residuated lat-
tices. This is the first major example of a result that can be transferred through the
reticulation functor from the category of bounded distributive lattices to the category of
residuated lattices. It also permits us to state that a residuated lattice is m–co–Stone
iff its reticulation is m–co–Stone. We then bring an argument for our choice of the def-
inition of the co–Stone structures over another definition for them that can be found in
mathematical litterature, for instance in [6]: the fact that the notion with our definition
is transferrable through the reticulation (while the alternate one is not and does not
coincide with ours).

In Section 4, we give a construction that we conjecture to be the strongly co–Stone
hull of a residuated lattice, show that this construction is preserved by the reticulation
functor and exemplify its calculation for a finite residuated lattice.
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In future papers we will continue our research on the transfer of properties between
the category of bounded distributive lattices and that of residuated lattices through the
reticulation functor. This transfer of properties between different categories is the very
purpose of the reticulation.

2. Preliminaries

We make the usual convention: throughout this paper, every algebraic structure will
be designated by its support set, whenever it is clear which algebraic structure on that
set we are referring to.

Definition 2.1. A residuated lattice is an algebraic structure (A,∨,∧,⊙,→, 0, 1), where
∨,∧,⊙,→ are binary operations on A and 0, 1 ∈ A, such that (A,∨,∧, 0, 1) is a bounded
lattice, whose partial order will be denoted ≤, (A,⊙, 1) is a commutative monoid and the
following property, called the law of residuation, is satisfied: for all a, b, c ∈ A, a ≤ b→ c
iff a⊙ b ≤ c.

Here are some examples of residuated lattices that we will use in the sequel, for illus-
trating various properties and various classes of residuated lattices. I have chosen some
examples from previous works by other authors, and one example of my own (Example
2.2).

Example 2.1. [14, Section 11.1], [16] A = {0, a, b, c, 1}, with the bounded lattice struc-
ture given by the Hasse diagram below and the operations that succeed it, is a residuated
lattice.

@
@

�
�

�
�

@
@rr rrr

0

a b

c

1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

and ⊙ = ∧.

Example 2.2. A = {0, a, b, c, 1}, with the lattice structure and the operations presented
below, is a residuated lattice:

0
rr a@

@
�
�

rb r c�
�

@
@
r1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

and ⊙ = ∧.
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Example 2.3. [14], [16] A = {0, a, b, c, d, 1}, with the structure described below, is a
residuated lattice.
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ra r b
rc r d
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@
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@

@
@

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

Example 2.4. [14], [16] A = {0, a, b, c, d, e, f, g, 1}, with the following structure, is a
residuated lattice:
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r1

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a g 1 1 g 1 1 g 1 1
b f g 1 f g 1 f g 1
c e e e 1 1 1 1 1 1
d d e e g 1 1 g 1 1
e c d e f g 1 f g 1
f b b b e e e 1 1 1
g a b b d e e g 1 1
1 0 a b c d e f g 1

⊙ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a
b 0 a b 0 a b 0 a b
c 0 0 0 0 0 0 c c c
d 0 0 a 0 0 a c c d
e 0 a b 0 a b c d e
f 0 0 0 c c c f f f
g 0 0 a c c d f f g
1 0 a b c d e f g 1

Example 2.5. [15, Section 15.2.1], [16] Let A = {0, n, a, b, i, f, g, h, j, c, d, 1}, described
below. A is a residuated lattice.



CO–STONE RESIDUATED LATTICES 55
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a b

c d

1

→ 0 n a b i f g h j c d 1
0 1 1 1 1 1 1 1 1 1 1 1 1
n 0 1 1 1 1 1 1 1 1 1 1 1
a 0 d 1 d 1 1 1 1 1 1 1 1
b 0 c c 1 1 1 1 1 1 1 1 1
i 0 j c d 1 1 1 1 1 1 1 1
f 0 h h h h 1 1 1 1 1 1 1
g 0 g g g g h 1 1 1 1 1 1
h 0 f f f f h h 1 1 1 1 1
j 0 i i i i f g h 1 1 1 1
c 0 b i b i f g h d 1 d 1
d 0 a a i i f g h c c 1 1
1 0 n a b i f g h j c d 1

⊙ 0 n a b i f g h j c d 1
0 0 0 0 0 0 0 0 0 0 0 0 0
n 0 n n n n n n n n n n n
a 0 n n n n n n n n a n a
b 0 n n n n n n n n n b b
i 0 n n n n n n n n a b i
f 0 n n n n n n n f f f f
g 0 n n n n n n f g g g g
h 0 n n n n n f f h h h h
j 0 n n n n f g h j j j j
c 0 n a n a f g h j c j c
d 0 n n b b f g h j j d d
1 0 n a b i f g h j c d 1

Example 2.6. [17] A = {0, a, b, c, d, 1}, with the following Hasse diagram and operations
⊙ and ∧, is a residuated lattice.

0
rr rr
rr
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@
b

c

d

a

1

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b c c 1
b c a 1 c c 1
c b a b 1 a 1
d b a b a 1 1
1 0 a b c d 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a b d d a
b c b b 0 0 b
c b d 0 d d c
d b d 0 d d d
1 0 a b c d 1
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Remark 2.1. The lattice reduct of the residuated lattice in the previous example has
the pentagon as a sublattice, thus it is not distributive. This shows that the lattice reduct
of a residuated lattice is not necessarily distributive.

It is easily seen that, for any residuated lattice A and any a, b ∈ A, a → b = sup{x ∈
A | a⊙ x ≤ b} = max{x ∈ A | a⊙ x ≤ b} (see also [10], [13], [16], [17], [24]).

For any residuated lattice A and any a, b ∈ A, we denote a ↔ b = (a → b) ∧ (b → a)
and ¬ a = a→ 0.

Let A be a residuated lattice, a ∈ A and n ∈ N∗, arbitrary. We shall denote by an the
following element of A: a⊙ . . .⊙ a︸ ︷︷ ︸

n of a

. We also denote a0 = 1.

Lemma 2.2. [10], [13], [17], [24], [26] Let A be a residuated lattice and a, b, c ∈ A. Then:
(i) a⊙ b ≤ a ∧ b and, if a ∨ b = 1, then a⊙ b = a ∧ b;
(ii) (a ∨ b) ⊙ (a ∨ c) ≤ a ∨ (b ⊙ c), hence (a ∨ c) ⊙ (b ∨ c) ≤ (a ⊙ b) ∨ c and, for any

n, k ∈ N∗, (a ∨ b)nk ≤ an ∨ bk;
(iii) a ≤ b iff a→ b = 1, and a = b iff a↔ b = 1.

Definition 2.2. Let L be a distributive lattice with 0. An element l of L is said to be
pseudocomplemented iff there exists a greatest element m of L which satisfies: l∧m = 0;
such an element m is denoted l∗ and called the pseudocomplement of l. L is said to be
pseudocomplemented iff all its elements are pseudocomplemented.

The notation in the previous definition is correct, because, for l a pseudocomplemented
element of a distributive lattice L with 0, l∗ = max{m ∈ L | l ∧m = 0}, thus l∗ ∈ L is
uniquely determined by l.

Remark 2.3. Let L be a bounded distributive lattice and l be a complemented element of
L, with l its complement. Then l is pseudocomplemented and l∗ = l. This is immediately
shown by the definitions of l∗ and l and by the fact that they are uniquely determined
by l.

Definition 2.3. Let L be a lattice. A nonempty subset F of L is called a filter of L iff
it satisfies the following conditions:
(i) for all l,m ∈ F , l ∧m ∈ F ;
(ii) for all l ∈ F and all m ∈ L, if l ≤ m then m ∈ F .

The set of all filters of L is denoted F(L).
A filter F of L is said to be proper iff F ̸= L.
A proper filter P of L is called a prime filter iff, for all l,m ∈ L, if l ∨m ∈ P , then

l ∈ P or m ∈ P . The set of all prime filters of L is called the (prime) spectrum of L.

Definition 2.4. Let A be a residuated lattice. A nonempty subset F of A is called a
filter of A iff it satisfies the following conditions:
(i) for all a, b ∈ F , a⊙ b ∈ F ;
(ii) for all a ∈ F and all b ∈ A, if a ≤ b then b ∈ F .

The set of all filters of A is denoted F(A).
A filter F of A is said to be proper iff F ̸= A.
A proper filter P of A is called a prime filter iff, for all a, b ∈ A, if a ∨ b ∈ P , then

a ∈ P or b ∈ P . The set of all prime filters of A is called the (prime) spectrum of A.

Obviously, any filter of a lattice with 1 or a residuated lattice contains the element 1.

Remark 2.4. [21] Let A be a residuated lattice, F a filter of A and a, b ∈ A. Then:
a⊙ b ∈ F iff a ∧ b ∈ F iff a, b ∈ F .
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Proof. By Definition 2.4. �
Corollary 2.5. Any filter of a residuated lattice is a filter of its lattice reduct. The
converse is not true (see, for instance, [26]).

For all elements x and all subsets X of a lattice or residuated lattice A, we denote by
< x > the principal filter of A generated by x and by < X > the filter of A generated
by X.

The above and other notions related to residuated lattices share their denominations
and/or notations with notions related to lattices. Throughout this paper, each of these
notions will refer to the richest algebraic structure the set of the elements is endowed with,
unless mentioned otherwise. Thus, whenever a set is endowed with a residuated lattice
structure, those notions will refer to that residuated lattice, unless otherwise specified.

Lemma 2.6. [21] Let A be a residuated lattice and a ∈ A. Then < a >= {b ∈ A | (∃n ∈
N∗) an ≤ b}.

It is known that, in any lattice L, for every l ∈ L, < l >= {m ∈ L | l ≤ m}.

Example 2.7. If A is the residuated lattice in Example 2.3, then < b >= A, while, in
the lattice reduct of A, < b >= {b, c, d, 1}.

Definition 2.5. Let L be a lattice and F a filter of L. For all l,m ∈ L, we denote
l ≡ m (mod F ) and say that l and m are congruent modulo F iff there exists an element
e ∈ F such that l ∧ e = m ∧ e. It is known and easy to check that ≡ (mod F ) is a
congruence relation on L. The quotient lattice with respect to the congruence relation
≡ (mod F ) is denoted L/F and its elements are denoted l/F , l ∈ L.

Definition 2.6. Let A be a residuated lattice and F a filter of A. For all a, b ∈ A, we
denote a ≡ b (mod F ) and say that a and b are congruent modulo F iff a ↔ b ∈ F . It
is known and easy to check that ≡ (mod F ) is a congruence relation on A. Residuated
lattices form an equational class, which ensures us that the quotient set with respect to
the congruence relation ≡ (mod F ) is a residuated lattice. It is denoted A/F and its
elements are denoted a/F , a ∈ A.

Lemma 2.7. [13] Let F be a filter of A and a, b ∈ A. Then:
(i) a/F = 1/F iff a ∈ F ;
(ii) a/F ≤ b/F iff a→ b ∈ F ; consequently, if a ≤ b then a/F ≤ b/F .

Notation 2.7. Let A be a lattice (residuated lattice). For all filters F , G of A, we
denote < F ∪G > by F ∨G. More generally, for any family {Ft | t ∈ T} of filters of A,

we denote <
∪
t∈T

Ft > by
∨
t∈T

Ft.

Proposition 2.8. [7] Let A be a lattice (residuated lattice). Then (F(A),∨,∩, {1}, A)
is a complete distributive lattice, whose order relation is ⊆.

If A is a bounded lattice or a residuated lattice, then the set of the complemented
elements of A is called the Boolean center of A and is denoted by B(A). It is known that,
for A a bounded distributive lattice or a residuated lattice, B(A) is a Boolean algebra
with the operations induced by those of A ([1] ,[16], [17], [24]).

Lemma 2.9. [5],[10],[18],[12] Let A be a residuated lattice. Then, for every e, f ∈ B(A)
and a ∈ A, we have:
(i) e⊙ e = e;
(ii) a ∈ B(A) iff a ∨ ¬ a = 1;
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(iii) ¬ e→ a = e ∨ a;
(iv) e ⊙ f = e ∧ f ∈ B(A), e → f = ¬ e ∨ f ∈ B(A) and e ↔ f = (e → f) ∧ (f → e) ∈

B(A).

Proposition 2.10. [7] Let A be a distributive lattice or a residuated lattice. Then, for
all a, b ∈ A: < a > ∩ < b >=< a ∨ b >.

Definition 2.8. Let A be a bounded distributive lattice or a residuated lattice; the
definitions we are about to give are valid for both types of structures. For any nonempty
subset X of A, the co–annihilator of X is the set X⊤ = {a ∈ A | (∀x ∈ X)a ∨ x = 1}.
In the case when X consists of a single element x, we denote the co–annihilator of X
by x⊤ and call it the co–annihilator of x. Also, we will denote X⊤⊤ = (X⊤)⊤ and
x⊤⊤ = (x⊤)⊤.

Remark 2.11. Notice that, for all bounded distributive lattices or residuated lattices A
and for all nonempty subsets X, Y of A, if X ⊆ Y then Y ⊤ ⊆ X⊤.

Proposition 2.12. Let A be a bounded distributive lattice or a residuated lattice. Then,
for any X ⊆ A, X⊤ is a filter of A.

Proof. By Lemma 2.2, (ii), for A a residuated lattice and by the distributivity for A a
bounded distributive lattice. �
Definition 2.9. Let A be a bounded distributive lattice or a residuated lattice. Then
A is said to be co–Stone (respectively strongly co–Stone) iff, for all x ∈ A (respectively
all X ⊆ A), there exists an element e ∈ B(A) such that x⊤ =< e > (respectively
X⊤ =< e >).

Remark 2.13. Any complete co–Stone lattice (residuated lattice) is strongly co–Stone,
as shown by Proposition 2.10 and the fact that, with the notations in the previous

definition, X⊤ =
∩
x∈X

x⊤.

In [6], the author defines a Stone residuated lattice to be a residuated lattice A that
satisfies the equation: ¬ a ∨ ¬¬ a = 1 for all a ∈ A. We have preferred our definition
of co–Stone residuated lattices over the dual of the definition in [6] for a reason that is
explained by Remark 3.14.

Notation 2.10. For any bounded distributive lattice or residuated lattice A, we shall
denote CoAnn(A) = {X⊤ | X ⊆ A} and, for all F,G ∈ CoAnn(A), we shall denote
F ∨⊤ G = (F⊤ ∩ G⊤)⊤. More generally, for all {Ft | t ∈ T} ⊆ CoAnn(A), we denote∨
t∈T

⊤Ft =

(∩
t∈T

F⊤
t

)⊤

.

Proposition 2.14. Let A be a bounded distributive lattice or a residuated lattice. Then
(CoAnn(A),∨⊤,∩,⊤ ,
{1}, A) is a complete Boolean algebra.

Proof. This result can be found in [20] for BL–algebras. Its proof is also valid for bounded
distributive lattices and residuated lattices. �

For any set X, we denote by |X| the cardinality of X.

Definition 2.11. Let m be an infinite cardinal. An m–complete lattice is a lattice L
with the property that any subset X of L with | X | ≤ m has an infimum and a
supremum in L.
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Theorem 2.15. Let L be a bounded distributive lattice and m an infinite cardinal. Then
the following are equivalent:
(i) for each nonempty subset X of L with | X | ≤ m, there exists an element e ∈ B(L)
such that X⊤ =< e >;
(ii) L is a co–Stone lattice and B(L) is an m–complete Boolean algebra;
(iii) L⊤⊤ = {l⊤⊤ | l ∈ L} is an m–complete Boolean sublattice of F(L);
(iv) for all l, p ∈ L, (l ∨ p)⊤ = l⊤ ∨ p⊤ and, for each nonempty subset X of L with
| X | ≤ m, there exists an element x ∈ L such that X⊤⊤ = x⊤;
(v) for each nonempty subset X of L with | X | ≤ m, X⊤ ∨X⊤⊤ = L.

Proof. By duality, from [8, Theorem 1]. �
A bounded distributive lattice will be called an m–co–Stone lattice iff the conditions

of Theorem 2.15 hold for it.

Definition 2.12. Let A be a bounded lattice or a residuated lattice and B a subalgebra
of A. We say that B is co–dense in A iff, for all a ∈ A \ {1}, there exists b ∈ B such that
a ≤ b < 1 (that is a ≤ b ≤ 1 and b ̸= 1).

We denote by RL the category of residuated lattices and by D01 the category of
bounded distributive lattices.

For the definitions related to the inductive limit, that we present below, we are using
the terminology of [4].

A partially ordered set (I,≤) is called an up–directed set, or, simply, a directed set iff,
for any i, j ∈ I, there exists an element k ∈ I such that i ≤ k and j ≤ k.

Definition 2.13. Let (I,≤) be a directed set and C a category. By an inductive system
of objects in C with respect to the directed index set I we mean a pair ((Ai)i∈I , (ϕij)i,j∈I

i≤j

)

with (Ai)i∈I a family of objects of C and, for all i, j ∈ I with i ≤ j, ϕij : Ai → Aj a
morphism in C, such that:
(i) for every i ∈ I, ϕi i = idAi (the identity function of Ai);
(ii) for any i, j, k ∈ I with i ≤ j ≤ k, ϕjk ◦ ϕij = ϕik.

Whenever there is no danger of confusion, an inductive system as above will be denoted
(Ai, ϕij).

Definition 2.14. Let (Ai, ϕij) be an inductive system of objects in a category C relative
to a directed index set I. A pair (A, (ϕi)i∈I), with A an object in C and, for all i ∈ I,
ϕi : Ai → A a morphism in C, is called inductive limit of the inductive system (Ai, ϕij)
iff:
(i) for every i, j ∈ I with i ≤ j, ϕj ◦ ϕij = ϕi;

Ai
-Aj

ϕij

?
ϕj

A

@
@@R

ϕi

(ii) for any object B of C and any family (fi)i∈I of morphisms in C such that, for all i ∈ I,
fi : Ai → B and, for all i, j ∈ I with i ≤ j, fj ◦ ϕij = fi, there is a unique morphism
f : A→ B in C such that, for every i ∈ I, f ◦ ϕi = fi.

Ai
-A

ϕi

?
f

B

@
@@R

fi
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It is immediate that the inductive limit of a given inductive system is unique up to an
isomorphism in C, that is, if (A, (ϕi)i∈I) and (B, (ψi)i∈I) are two inductive limits of the
same inductive system, then there exists a unique isomorphism f : A→ B such that, for
every i ∈ I, f ◦ ϕi = ψi.

The next lemma is known and easy to prove.

Lemma 2.16. Let ((Ai)i∈I , (ϕij)i,j∈I
i≤j

) and ((Bi)i∈I , (ψij)i,j∈I
i≤j

) be two inductive systems

in the same category, with inductive limits (A, (ϕi)i∈I) and (B, (ψi)i∈I), respectively. If,
for every i ∈ I, there exists an isomorphism fi : Ai → Bi such that, for all i, j ∈ I with
i ≤ j, ψij ◦ fi = fj ◦ ϕij, then there exists an isomorphism f : A → B such that, for all
i ∈ I, f ◦ ϕi = ψi ◦ fi.

We say that a category C is a category with inductive limits iff every inductive system
in C has an inductive limit. The category of sets, the category of residuated lattices and
the category of bounded distributive lattices are categories with inductive limits. Indeed,
[4, Example 4.7.2] contains the construction of the inductive limits in any equational class
of algebras.

In the following, we shall present a construction for the inductive limit in the category
of residuated lattices. As we believe that this construction is known, we shall not give
any proofs here. See also [4].

Let (Ai, ϕij) be an inductive system in RL. We denote by
⨿
i∈I

Ai the disjoint union

of the family (Ai)i∈I . Let us consider the following relation on
⨿
i∈I

Ai: for all i, j ∈ I,

all a ∈ Ai and all b ∈ Aj , a ∼ b iff there exists k ∈ I such that i ≤ k, j ≤ k and

ϕik(a) = ϕjk(b). It is immediate that ∼ is an equivalence relation on
⨿
i∈I

Ai. We denote

by A the quotient set

(⨿
i∈I

Ai

)
/ ∼ and by [a] the equivalence class of an element

a ∈
⨿
i∈I

Ai. For any i ∈ I, let ϕi : Ai → A, for all a ∈ Ai, ϕi(a) = [a].

Let us define residuated lattice operations on A. We define 0 = [0] and 1 = [1].
Obviously, this definition does not depend on the residuated lattice Ai the 0 and the 1
are taken from. Let [a], [b] ∈ A. Let i, j ∈ I such that a ∈ Ai and b ∈ Aj . Then, by the
definition of the directed set, there exists k ∈ I such that i ≤ k and j ≤ k. We define
[a]∨ [b] = [ϕik(a)∨ϕjk(b)] and [a]∧ [b] = [ϕik(a)∧ϕjk(b)]. The same for ⊙ and →. Here
is the definition of the partial order relation: for all [a], [b] ∈ A with a ∈ Ai and b ∈ Aj

for some i, j ∈ I, we define: [a] ≤ [b] iff there exists k ∈ I such that i ≤ k, j ≤ k and
ϕik(a) ≤ ϕjk(b).

Then (A, (ϕi)i∈I) is an inductive limit of the inductive system (Ai, ϕij) in the category
RL.

A similar construction can be done for inductive limits in the category D01.
Now let P (B) be the set of the finite partitions of a Boolean algebra B, that is P (B) =

{{x1, . . . , xn} | n ∈ N∗, x1, . . . , xn ∈ B \{0},
n∨

i=1

xi = 1, (∀i, j ∈ 1, n)i ̸= j ⇒ xi∧xj = 0}.

We define the partial order ≤ on P (B) by: for all p, q ∈ P (B), p ≤ q iff q is a refinement
of p, that is: p = {x1, . . . , xn} and q = {yij | i ∈ 1, n, (∀i ∈ 1, n)j ∈ 1, ki}, where

n, k1, . . . , kn ∈ N∗ and, for all i ∈ 1, n,

ki∨
j=1

yij = xi. For all p, q ∈ P (B) with p ≤ q, we



CO–STONE RESIDUATED LATTICES 61

define kpq : q → p, for all a ∈ q and b ∈ p, kpq(a) = b iff a ≤ b (it is easily seen that,
for every a ∈ q, there exists a unique b ∈ p such that a ≤ b; namely, with the notations
above for the elements of p and those of q, for all i ∈ 1, n and all j ∈ 1, ki, kpq(yij) = xi).
The fact that the functions kpq are well defined is obvious (if, for an a ∈ q, there exist
b1, b2 ∈ p, b1 ̸= b2 and a ≤ b1, a ≤ b2, then a ≤ b1 ∧ b2 = 0, so a = 0, which is a
contradiction to the definition of P (B)).

Let us now turn our attention to the reticulation of a residuated lattice. The reticu-
lation of an algebra was first defined by Simmons ([25]) for commutative rings and then
by Belluce for MV–algebras ([2]). Later, it was extended by Belluce to non–commutative
rings ([3]) and then it was defined for quantales ([11]) and for BL–algebras ([19], [20]).
In each of the papers cited above, although it is not explicitely defined this way, the
reticulation of an algebra A is a pair (L(A), λ) consisting of a bounded distributive lat-
tice L(A) and a surjection λ : A → L(A) such that the function given by the inverse
image of λ induces (by restriction) a homeomorphism of topological spaces between the
prime spectrum of L(A) and that of A. This construction allows many properties to be
transferred between L(A) and A, and this transfer of properties between the category
of bounded distributive lattices and another category (in our case that of residuated
lattices) is the very purpose of the reticulation.

Here is the definition that we gave in [21] for the reticulation of a residuated lattice.

Definition 2.15. [21] Let A be a residuated lattice. A reticulation of A is a pair (L, λ),
where L is a bounded distributive lattice and λ : A → L is a function that satisfies
conditions (1)–(5) below:
(1) for all a, b ∈ A, λ(a⊙ b) = λ(a) ∧ λ(b);
(2) for all a, b ∈ A, λ(a ∨ b) = λ(a) ∨ λ(b);
(3) λ(0) = 0; λ(1) = 1;
(4) λ is surjective;
(5) for all a, b ∈ A, λ(a) ≤ λ(b) iff (∃n ∈ N∗) an ≤ b.

In [21] and [22] we proved that this definition is in accordance with the general notion
of reticulation applied to residuated lattices, more precisely that, given a residuated
lattice A and a pair (L, λ) consisting of a bounded distributive lattice L and a function
λ : A → L, we have: if λ satisfies conditions (1)–(5) above, then its inverse image
induces (by restriction) a homeomorphism between the prime spectrum of L and that
of A (regarded as topological spaces with the Stone topologies); and conversely: if the
function given by the inverse image of λ takes prime filters of L to prime filters of A
and its restriction to the prime spectrum of L is a homeomorphism between the prime
spectrum of L and that of A (with the Stone topologies), then λ satisfies conditions
(1)–(5) from the definition above.

Lemma 2.17. [21] With the notations in Definition 2.15, a function λ that fulfills con-
ditions (1)–(3) also satisfies:
(a) λ is order–preserving;
(b) for all a, b ∈ A, λ(a ∧ b) = λ(a) ∧ λ(b);
(c) for all a ∈ A and all n ∈ N∗, λ(an) = λ(a).

We shall keep the notations of the conditions (1)–(5) and of the properties (a)–(c)
throughout the rest of this paper.

The following theorem states the existence and uniqueness of the reticulation for any
residuated lattice.
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Theorem 2.18. [21] Let A be a residuated lattice. Then there exists a reticulation of
A. Let (L1, λ1), (L2, λ2) be two reticulations of A. Then there exists an isomorphism of
bounded lattices f : L1 → L2 such that f ◦ λ1 = λ2.

Until mentioned otherwise, let A be a residuated lattice and (L, λ) its reticulation.

Lemma 2.19. [21] For any filter F of A, λ(F ) is a filter of L.

Lemma 2.20. [21] For any filters F , G of A, we have: λ(F ) = λ(G) iff F = G.

Remark 2.21. [21] For all a ∈ A, λ(< a >) =< λ(a) >.

For any filter F of A, let us denote µ(F ) = {λ(a) | a ∈ F} = λ(F ). By Lemma 2.19,
we have defined a function µ : F(A) → F(L).

Proposition 2.22. [21] The function µ : F(A) → F(L) defined above is a bounded
lattice isomorphism.

In [21] and [22], we defined the reticulation functor L : RL → D01. If A is a residuated
lattice and (L(A), λA) is its reticulation, then L(A) = L(A). If B is another residuated
lattice, (L(B), λB) is its reticulation and f : A→ B is a morphism of residuated lattices,
then L(f) : L(A) = L(A) → L(B) = L(B), for all a ∈ A, L(f)(λA(a)) = λB(f(a)). This
definition makes L a covariant functor from RL to D01.

Here is an alternate definition of L, which is in accordance with the one above:

Proposition 2.23. Let A,B be residuated lattices, f : A→ B a morphism of residuated
lattices and (L(A), λA), (L(B), λB) the reticulations of A and B, respectively. Then there
exists a unique bounded lattice morphism h : L(A) → L(B) such that h ◦ λA = λB ◦ f (i.
e. that makes the diagram below commutative).

A

?
λA λB

L(A)

-f
B

L(B)-
?

h = L(f)

Definition 2.16. With the notations in Proposition 2.23, set L(f) = h.

Out of the two constructions for the reticulation of a residuated lattice that we have
provided in [21], we present here the second one: let A be a residuated lattice, PF(A)
be the set of the principal filters of A and λ : A→ PF(A) the function given by: for all
a ∈ A, λ(a) =< a >.

Theorem 2.24. [21] ((PF(A),∩,∨, A, {1}), λ) is a reticulation of A.

Notice that the partial order relation of the lattice (PF(A),∩,∨, A, {1}) is ⊇.
Here is an example of reticulation of a residuated lattice that we will use in the sequel:

Example 2.8. [21] Let A be the residuated lattice in Example 2.3. The principal filters of
this residuated lattice are: < 0 >=< b >= A, < a >=< c >= {a, c, 1}, < d >= {d, 1},
< 1 >= {1}, so L(A) = {< 0 >,< a >, < d >,< 1 >}, with the following lattice
structure:

rr rr
�
�

@
@

@
@

�
�

< 0 >

< a > < d >

< 1 >
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Here are three preservation properties of the reticulation functor for residuated lattices.

Proposition 2.25. [23] L preserves finite direct products. More precisely, if n ∈ N∗,

A1, A2, . . . An are residuated lattices, A =
n∏

i=1

Ai, for each i ∈ 1, n, (L(Ai), λi) is a

reticulation of Ai, and λ : A →
n∏

i=1

L(Ai), for all (a1, . . . , an) ∈ A, λ(a1, . . . , an) =

(λ1(a1), . . . , λn(an)), then (

n∏
i=1

L(Ai), λ) is a reticulation of A.

Proposition 2.26. [23] L preserves quotients. More precisely, if A is a residuated lattice,
F is a filter of A, (L(A), λ) is the reticulation of A, (L(A/F ), λ1) is the reticulation of
A/F and h : L(A)/λ(F ) → L(A/F ), for all a ∈ A, h(λ(a)/λ(F )) = λ1(a/F ), then h is
a bounded lattice isomorphism.

Proposition 2.27. [23] L preserves inductive limits. More precisely, if ((Ai)i∈I , (ϕij)i,j∈I
i≤j

)

is an inductive system of residuated lattices and (A, (ϕi)i∈I) is its inductive limit, then
(L(A), (L(ϕi))i∈I) is the inductive limit of the inductive system ((L(Ai))i∈I , (L(ϕij))i,j∈I

i≤j

).

3. Co–Stone Algebras

This section contains several properties transferred between D01 and RL through L,
related to co–Stone structures.

Concerning co–Stone and strongly co–Stone structures (by structure we mean here
bounded distributive lattice or residuated lattice), the first question that arises is whether
they exist. Naturally, any strongly co–Stone structure is co–Stone and, by Remark 2.13,
any complete co–Stone structure is strongly co–Stone; in particular, any finite Stone
structure is strongly co–Stone.

Example 3.1. The answer to the question above is given by the fact that the trivial
structure (having cardinality 1) is strongly co–Stone and, moreover, any chain is strongly
co–Stone, because a chain A clearly has all co–annihilators equal to {1} =< 1 >, except
for 1⊤, which is equal to A =< 0 >.

Remark 3.1. Also, notice that a residuated lattice A is co–Stone, respectively strongly
co–Stone iff its lattice reduct is co–Stone, respectively strongly co–Stone. This is because
the co–annihilator of any subset of A equals the co–annihilator of that subset in the lattice
reduct of A, the Boolean center of A equals the Boolean center of the lattice reduct of A
and, by Lemma 2.9, (i), and Lemma 2.6, for every e ∈ B(A), the principal filter generated
by e in A equals the principal filter generated by e in the lattice reduct of A.

The second natural question is whether there exist structures that are not co–Stone,
and the third immediate question is whether there exist co–Stone structures that are not
strongly co–Stone. As shown below, the answer is affirmative for both of these questions.

Example 3.2. The residuated lattice in Example 2.2 is not co–Stone. Indeed, B(A) =
{0, 1} and, for instance, bT = {c, 1} /∈ {< 0 >,< 1 >}.

Example 3.3. In order to find a co–Stone structure which is not strongly co–Stone,
let (A,∨,∧,¬ , 0, 1) be a Boolean algebra which is not complete. Then it is known and
easy to prove that (A,∨,∧,⊙ = ∧,→, 0, 1) is a residuated lattice, where, for all a, b ∈ A,
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a→ b = ¬ a∨ b, and B(A) = A. Since ⊙ = ∧, it follows that the filters of the residuated
lattice A coincide with the filters of its lattice reduct, and the same goes for principal
filters (which also results from the fact that B(A) = A, as we have noticed in Remark
3.1). In this case, for every x ∈ A, xT =< ¬x > (see Remark 2.3), and ¬x ∈ A = B(A),
thus the residuated lattice A is co–Stone. Since A is not complete, it follows that there
exists Y ⊆ A such that Y has no supremum in A. Let X = {¬ y | y ∈ Y }. Then
Y = {¬x | x ∈ X}. Assume by absurdum that XT =< e >= {f ∈ A | e ≤ f}, with
e ∈ A = B(A). Then e = min{f ∈ A | (∀x ∈ X) f ∨ x = 1}. For every f, x ∈ A,
f ∨x = 1 iff ¬x ≤ f ; thus, for every f ∈ A, we have the equivalence: (∀x ∈ X) f ∨x = 1
iff (∀x ∈ X)¬x ≤ f . So e = min{f ∈ A | (∀x ∈ X)¬x ≤ f} = sup{¬x | x ∈ X} =
sup(Y ). We have obtained a contradiction. Hence there exists no e ∈ A = B(A) such
that < e >= XT . Therefore the co–Stone residuated lattice A is not strongly co–Stone.

Until mentioned otherwise, let A be a residuated lattice and (L(A), λ) its reticulation.

Lemma 3.2. For any a ∈ A, we have: λ(a) = 1 iff a = 1, and λ(a) = 0 iff there exists
n ∈ N∗ such that an = 0.

Proof. By conditions (3) and (5), we get: λ(a) = 1 iff 1 ≤ λ(a) iff λ(1) ≤ λ(a) iff there
exists n ∈ N∗ such that 1n ≤ a iff 1 ≤ a iff a = 1.

Again by conditions (3) and (5), we have: λ(a) = 0 iff λ(a) ≤ 0 iff λ(a) ≤ λ(0) iff
there exists n ∈ N∗ such that an ≤ 0 iff there exists n ∈ N∗ such that an = 0. �

Lemma 3.3. Let a ∈ A. Then:
(i) if a ∈ B(A), then λ(a) ∈ B(L(A));
(ii) λ(a) ∈ B(L(A)) iff there exists an n ∈ N∗ such that an ∈ B(A).

Proof. (i) By properties (2), (b) and (3).
(ii) If, for a certain n ∈ N∗, an ∈ B(A), then, by (i) and property (c), λ(a) = λ(an) ∈
B(L(A)).

If λ(a) ∈ B(L(A)), then, by condition (4), there exists b ∈ A such that λ(a)∨λ(b) = 1
and λ(a) ∧ λ(b) = 0. Using conditions (2) and (1), Lemma 3.2 and Lemma 2.2, (ii) and
(i), we find that this is equivalent to λ(a ∨ b) = 1 and λ(a ⊙ b) = 0, which in turn is
equivalent to a ∨ b = 1 and (a ⊙ b)n = 0 for some n ∈ N∗, hence an ∨ bn ≥ 1n = 1 and
an ⊙ bn = 0, so an ∨ bn = 1 and an ⊙ bn = 0, so an ∧ bn = 0. Hence an ∈ B(A). �

Proposition 3.4. λ |B(A): B(A) → B(L(A)) is an isomorphism of Boolean algebras.

Proof. By Lemma 3.3, (i), for all a ∈ B(A), λ(a) ∈ B(L(A)). Properties (2), (b) and
(3) imply that λ also preserves the complement, hence it is a Boolean morphism. Let
a, b ∈ B(A) such that λ(a) = λ(b). By property (5) and Lemma 2.9, (i), λ(a) = λ(b)
iff λ(a) ≤ λ(b) and λ(b) ≤ λ(a) iff an ≤ b and bk ≤ a for some n, k ∈ N∗ iff a ≤ b and
b ≤ a iff a = b. Therefore λ |B(A) is injective. Let f ∈ B(L(A)). By condition (4), there
exists a ∈ A such that λ(a) = f . By Lemma 3.3, (ii), there exists an n ∈ N∗ such that
an ∈ B(A), and λ(an) = λ(a) = f , by property (c), so λ |B(A): B(A) → B(L(A)) is also
surjective. �

Remark 3.5. For any subset X of A, λ(X⊤) = λ(X)⊤.

Proof. By conditions (4) and (2) and Lemma 3.2, we have: λ(X)⊤ = {λ(a) | a ∈ A, (∀x ∈
X)λ(a) ∨ λ(x) = 1} = {λ(a) | a ∈ A, (∀x ∈ X)λ(a ∨ x) = 1} = {λ(a) | a ∈ A, (∀x ∈
X)a ∨ x = 1} = λ(X⊤). �

Proposition 3.6. A is a co–Stone residuated lattice iff L(A) is a co–Stone lattice.
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Proof. Assume that A is a co–Stone residuated lattice and let l ∈ L(A). λ is surjective,
hence there exists a ∈ A with λ(a) = l. By Definition 2.9, there exists e ∈ B(A) such
that a⊤ =< e >. By Lemma 3.3, (i), λ(e) ∈ B(L(A)). By Remarks 3.5 and 2.21,
l⊤ = λ(a)⊤ = λ(a⊤) = λ(< e >) =< λ(e) >. Therefore L(A) is a co–Stone lattice.

Now conversely: assume that L(A) is a co–Stone lattice and let a ∈ A. By Definition
2.9, the surjectivity of λ and Remark 3.5, there exists e ∈ A, such that λ(e) ∈ B(L(A))
and λ(a⊤) = λ(a)⊤ =< λ(e) >. By Lemma 3.3, (ii), there exists an n ∈ N∗ such that
en ∈ B(A). By property (c) and Remark 2.21, λ(a⊤) =< λ(e) >=< λ(en) >= λ(<
en >). By Proposition 2.12 and Lemma 2.20, we get a⊤ =< en >. So A is a co–Stone
residuated lattice. �
Proposition 3.7. A is a strongly co–Stone residuated lattice iff L(A) is a strongly co–
Stone lattice.

Proof. Similar to the proof of Proposition 3.6. �
Proposition 3.8. Let A be a residuated lattice, (L(A), λ) be the reticulation of A and µ :
CoAnn(A) → CoAnn(L(A)), for all F ∈ CoAnn(A), µ(F ) = λ(F ). Then CoAnn(A) and
CoAnn(L(A)) are isomorphic Boolean algebras, with µ an isomorphism between them.

Proof. Proposition 2.22 and Remark 3.5 show that µ is injective, preserves the inter-
section, the first and the last element and the complement of CoAnn(A), hence it is
an injective morphism of Boolean algebras. For all F ∈ CoAnn(L(A)), there exists
X ⊆ L(A) such that F = X⊤. By the surjectivity of λ, there exists Y ⊆ A such that
λ(Y ) = X. Y ⊤ ∈ CoAnn(A) and, by Remark 3.5, µ(Y ⊤) = λ(Y ⊤) = λ(Y )⊤ = X⊤ = F .
So µ is also surjective, hence it is a Boolean isomorphism. �
Corollary 3.9. With the notations in Proposition 3.8, for all F ∈ CoAnn(L(A)),
µ−1(F⊤) = µ−1(F )⊤.

Proof. By Remark 3.5. �
Theorem 3.10. Let A be a residuated lattice and m an infinite cardinal. Then the
following are equivalent:
(I) for each nonempty subset X of A with | X | ≤ m, there exists an element e ∈ B(A)
such that X⊤ =< e >;
(II) A is a co–Stone residuated lattice and B(A) is an m–complete Boolean algebra;
(III) A⊤⊤ = {a⊤⊤ | a ∈ A} is an m–complete Boolean sublattice of F(A);
(IV) for all a, b ∈ A, (a ∨ b)⊤ = a⊤ ∨ b⊤ and, for each nonempty subset X of A with
| X | ≤ m, there exists an element x ∈ A such that X⊤⊤ = x⊤;
(V) for each nonempty subset X of A with | X | ≤ m, X⊤ ∨X⊤⊤ = A.

Proof. Let (L(A), λ) be the reticulation of A. Let us denote by (i′), (ii′), (iii′), (iv′),
(v′) the equivalents of conditions (i), (ii), (iii), (iv), respectively (v) from Theorem 2.15
for L(A) instead of L. By Theorem 2.15, it is sufficient to prove that condition (I) is
equivalent with condition (i′) and the same is valid for conditions (II), (III), (IV), (V)
with conditions (ii′), (iii′), (iv′), respectively (v′).
(I) ⇒ (i′): Let ∅ ̸= X ⊆ L(A) with | X | ≤ m. The fact that λ is surjective implies that
there exists ∅ ̸= Y ⊆ A with | Y | = | X | ≤ m and λ(Y ) = X. By (I), there exists
e ∈ B(A) such that Y ⊤ =< e >. By Lemma 3.3, (i), λ(e) ∈ B(L(A)). By Remarks 3.5
and 2.21, X⊤ = λ(Y )⊤ = λ(Y ⊤) = λ(< e >) =< λ(e) >.
(i′) ⇒ (I): Let ∅ ̸= X ⊆ A with | X | ≤ m. Then λ(X) ̸= ∅ and | λ(X) | ≤ | X | ≤ m,
so there exists f ∈ B(L(A)) such that λ(X)⊤ =< f >. λ is surjective, so there exists
e ∈ A such that λ(e) = f . By Lemma 3.3, (ii), there exists n ∈ N∗ such that en ∈ B(A).
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Using Remarks 3.5 and 2.21 and property (c), we get λ(X⊤) = λ(X)⊤ =< λ(e) >=<
λ(en) >= λ(< en >), which, by Proposition 2.12 and Lemma 2.20, implies X⊤ =< en >.

Propositions 3.6 and 3.4 ensure us that (II) and (ii′) are equivalent.
(III) ⇔ (iii′): Let us consider the posets (A⊤⊤,⊆) and (L(A)⊤⊤,⊆). By Proposition
2.12, A⊤⊤ ⊆ F(A) and L(A)⊤⊤ ⊆ F(L(A)). Let µ be the bounded lattice isomorphism
from Proposition 2.22 and ψ : A⊤⊤ → L(A)⊤⊤ be the restriction of µ to A⊤⊤, that is: for
all a ∈ A, ψ(a⊤⊤) = µ(a⊤⊤) = λ(a⊤⊤) = λ(a)⊤⊤, where the last equality was obtained
from Remark 3.5 and shows that ψ is well defined. Propositions 2.12 and 2.22 imply that
ψ is an injective order–preserving function, and the fact that λ is surjective implies that
ψ is surjective; this and Proposition 2.22 show that ψ is an order isomorphism. Therefore
A⊤⊤ is an m–complete Boolean algebra iff L(A)⊤⊤ is an m–complete Boolean algebra.
(IV ) ⇒ (iv′): Let a, b ∈ A. We will use the surjectivity of λ. By condition (2), Remark
3.5 and Proposition 2.22, (λ(a) ∨ λ(b))⊤ = λ(a ∨ b)⊤ = λ((a ∨ b)⊤) = λ(a⊤ ∨ b⊤) =
λ(a⊤)∨λ(b⊤) = λ(a)⊤ ∨λ(b)⊤. Let ∅ ̸= X ⊆ L(A) with | X | ≤ m. By the surjectivity
of λ, there exists ∅ ≠ Y ⊆ A with λ(Y ) = X and | Y | = | λ(Y ) | = | X | ≤ m (Y can
be obtained by choosing, for each x ∈ X, only one y ∈ A such that λ(y) = x and taking
Y to be the set of all these elements y). This implies that there exists y ∈ A such that
Y ⊤⊤ = y⊤, which in turn, by Remark 3.5, implies that X⊤⊤ = λ(Y )⊤⊤ = λ(Y ⊤⊤) =
λ(y⊤) = λ(y)⊤.
(iv′) ⇒ (IV ): Let a, b ∈ A. We have: (λ(a) ∨ λ(b))⊤ = λ(a)⊤ ∨ λ(b)⊤, which, by
computations similar to the ones above, is equivalent to: λ((a ∨ b)⊤) = λ(a⊤ ∨ b⊤).
This, by Proposition 2.12 and Lemma 2.20, implies that (a ∨ b)⊤ = a⊤ ∨ b⊤. Let
∅ ̸= Y ⊆ A with | Y | ≤ m. Then λ(Y ) ̸= ∅ and | λ(Y ) | ≤ | Y | ≤ m, so, by
the surjectivity of λ, there exists y ∈ A such that λ(Y )⊤⊤ = λ(y)⊤. By Remark 3.5,
this is equivalent to λ(Y ⊤⊤) = λ(y⊤), which, by Proposition 2.12 and Lemma 2.20, is
equivalent to Y ⊤⊤ = y⊤.
(V ) ⇒ (v′): Let ∅ ̸= X ⊆ L(A) such that | X | ≤ m. The surjectivity of λ implies that
there exists ∅ ̸= Y ⊆ A with λ(Y ) = X and | Y | = | λ(Y ) | = | X | ≤ m (Y can
be chosen as in the proof of (IV ) ⇒ (iv′)). Therefore Y ⊤ ∨ Y ⊤⊤ = A. By Remark 3.5,
Proposition 2.22 and condition (4), this implies that X⊤ ∨X⊤⊤ = λ(Y )⊤ ∨ λ(Y )⊤⊤ =
λ(Y ⊤) ∨ λ(Y ⊤⊤) = λ(Y ⊤ ∨ Y ⊤⊤) = λ(A) = L(A).
(v′) ⇒ (V ): Let ∅ ̸= Y ⊆ A such that | Y | ≤ m. Then λ(Y ) ̸= ∅ and | λ(Y ) | ≤
| Y | ≤ m, so λ(Y )⊤ ∨λ(Y )⊤⊤ = L(A). By Remark 3.5, Proposition 2.22 and condition
(4), this is equivalent to λ(Y ⊤ ∨ Y ⊤⊤) = λ(A), which, by Lemma 2.20, is equivalent to
Y ⊤ ∨ Y ⊤⊤ = A. �

A residuated lattice will be called an m–co–Stone residuated lattice iff the conditions
of Theorem 3.10 hold for it.

Proposition 3.11. A is an m–co–Stone residuated lattice iff L(A) is an m–co–Stone
lattice.

Proof. This is a paraphrase of the equivalences established in the proof of Theorem
3.10. �

The following two remarks show that co–Stone residuated lattices do not have a charac-
terization like the one in [1, Theorem 8.7.1, page 164] for co–Stone pseudocomplemented
distributive lattices.

Remark 3.12. There exist co–Stone residuated lattices A with elements a ∈ A that do
not satisfy the identity ¬ a ∨ ¬¬ a = 1.
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Proof. Let us consider the residuated lattice A from Example 2.1. B(A) = {0, 1}, <
0 >= A, < 1 >= {1}, 0⊤ = a⊤ = b⊤ = c⊤ = {1}, 1⊤ = A, therefore A is a co–Stone
residuated lattice. But ¬ a = b, ¬¬ a = ¬ b = a, so ¬ a ∨ ¬¬ a = b ∨ a = c ̸= 1. �

Notice that A from the proof above is strongly co–Stone.

Remark 3.13. There exist residuated lattices A that satisfy the identity ¬ a∨¬¬ a = 1
for all a ∈ A and that are not co–Stone.

Proof. Let A be the residuated lattice in Example 2.5. A satisfies the identity in the
enunciation. B(A) = {0, 1}, < 0 >= A, < 1 >= {1}, but c⊤ = {d, 1}, hence A is not
co–Stone. �

Remark 3.14. There exist residuated lattices A that do not satisfy the identity ¬ a ∨
¬¬ a = 1 for all a ∈ A, but whose reticulations L(A) are pseudocomplemented lattices
and satisfy this identity: l∗ ∨ l∗∗ = 1 for all l ∈ L(A).

Proof. Let A be the residuated lattice in Example 2.3. For instance, ¬ b∨¬¬ b = c∨ b =
c ̸= 1.

See its reticulation L(A) in Example 2.8. One can see that L(A) is pseudocomple-
mented and satisfies the identity in the enunciation, as it is a Boolean algebra. �

The remark above shows that the alternate definition of co–Stone algebras, from [6],
is not transferrable through the reticulation, which is the reason why we have chosen our
definition over it.

4. A Possible Construction for the Strongly Co–Stone Hull of a Residuated
Lattice

In this section we associate with every residuated lattice A a strongly co–Stone resid-
uated lattice Ã, using a construction suggested by the construction provided in [9] for

the strongly Stone hull of an MV–algebra. We prove that Ã has some good properties,
including the fact that it is preserved by the reticulation functor, and we conjecture that
Ã might be the strongly co–Stone hull of A.

In the following, let A be a residuated lattice. Let B = CoAnn(A), which is a complete
Boolean algebra according to Proposition 2.14. Let us consider the poset Π(A) = P (B)
of the finite partitions of B (see Section 2 for the definitions). For any C ∈ Π(A), set

AC =
∏
C∈C

A/(C⊤). For every C,D ∈ Π(A) with C ≤ D, we shall consider the map

PCD : AC → AD, for all (aC)C∈C ⊆ A, PCD((aC/(C
⊤))C∈C) = (bD/(D

⊤))D∈D, where,
by definition, for all D ∈ D, bD = aC , where C is the unique member of C such that
D ⊆ C. It is immediate that PCD is an injective morphism of residuated lattices and that
((AC)C∈Π(A), (PCD)C≤D) is an inductive system of residuated lattices. Let Ã = lim−→

C∈Π(A)

AC

be its inductive limit. By the uniqueness of the inductive limit, it follows that Ã is unique
up to a residuated lattice isomorphism.

For every a ∈ A and every C ∈ Π(A), we denote by ϵ(a) the congruence class [aC ]

in Ã of the element (a/(C⊤))C∈C , element which we will denote aC . The definition of ϵ
does not depend on C, because, if D ∈ Π(A), then we have: [aC ] = [aD] iff there exists
E ∈ Π(A) with C,D ≤ E , such that aE = aE , which is true.

Remark 4.1. ϵ : A→ Ã is an injective morphism of residuated lattices.



68 C. MUREŞAN

Proof. Let a, b ∈ A, C,D ∈ Π(A) and E ∈ Π(A) such that C,D ≤ E . Then: ϵ(a) ∨ ϵ(b) =
[aC ] ∨ [bD] = [(a ∨ b)E ] = ϵ(a ∨ b). One can similarly prove that ϵ preserves the other
residuated lattice operations, hence it is a morphism of residuated lattices. For the
injectivity, we have that ϵ(a) = ϵ(b) iff [aC ] = [bD] iff there exists F ∈ Π(A) with
C,D ≤ F such that aF = bF iff, for all F ∈ F , a/(F⊤) = b/(F⊤) iff, for all F ∈ F ,

a ↔ b ∈ F⊤ iff a ↔ b ∈
∩
F∈F

F⊤ =

( ∪
F∈F

F

)⊤

= A⊤ = {1} iff a = b, by Lemma 2.2,

(iii). �

One can identify A and ϵ(A).

Remark 4.2. For all C ∈ CoAnn(A), {C,C⊤} is a partition of B = CoAnn(A) and
C⊤⊤ = C.

Proof. Obviously C ∩ C⊤ = {1}, and C ∨⊤ C⊤ = (C⊤ ∩ C⊤⊤)⊤ = 1⊤ = A.
Obviously C ⊆ C⊤⊤, but C = D⊤ for some D ⊆ A, so C⊤ = D⊤⊤ ⊇ D, which implies

C⊤⊤ ⊆ D⊤ = C, hence C⊤⊤ = C. �

Lemma 4.3. For all x ∈ Ã, there exists n ∈ N∗ and there exist e1, . . . , en ∈ B(Ã) and

a1, . . . , an ∈ A such that: for all i, j ∈ 1, n with i ̸= j, ei ∨ ej = 1,

n∧
i=1

ei = 0 and

x =
n∧

i=1

(ϵ(ai) ∨ ei).

Proof. Let x ∈ Ã. Then there exists C = {C1, . . . , Cn} ∈ Π(A) and there exist a1, . . . , an ∈
A such that x = [(a1/C

⊤
1 , . . . , an/C

⊤
n )].

For every i ∈ 1, n, let Di = {Ci, C
⊤
i } ∈ Π(A), so ADi = A/C⊤

i × A/Ci, Obviously,
for each i, Di ≤ C (the distributivity of the Boolean algebra CoAnn(A) and the def-
inition of the complement imply that ∨⊤

j ̸=iCj = C⊤
i ) and PDi,C : ADi → AC , for all

a, b ∈ A, PDi,C(a/C
⊤
i , b/Ci) = (b/C⊤

1 , . . . , b/C
⊤
i−1, a/C

⊤
i , b/C

⊤
i+1, . . . , b/C

⊤
n ). For every

i ∈ 1, n, let di = PDi,C(0/C
⊤
i , 1/Ci) = (1/C⊤

1 , . . . , 1/C
⊤
i−1, 0/C

⊤
i , 1/C

⊤
i+1, . . . , 1/C

⊤
n ) and

let ei = [(0/C⊤
i , 1/Ci)]. Notice that: for all i, j ∈ 1, n with i ̸= j, ei∨ej = 1 and

n∧
i=1

ei = 0.

For all i ∈ 1, n, ϵ(ai) ∨ ei = [(ai/C
⊤
i , ai/Ci)] ∨ [(0/C⊤

i , 1/Ci)] = [(ai/C
⊤
i , 1/Ci)] and

PDi,C(ai/C
⊤
i , 1/Ci) = (1/C⊤

1 , . . . , 1/C
⊤
i−1, ai/C

⊤
i , 1/C

⊤
i+1, . . . , 1/C

⊤
n ), so

n∧
i=1

(ϵ(ai)∨ei) =

n∧
i=1

[(ai/C
⊤
i , 1/Ci)] =

n∧
i=1

[PDi,C(ai/C
⊤
i , 1/Ci)] = [

n∧
i=1

PDi,C(ai/C
⊤
i , 1/Ci)] = [(a1/C

⊤
1 , . . . ,

an/C
⊤
n )] = x. �

Lemma 4.4. Ã is a co–Stone residuated lattice.

Proof. For all a ∈ A, we denote ϵ(a)∗ = [(0/a⊤⊤, 1/a⊤)]. Let a ∈ A and let us prove

that ϵ(a)⊤ =< ϵ(a)∗ >. Let x ∈ Ã, arbitrary, so, by Lemma 4.3, there exists n ∈ N∗ and

there exist e1, . . . , en ∈ B(Ã) and a1, . . . , an ∈ A, chosen as in the proof of Lemma 4.3,

such that: for all i, j ∈ 1, n with i ̸= j, ei ∨ ej = 1,
n∧

i=1

ei = 0 and x =
n∧

i=1

(ϵ(ai) ∨ ei).
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Let i ∈ 1, n. Notice that {a⊤ ∩ C⊤
i , a

⊤⊤ ∩ C⊤
i , a

⊤ ∩ Ci, a
⊤⊤ ∩ Ci} is a partition and

it is a refinement of each of the partitions {a⊤, a⊤⊤} and {C⊤
i , Ci}.

ϵ(ai) ∨ ei = [(ai/C
⊤
i , ai/Ci)] ∨ [(0/C⊤

i , 1/Ci)] = [(ai/C
⊤
i , 1/Ci)]

= [(1/(a⊤ ∩ C⊤
i )⊤, 1/(a⊤⊤ ∩ C⊤

i )⊤, ai/(a
⊤ ∩ Ci)

⊤, ai/(a
⊤⊤ ∩ Ci)

⊤)],

so

ϵ(ai) ∨ ei ∨ ϵ(a)∗ = [(1/(a⊤ ∩ C⊤
i )⊤, 1/(a⊤⊤ ∩ C⊤

i )⊤, ai/(a
⊤ ∩ Ci)

⊤, ai/(a
⊤⊤ ∩ Ci)

⊤)]

∨ [(0/(a⊤ ∩ C⊤
i )⊤, 1/(a⊤⊤ ∩ C⊤

i )⊤, 0/(a⊤ ∩ Ci)
⊤, 1/(a⊤⊤ ∩ Ci)

⊤)]

= [(1/(a⊤ ∩ C⊤
i )⊤, 1/(a⊤⊤ ∩ C⊤

i )⊤, ai/(a
⊤ ∩ Ci)

⊤, 1/(a⊤⊤ ∩ Ci)
⊤)].

ϵ(ai) ∨ ei ∨ ϵ(a) = [(ai/C
⊤
i , 1/Ci)] ∨ [(a/C⊤

i , a/Ci)] = [((ai ∨ a)/C⊤
i , 1/Ci)].

For the following, see Lemma 2.6 and Lemma 2.7, (i). Hence: ϵ(ai) ∨ ei ∈ ϵ(a)⊤ iff
ϵ(ai)∨ ei ∨ ϵ(a) = 1 iff (ai ∨ a)/C⊤

i = 1/C⊤
i iff ai ∨ a ∈ C⊤

i , and, since ϵ(a)∗ is obviously
idempotent, ϵ(ai) ∨ ei ∈< ϵ(a)∗ > iff ϵ(a)∗ ≤ ϵ(ai) ∨ ei iff ϵ(ai) ∨ ei ∨ ϵ(a)∗ = ϵ(ai) ∨ ei
iff ai/(a

⊤⊤ ∩ Ci)
⊤ = 1/(a⊤⊤ ∩ Ci)

⊤ iff ai ∈ (a⊤⊤ ∩ Ci)
⊤. We aim to prove that

ϵ(ai) ∨ ei ∈ ϵ(a)⊤ iff ϵ(ai) ∨ ei ∈< ϵ(a)∗ >; it is sufficient to show that ai ∨ a ∈ C⊤
i iff

ai ∈ (a⊤⊤∩Ci)
⊤. Let us prove the direct implication; so let us assume that ai∨a ∈ C⊤

i .
Let t ∈ a⊤⊤ ∩Ci, arbitrary. Since t ∈ a⊤⊤, it follows that t∨ ai ∈ a⊤⊤. Since t ∈ Ci, we
get t∨ai∨a = 1, hence t∨ai ∈ a⊤. So t∨ai ∈ a⊤⊤∩a⊤ = {1}, hence t∨ai = 1. Therefore
ai ∈ (a⊤⊤ ∩ Ci)

⊤. For the converse implication, let us assume that ai ∈ (a⊤⊤ ∩ Ci)
⊤.

Let t ∈ Ci, arbitrary, so t∨ a ∈ Ci. a ∈ a⊤⊤, so t∨ a ∈ a⊤⊤. Therefore t∨ a ∈ a⊤⊤ ∩Ci.
Then t ∨ a ∨ ai = 1, so a ∨ ai ∈ C⊤

i . Thus ϵ(ai) ∨ ei ∈ ϵ(a)⊤ iff ϵ(ai) ∨ ei ∈< ϵ(a)∗ >.
Now we can go one step further and prove that x ∈ ϵ(a)⊤ iff x ∈< ϵ(a)∗ >, which

leads to the conclusion that ϵ(a)⊤ =< ϵ(a)∗ >, as x is arbitrary in Ã. By Remark 2.4

and the above, x ∈ ϵ(a)⊤ iff
n∧

i=1

(ϵ(ai) ∨ ei) ∈ ϵ(a)⊤ iff, for all i ∈ 1, n, ϵ(ai) ∨ ei ∈ ϵ(a)⊤

iff, for all i ∈ 1, n, ϵ(ai) ∨ ei ∈< ϵ(a)∗ > iff
n∧

i=1

(ϵ(ai) ∨ ei) ∈< ϵ(a)∗ > iff x ∈< ϵ(a)∗ >.

Hence ϵ(a)⊤ =< ϵ(a)∗ >.

Let y ∈ Ã, arbitrary. We shall prove that y⊤ is generated by an element from the
Boolean center of Ã, which will end the proof. First, let us write y as an expresion
made of elements of A and elements from the Boolean center of Ã. By Lemma 4.3, there
exists m ∈ N∗ and there exist f1, . . . , fm ∈ B(Ã) and b1, . . . , bm ∈ A, chosen like in the

proof of the lemma, such that: for all i, j ∈ 1,m with i ̸= j, fi ∨ fj = 1,
m∧
i=1

fi = 0

and y =
m∧
i=1

(ϵ(bi) ∨ fi). Next we shall obtain a writing of y⊤ depending on the bis and

the fis. Let v ∈ Ã, arbitrary. By Remark 2.4, v ∈ y⊤ iff v ∨ y = 1 iff y ∈ v⊤ iff
m∧
i=1

(ϵ(bi)∨fi) ∈ v⊤ iff, for all i ∈ 1,m, ϵ(bi)∨fi ∈ v⊤ iff, for all i ∈ 1,m, ϵ(bi)∨fi∨v = 1

iff v ∈
m∩
i=1

(ϵ(bi) ∨ fi)⊤. Therefore y⊤ =
m∩
i=1

(ϵ(bi) ∨ fi)⊤.

Now we shall write each co–annihilator filter from this writing of y⊤ as a principal
filter generated by an element from the Boolean center of Ã.
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For every i ∈ 1,m, let us denote di = ϵ(bi)
∗, which is idempotent; then, by the above,

ϵ(bi)
⊤ =< di >, with di idempotent, for every i. Moreover, each di ∈ B(Ã), as Lemma

2.9, (ii) shows.

Let z ∈ Ã, arbitrary. By Lemma 2.9, (iii), Lemma 2.6 and the law of residuation,
for each i ∈ 1,m, z ∈ (ϵ(bi) ∨ fi)⊤ iff z ∨ ϵ(bi) ∨ fi = 1 iff z ∨ fi ∈ ϵ(bi)

⊤ =< di > iff
di ≤ z ∨ fi = ¬ fi → z iff di ⊙ ¬ fi ≤ z iff z ∈< di ⊙ ¬ fi > (remember that ¬ fi is also
idempotent). Hence, for each i ∈ 1,m, (ϵ(bi)∨fi)⊤ =< di⊙¬ fi >, with di⊙¬ fi ∈ B(Ã),
as Lemma 2.9, (iv) shows.

Therefore, by Proposition 2.10, y⊤ =
m∩
i=1

(ϵ(bi) ∨ fi)⊤ =
m∩
i=1

< di ⊙¬ fi >=<
m∨
i=1

(di ⊙

¬ fi) >, with
m∨
i=1

(di ⊙ ¬ fi) ∈ B(Ã).

Hence Ã is a co–Stone residuated lattice. �
Lemma 4.5. Let C,D ∈ CoAnn(A). Then [(0/C⊤, 1/C)] ∨ [(0/D⊤, 1/D)] = [(0/(C ∩
D)⊤, 1/(C ∩D))].

Proof. We will use the following refinement of the partitions {C⊤, C} and {D⊤, D}:
{C⊤ ∩D⊤, C⊤ ∩D,C ∩D⊤, C ∩D}.

[(0/C⊤, 1/C)] ∨ [(0/D⊤, 1/D)]

= [(1/(C⊤ ∩D⊤)⊤, 1/(C⊤ ∩D)⊤, 0/(C ∩D⊤)⊤, 0/(C ∩D)⊤)]

∨ [(1/(C⊤ ∩D⊤)⊤, 0/(C⊤ ∩D)⊤, 1/(C ∩D⊤)⊤, 0/(C ∩D)⊤)]

= [(1/(C⊤ ∩D⊤)⊤, 1/(C⊤ ∩D)⊤, 1/(C ∩D⊤)⊤, 0/(C ∩D)⊤)]

= [(0/(C ∩D)⊤, 1/(C ∩D))].

�
Here is a generalization of the previous lemma (see Proposition 2.10).

Lemma 4.6. Let I be an arbitrary index set and, for all i ∈ I, Ei ∈ CoAnn(A),

ei = [(0/E⊤
i , 1/Ei)], and e = [(0/(

∩
i∈I

Ei)
⊤, 1/(

∩
i∈I

Ei))]. Then:
∩
i∈I

< ei >=< e >.

Proof. Let x ∈ Ã, arbitrary. We shall prove that: x ∈
∩
i∈I

< ei > iff x ∈< e >. By the

proof of Lemma 4.3, there exists an n ∈ N∗ and, for all j ∈ 1, n, there exists aj ∈ A and

Cj ∈ CoAnn(A), such that x =
n∧

j=1

[(aj/C
⊤
j , 1/Cj)]. By Remark 2.4, it is sufficient to

show that, for each j ∈ 1, n, [(aj/C
⊤
j , 1/Cj)] ∈

∩
i∈I

< ei > iff [(aj/C
⊤
j , 1/Cj)] ∈< e >.

Let j ∈ 1, n. Obviously, e and each ei are idempotent (actually, by Lemma 2.9, (ii), they

belong to B(Ã)), therefore it is sufficient to show that e ≤ [(aj/C
⊤
j , 1/Cj)] iff, for all

i ∈ I, ei ≤ [(aj/C
⊤
j , 1/Cj)] (see Lemma 2.6).

Let i ∈ I. ei ≤ [(aj/C
⊤
j , 1/Cj)] iff [(0/E⊤

i , 1/Ei)] ≤ [(aj/C
⊤
j , 1/Cj)] iff [(0/(Ei ∩

Cj)
⊤, 1/(E⊤

i ∩ Cj)
⊤, 0/(Ei ∩ C⊤

j )⊤, 1/(E⊤
i ∩ C⊤

j )⊤)] ≤ [(aj/(Ei ∩ Cj)
⊤, aj/(E

⊤
i ∩

Cj)
⊤, 1/(Ei∩C⊤

j )⊤, 1/(E⊤
i ∩C⊤

j )⊤)] iff 1/(E⊤
i ∩Cj)

⊤ ≤ aj/(E
⊤
i ∩Cj)

⊤ iff 1/(E⊤
i ∩Cj)

⊤ =

aj/(E
⊤
i ∩Cj)

⊤ iff aj ∈ (E⊤
i ∩Cj)

⊤ (see Lemma 2.7, (i)). Analogously, e ≤ [(aj/C
⊤
j , 1/Cj)]

iff aj ∈ ((
∩
i∈I

Ei)
⊤ ∩ Cj)

⊤. So it remains to show that aj ∈ ((
∩
i∈I

Ei)
⊤ ∩ Cj)

⊤ iff, for all
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i ∈ I, aj ∈ (E⊤
i ∩Cj)

⊤, which is true, because, by the definition of the co–annihilator of

a set: (
∩
i∈I

Ei)
⊤ =

∪
i∈I

E⊤
i , hence (

∩
i∈I

Ei)
⊤ ∩ Cj =

∪
i∈I

E⊤
i ∩ Cj , that is (

∩
i∈I

Ei)
⊤ ∩ Cj =∪

i∈I

(E⊤
i ∩ Cj), thus ((

∩
i∈I

Ei)
⊤ ∩ Cj)

⊤ = (
∪
i∈I

(E⊤
i ∩ Cj))

⊤ =
∩
i∈I

(E⊤
i ∩ Cj)

⊤. �

Lemma 4.7. Ã is a strongly co–Stone residuated lattice.

Proof. Let X ⊆ Ã. By Lemma 4.4, X⊤ =
∩
x∈X

x⊤ =
∩
x∈X

< ex > for some ex ∈ B(Ã) for

every x ∈ X.
Let x ∈ X. Using the notations from the proofs of Lemmas 4.3 and 4.4, ex is of

the form ex =
m∨
i=1

(di ⊙ ¬ fi), where di = ϵ(bi)
∗ = [(0/b⊤⊤

i , 1/b⊤i )], with bi ∈ A, and

fi = [(0/C⊤
i , 1/Ci)], with Ci ∈ CoAnn(A). So ¬ fi = [(1/C⊤

i , 0/Ci)] and

di ⊙ ¬ fi = [(1/(b⊤⊤
i ∩ C⊤

i )⊤, 1/(b⊤⊤
i ∩ Ci)

⊤, 0/(b⊤i ∩ C⊤
i )⊤, 0/(b⊤i ∩ Ci)

⊤)]

⊙ [(0/(b⊤⊤
i ∩ C⊤

i )⊤, 1/(b⊤⊤
i ∩ Ci)

⊤, 0/(b⊤i ∩ C⊤
i )⊤, 1/(b⊤i ∩ Ci)

⊤)]

= [(0/(b⊤⊤
i ∩ C⊤

i )⊤, 1/(b⊤⊤
i ∩ Ci)

⊤, 0/(b⊤i ∩ C⊤
i )⊤, 0/(b⊤i ∩ Ci)

⊤)]

= [(0/(b⊤⊤
i ∩ Ci), 1/(b

⊤⊤
i ∩ Ci)

⊤)] = [(0/D⊤
i , 1/Di)],

where Di = (b⊤⊤
i ∩Ci)

⊤. By Lemma 4.5, for every i, j ∈ 1,m with i ̸= j, [(0/D⊤
i , 1/Di)]∨

[(0/D⊤
j , 1/Dj)] = [(0/(Di∩Dj)

⊤, 1/(Di∩Dj))], hence, by induction on m, one can show
that

ex =
m∨
i=1

(di ⊙ ¬ fi) = [(0/(
m∩
i=1

Di)
⊤, 1/(

m∩
i=1

Di))] = [(0/E⊤
x , 1/Ex)],

where Ex =
m∩
i=1

Di.

Let e = [(0/(
∩
x∈X

Ex)
⊤, 1/(

∩
x∈X

Ex))]. Lemma 2.9, (ii) ensures us that e ∈ B(Ã). By

Lemma 4.6, < e >=
∩
x∈X

< ex >= X⊤. So Ã is strongly co–Stone. �

Proposition 4.8. A is co–dense in Ã.

Proof. Let x = [a] ∈ Ã \ {1}, with a = (aC/C
⊤)C∈C ∈ AC , C ∈ Π(A). What we have to

do is prove that there exists y ∈ A such that x ≤ ϵ(y) < 1.
x ̸= 1, so there exists C ∈ C such that aC/C

⊤ ̸= 1/C⊤, that is aC /∈ C⊤ (see Lemma
2.7, (i)), which means that there exists an element b ∈ C such that b ∨ aC ̸= 1. Set
y = b ∨ aC ∈ C, since b ∈ C and C ∈ CoAnn(A) ⊆ F(A), by Proposition 2.12. Let
D ∈ C \ {C}, arbitrary, so C ∩ D = {1}, hence C ⊆ D⊤ (see Proposition 2.14; the
complement D⊤ of D in the Boolean algebra CoAnn(A) equals its pseudocomplement).
y ∈ C, therefore y ∈ D⊤, hence y/D⊤ = 1/D⊤, by Lemma 2.7, (i). But C ∩ C⊤ = {1}
and y ̸= 1, so y ∈ C \ {1}, so y /∈ C⊤, that is y/C⊤ ̸= 1/C⊤, by Lemma 2.7, (i).

So we have proven that (y/D⊤)D∈C has exactly one component different from 1,
namely y/C⊤, and this component equals (b ∨ aC)/C

⊤, so it is greater than aC/C
⊤.

Therefore we have: x = [(aD/D
⊤)D∈C ] ≤ [(y/D⊤)D∈C ] = ϵ(y) < 1. �
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In the following, unless mentioned otherwise, let L be a bounded distributive lat-
tice. We shall construct a bounded distributive lattice L̃ in the same manner that Ã is
constructed from A, and we shall keep the notation L̃ in what follows.

Let B = CoAnn(L), which is a complete Boolean algebra according to Proposition
2.14 (the notation B will only be used with this meaning in this construction). Let
us consider the poset Π(L) = P (B) of the finite partitions of B (see Section 2 for the

definitions). For any C ∈ Π(L), set LC =
∏
C∈C

L/(C⊤). For every C,D ∈ Π(L) with C ≤ D,

we shall consider the map QCD : LC → LD, for all (lC)C∈C ⊆ L, QCD((lC/(C
⊤))C∈C) =

(nD/(D
⊤))D∈D, where, by definition, for all D ∈ D, nD = lC , where C is the unique

member of C such that D ⊆ C. It is immediate that QCD is an injective morphism of
bounded lattices and that ((LC)C∈Π(L), (QCD)C≤D) is an inductive system of bounded

distributive lattices. Let L̃ = lim−→
C∈Π(L)

LC be its inductive limit. By the uniqueness of the

inductive limit, it follows that L̃ is unique up to a bounded lattice isomorphism.
For every l ∈ L and every C ∈ Π(L), we denote by τ(l) the congruence class [lC ] in L̃

of the element (l/(C⊤))C∈C , element which we will denote lC . The definition of τ does
not depend on C, which can be shown in the same way that we have shown this for
ϵ : A→ Ã. As in Remark 4.1, one can prove that τ : L→ L̃ is an injective morphism of
bounded lattices, thus one can identify L and τ(L).

Proposition 4.9. L(Ã) and L̃(A) are isomorphic bounded lattices.

Proof. Let L(Ã) be the reticulation of Ã and L̃(A) = L(A) be the strongly co–Stone
hull of the reticulation (L(A), λ) of A. We will prove that there exists a bounded lattice

isomorphism from L̃(A) to L(Ã).
The order isomorphism µ from Proposition 3.8 obviously induces an order isomorphism

ν : Π(A) → Π(L(A)), for all C ∈ Π(A), ν(C) = {µ(C) | C ∈ C}. Ã = lim−→
C∈Π(A)

(AC ,PCD),

hence, by Proposition 2.27, L(Ã) = lim−→
C∈Π(A)

(L(AC),L(PCD)), and

L̃(A) = lim−→
E,F∈Π(L(A)),

E≤F

(L(A)E ,QEF ) = lim−→
C,D∈Π(A),

C≤D

(L(A)ν(C),Qν(C)ν(D)),

where, in conformity to the construction of the strongly co–Stone hull of a bounded
distributive lattice, the QEF are defined this way: for all E ,F ∈ Π(L(A)) with E ≤ F ,
for all (aE)E∈E ⊆ A, QEF ((λ(aE)/E

⊤)E∈E) = (λ(aF )/F
⊤)F∈F , where aF = aE iff

F ⊆ E. It follows that, for all C,D ∈ Π(A) with C ≤ D, Qν(C)ν(D) is defined as follows:

for all x = (λ(aµ(C))/µ(C)
⊤)C∈C ∈ L(A)ν(C), with (aµ(C))C∈C ⊆ A, Qν(C)ν(D)(x) =

(λ(aµ(D))/µ(D)⊤)D∈D = (λ(aµ(D))/λ(D)⊤)D∈D = (λ(aµ(D))/λ(D
⊤))D∈D, where aµ(D) =

aµ(C) iff µ(D) ⊆ µ(C) iff D ⊆ C (since µ is an order isomorphism); we have used Remark
3.5.

Let C ∈ Π(A), arbitrary but fixed. AC =
∏
C∈C

A/C⊤ and L(A)ν(C) =
∏
C∈C

L(A)/µ(C)⊤ =∏
C∈C

L(A)/λ(C)⊤ =
∏
C∈C

L(A)/λ(C⊤), as Remark 3.5 shows. By Proposition 2.25, L(AC) =∏
C∈C

L(A/C⊤). By Proposition 2.26, for each C ∈ C, the function hC : L(A)/λ(C⊤) →

L(A/C⊤), for all a ∈ A, hC(λ(a)/λ(C
⊤)) = λC(a/C

⊤) is a bounded lattice isomorphism,
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where we denoted by (L(A/C⊤), λC) the reticulation of A/C⊤. Let fC : L(A)ν(C) →
L(AC), for all x as above, fC(x) = (hC(λ(aµ(C))/λ(C

⊤)))C∈C = (λC(aµ(C)/C
⊤))C∈C .

The fact that each hC is well defined and it is a bounded lattice isomorphism implies
that fC is well defined and it is a bounded lattice isomorphism.

Let C,D ∈ Π(A) with C ≤ D, arbitrary but fixed. Let x be as above and (aµ(D))D∈D ⊆
A, with aµ(D) = aµ(C) iff µ(D) ⊆ µ(C) iff D ⊆ C (since µ is an order isomorphism).

Then fD(Qν(C)ν(D)(x)) = fD((λ(aµ(D))/λ(D
⊤))D∈D) = (λD(aµ(D)/D

⊤))D∈D.

On the other hand, according to Proposition 2.25, (L(AC),
∏
C∈C

λC) is the reticulation

of AC and (L(AD),
∏
D∈D

λD) is the reticulation of AD, thus, by Proposition 2.23 and

Definition 2.16, we obtain the commutative diagram below and thus the equalities that
follow it:

∏
C∈C

λC
?
L(AC)

AC

-
L(PCD)

-PCD

L(AD)

AD

?

∏
D∈D

λD

L(PCD)(fC(x)) = L(PCD)((λC(aµ(C)/C
⊤))C∈C) = L(PCD)((

∏
C∈C

)((aµ(C)/C
⊤)C∈C))

= (
∏
D∈D

λD)(PCD((aµ(C)/C
⊤)C∈C)) = (λD(aµ(D)/D

⊤))D∈D,

where again aµ(D) = aµ(C) iff D ⊆ C.
So fD(Qν(C)ν(D)(x)) = L(PCD)(fC(x)) for all x ∈ L(A)ν(C) arbitrary, hence fD ◦

Qν(C)ν(D) = L(PCD) ◦ fC , that is we have the commutative diagram below.

Qν(C)ν(D)
?
L(A)ν(D)

L(A)ν(C)

-
fD

-fC

L(AD)

L(AC)

?
L(PCD)

Let us notice that we are situated in the conditions of Lemma 2.16. By the above, we have
the inductive systems ((L(A)ν(C))C∈Π(A), (Qν(C)ν(D))C,D∈Π(A),C≤D) and ((L(AC))C∈Π(A),
(L(PCD))C,D∈Π(A),C≤D) in the category of bounded distributive lattices, and their induc-

tive limits are L̃(A) and L(Ã), respectively. For each C ∈ Π(A), we have the bounded
lattice isomorphism fC : L(A)ν(C) → L(AC), and these isomorphisms verify: for all
C,D ∈ Π(A) with C ≤ D, fD ◦ Qν(C)ν(D) = L(PCD) ◦ fC .

Therefore, by Lemma 2.16, it follows that L̃(A) and L(Ã) are isomorphic bounded

lattices (one isomorphism between them being φ : L̃(A) → L(Ã), for all C ∈ Π(A), for
all x ∈ L(A)ν(C), φ([x]) = [fC(x)], as Lemma 2.16 shows). �

Example 4.1. In this example we will determine Ã for the residuated lattice A in
Example 2.2.

Let B = CoAnn(A). 0⊤ = a⊤ = {1}, 1⊤ = A, b⊤ = {c, 1} =< c > and c⊤ =
{b, 1} =< b >, hence B = {1⊤, b⊤, c⊤, 0⊤} and Π(A) = P (B) = {{1⊤}, {b⊤, c⊤}}.
Let C = {1⊤} and D = {b⊤, c⊤}. C ≤ D. AC = A/1⊤ = A/A = {1/A} and AD =
A/b⊤×A/c⊤. As the table of the operation ↔ shows, 0/b⊤ = {0}, a/b⊤ = {a, b} = b/b⊤
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and c/b⊤ = 1/b⊤ = b⊤, so A/b⊤ = {0/b⊤, a/b⊤, 1/b⊤}, and 0/c⊤ = {0}, a/c⊤ =
{a, c} = c/c⊤ and b/c⊤ = 1/c⊤ = c⊤, so A/c⊤ = {0/c⊤, a/c⊤, 1/c⊤}. Therefore AD =
{0/b⊤, a/b⊤, 1/b⊤} × {0/c⊤, a/c⊤, 1/c⊤} = {0, x0a, x01, xa0, xaa, xa1, x10, x1a, 1}, where
we denoted: 0 = (0/b⊤, 0/c⊤), 1 = (1/b⊤, 1/c⊤) and xij = (i/b⊤, j/c⊤) for all i, j ∈
{0, a, 1} with (i, j) /∈ {(0, 0), (1, 1)}.
Ã = lim−→

E∈Π(A)

AE = AD, because, as it is easily seen, (AD, {PCD, idD}) is the inductive

limit of the inductive system ({AC , AD}, {PCD}).
The operations of AD = Ã are defined componentwise from those of the quotient

lattices A/b⊤ and A/c⊤, hence, like in A, ⊙ = ∧ also in Ã. As shown by Lemma 2.7,
(ii), A/b⊤ and A/c⊤ share the same lattice structure, namely that of the three–element

chain, hence the lattice structure of AD = Ã is the following:

r
0

@
@

@
@ rx0a

�
�

�
�rxa0�

�
�
�

@
@

@
@ r

xaa

rx01

rxa1 rx10
rx1a�

�
�

�

@
@

@
@

r1

Here is the table of the operation → in AD = Ã:

→ 0 x0a x01 xa0 xaa xa1 x10 x1a 1
0 1 1 1 1 1 1 1 1 1
x0a x10 1 1 x10 1 1 x10 1 1
x01 x10 x1a 1 x10 x1a 1 x10 x1a 1
xa0 x01 x01 x01 1 1 1 1 1 1
xaa 0 x01 x01 x10 1 1 x10 1 1
xa1 0 x0a x01 x10 x1a 1 x10 x1a 1
x10 x01 x01 x01 xa1 xa1 xa1 1 1 1
x1a 0 x01 x01 xa0 xa1 xa1 x10 1 1
1 0 x0a x01 xa0 xaa xa1 x10 x1a 1

We conclude the paper with the conjecture we have already announced.

Definition 4.1. We define the strongly co–Stone hull of A to be a strongly co–Stone
residuated lattice A that satisfies the following universality property: there exists an
injective morphism of residuated lattices ϵ : A → A and, for any strongly co–Stone
residuated lattice A1 and any morphism of residuated lattices f : A → A1 with the
property that, for any X ⊆ A, we have f(X⊤) = f(X)⊤, there exists a unique morphism
of residuated lattices f : A→ A1 such that f ◦ ϵ = f .

A -A
ϵ

?
f

A1

@
@@R

f

One can easily notice that A, if it exists, is unique up to a residuated lattice isomor-
phism.

Conjecture 4.1. Ã = A, that is: Ã is the strongly co–Stone hull of A.
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[18] J. Kühr, Boolean and Central Elements and Cantor–Bernstein Theorem in Bounded Pseudo–BCK–

algebras, Journal of Multiple–valued Logic and Soft Computing 16 (2010), no. 3–5, Special Issue:
Multiple–Valued Logic and Its Algebras, 387–404.
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