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Statistical convergence of triple sequences in topological
groups

Ayhan Esi

Abstract. The idea of triple statistical convergence was introduced by Şahiner et.al [3] while
the idea of double statistical sequences was introduced by Mursaleen and Edely [4] . In this
paper, we give an extension of statistical convergence of triple sequences in topological groups

and give some theorems which generalize Cakallı and Savas’s theorems given by in [1] earlier.
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1. Introduction

The idea of statistical convergence for single sequences was introduced by Fast [9]
and then studied by various authors, e.g., Salat [10], Fridy [6], Connor [2], Esi [1] and
many others. This notion was used by Kolk [7] to extend statistical convergence to
normed spaces and Maddox [8] extended to locally convex spaces. Recently, Çakallı
[4] extended lacunary statistical convergence to topological groups and Çakallı and
Savaş [3] extended double statistical convergence to topological groups.

Let K ⊂ N×N be two-dimensional set of positive integers and let K(n,m) be the
numbers of (i, j) in K such that i ≤ n and j ≤ m. Then the two-dimensional analogue
of natural density can be defined as follows:

The lower asymptotic density of a set K ⊂ N× N is defined as

δ2
−
(K) = P − lim

n,m
inf

K (n,m)

nm
.

In this case
(

K(n,m)
nm

)
has a limit in Pringsheim’s sense then we say that K has a

double natural density and is defined as

δ2 (K) = P − lim
n,m

K (n,m)

nm
.

For example, let K =
{(

i2, j2
)
: i, j ∈ N

}
. Then

δ2 (K) = P − lim
n,m

K (n,m)

nm
≤ lim

n,m

√
n
√
m

nm
= 0,

i.e., the set K has double natural density zero, while the set L = {(i, 2j) : i, j ∈ N}
has double natural density 1
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A real double sequence x = (xjk) is said to be statistically convergent to a number
L provided that, for each ε > 0, the set

{(j, k) : |xjk − L| ≥ ε}

has double natural density zero. In this case, one writes st2 − limx = L, [9].
A real double sequence x = (xjk) is said to be statistically Cauchy provided that,

for every ε > 0 there exist M = M (ϵ) and T = T (ε) such that for all j, p ≥ M ,
k, q ≥ T, the set

{(j, k) ∈ N× N : |xjk − xpq| ≥ ε}
has double natural density zero, [9].

A subset K of N× N× N is said to be natural density δ3 (K) if

δ3 (K) = lim
p,q,r→∞

K (p, q, r)

pqr
exists,

where K (p, q, r) denotes the number of (j, k, l) in K such that j ≤ p, k ≤ q and l ≤ r,
[12]. For example, let K =

{(
j3, k3, l3

)
: j, k, l ∈ N

}
, then

δ3 (K) = lim
p,q,r→∞

K (p, q, r)

pqr
≤ lim

p,q,r→∞

3
√
p 3
√
q 3
√
r

pqr
= 0

i.e., the setK has triple natural density zero, while the set L = {(j, 3k, 5l) : j, k, l ∈ N}
has triple natural density 1

15 .
In a topological group, double sequence x = (xjk) is called statistically convergent

to a point L of X if for each neighbourhood U of 0 the set

{(j, k) : j ≤ n, k ≤ m; xjk − L ∈ U}

has double natural density zero. In this case we write st2 (X) − limj,k xjk = L and
we will denote the set of all statistically convergent double sequences by st2 (X) .

A triple sequence x = (xjkl) is said to be convergent if for every ε > 0 there exists
N ∈ N such that |xjkl − L| < ε whenever j, k, l ≥ N . A triple sequence x = (xjkl)
is said to be Cauchy sequence if for every ε > 0 there exists N ∈ N such that
|xpqr − xjkl| < ε for all p ≥ j ≥ N, q ≥ k ≥ N , r ≥ l ≥ N.

A real triple sequence x = (xjkl) is said to be statistically convergent to the number
L if for each ε > 0

δ3 ({(j, k, l) ∈ N× N× N : |xjkl − L| ≥ ε}) = 0.

In this case, one writes st3 − limx = L, [12].
The concept of statistical convergence for triple sequences was first introduced by

Sahiner et. al. [3] who have given main definition of statistical convergence and
statistical Cauchy for triple sequences x = (xjkl) as follows: a real triple sequence
x = (xjkl) is said to be statistically convergent to the number L if for each ε > 0

δ3 ({(j, k, l) ∈ N× N× N : |xjkl − L| ≥ ε}) = 0.

In this case, we write st3 − limx = L.
A triple sequence x = (xjkl) is said to be statistically Cauchy sequence if for every

ε > 0, there exists N = N (ε) ,M = M(ε) and Z = Z (ε) ∈ N such that

δ3 ({(j, k, l) ∈ N× N× N : |xjkl − xNMZ | ≥ ε}) = 0.

The purpose of this paper is to study statistical convergence of triple sequences in
topological groups and to give some important theorems.
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2. Definitions and Notations

By X, we will denote an abelian topological Hausdorff group, written additively,
which satisfies the first axiom of countability.

A triple sequence x = (xjkl) is said to be convergent in a topological group X if
for every neighbourhood U of 0 there exists N ∈ N such that xjkl − L ∈ U whenever
j, k, l ≥ N. L is called a triple limit of x = (xjkl). For a subset A of X, S3(A) will
denote the set of all triple sequences x = (xjkl) of points in A and C3 (X) will denote
the set of all convergent triple sequences of points in X.

A triple sequence x = (xjkl) is said to be a Cauchy sequence if for every neigh-
bourhood U of 0 there exists N ∈ N such that xpqr − xjkl ∈ U whenever p ≥ j ≥ N,
q ≥ k ≥ N, r ≥ l ≥ N.

In a topological group, triple sequence x = (xjkl) is called statistically convergent
to a point L of X if for each neighbourhood U of 0 the set

{(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − L /∈ U}

has triple natural density zero. In this case we write st3 (X) − limj,k,l xjkl = L and
we will denote the set of all statistically convergent triple sequences by st3 (X) . If
x = (xjkl) is statistically convergent, then x = (xjkl) need not be convergent. For
instance, let

xjkl =

{
jkl ; j, k, l are cubes
z ; otherwise

where z is a fixed non-zero element of X. It is easy to see that st3 (X)− limj,k,l xjkl =
z, since the cardinality of the set

|{(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − z /∈ U}| ≤ 3
√
j

3
√
k

3
√
l

for every neighbourhood U of 0. But x = (xjkl) is neither convergent nor bounded.
In a topological group, triple sequence x = (xjkl) is called statistically Cauchy if

for each neighbourhood U of 0 there exist N = N(U), M = M(U), Z = Z(U) such
that for all j, p ≥ N, k, q ≥ M, l, r ≥ Z the set

{(j, k, l) : j, p ≥ N, k, q ≥ M, l, r ≥ Z; xjkl − xpqr /∈ U}

has triple natural density zero. In this case we denote the set of all statistically
Cauchy triple sequences by st3C(X).

3. Main Results

Theorem 3.1. A triple sequence x = (xjkl) of points in X is statistically convergent
to L if and only if there exists a subset K ⊂ N × N × N such that δ3 (K) = 1 and
limj,k,l xjkl = L where the limit is being taken over the set K, i.e., (j, k, l) ∈ K.

Proof. Let x = (xjkl) be statistically convergent to L and (Uq) be a base of nested
closed neighbourhood of 0. We write for q = 1, 2, ...

Kq = {(j, k, l) ∈ N× N× N : xjkl − L /∈ Uq}

and

Mq = {(j, k, l) ∈ N× N× N : xjkl − L ∈ Uq} .
Then δ3(Kq) = 0 and

M1 ⊃ M2 ⊃ ... ⊃ Mi ⊃ Mi+1 ⊃ ... (3.1)
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and
δ3(Mq) = 1, q = 1, 2, ... . (3.2)

Now we will show that for (j, k, l) ∈ Mq, x = (xjkl) is convergent to L. Suppose that
x = (xjkl) is not convergent to L so that there is a neighbourhood U of 0 such that
xjkl − L /∈ U, for infinitely many terms. Let Uq ⊂ U for q = 1, 2, ... and

MU = {(j, k, l) ∈ N× N× N : xjkl − L ∈ U} .
Then δ3(MU ) = 0 by (3.1), Mq ⊂ MU . Hence δ3(Mq) = 0 which is contradiction to
(3.2). Thus x = (xjkl) is convergent to L.

Conversely, suppose that there exists a subset K ⊂ N×N×N such that δ3 (K) = 1
and limj,k,l xjkl = L; i.e., there exists N ∈ N such that for each neighbourhood U of
0, xjkl − L ∈ U for j, k, l ≥ N . Now

KU = {(j, k, l) ∈ N× N× N : xjkl − L /∈ U}
⊂ N× N× N \ {(jN+1, kN+1, lN+1) , (jN+2, kN+2, lN+2) , ...} .

Hence δ3(KU ) ≤ 1 − 1 = 0. It follows that x = (xjkl) is statistically convergent to
L. �

Corollary 3.1. If a triple sequence x = (xjkl) is statistically convergent to a point
L, then there exists a sequence y = (yjkl) such that limj,k,l yjkl = L and

δ3 ({(j, k, l) ∈ N× N× N : xjkl = yjkl}) = 1

i.e., xjkl = yjkl for almost all j, k, l ∈ N.

Theorem 3.2. Let X be complete. A triple sequence x = (xjkl) of points in X is
statistically convergent if and only if x = (xjkl) is statistically Cauchy.

Proof. Suppose that the triple sequence x = (xjkl) is statistically convergent to L.
Let U be any neighbourhood of 0. Then we may choose a symmetric neighbourhood
W of 0 such that W +W ⊂ U. Then for this neighbourhood W of 1, the set

{(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − L ∈ W}
has triple natural density 0. For each neighbourhood U of 0, the set

{(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − L /∈ U}
has triple natural density zero. Then we may choose numbers N , M and Z such that
xNMZ − L /∈ U. Now we write

AU = {(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − xNMZ /∈ U} ,

BW = {(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − L /∈ W}
and

CW = {(j, k, l) : j = N ≤ n, k = M ≤ m, l = Z ≤ r; xNMZ − L /∈ W} .
Then AU ⊂ BW ⊂ CW and hence δ3(AU ) ≤ δ3(BW ) ≤ δ3(CW ) = 0. Therefore we get
that x = (xjkl) is statistically Cauchy.

Conversely, suppose that there is a statistically Cauchy sequence x = (xjkl) but it
is not statistically convergent. Then we may find natural numbers N , M and Z such
that the set

AU = {(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − xNMZ /∈ U}
has triple natural density zero. It follows from this the set

EU = {(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − xNMZ ∈ U}
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has triple natural density one. Now, we may choose a neighbourhood W of 0 such
that W +W ⊂ U. Now take any fixed non-zero element L of X. Write xjkl−xNMZ =
xjkl−L+L−xNMZ . It follows from this equality that xjkl−xNMZ ∈ U if xjkl−L ∈ W.
Since x = (xjkl) is not statistically convergent to L, the set

BW = {(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − L /∈ W}
has triple natural density one. Hence the set

EU = {(j, k, l) : j ≤ n, k ≤ m, l ≤ r; xjkl − xNMZ ∈ U}
has triple natural density zero, i.e., the set AU has triple natural density one, which
is contradiction. This completes the proof. �

Now from Theorem 3.1 and Theorem 3.2 we can state the following theorem and
since the proof is easy, then we omit it.

Theorem 3.3. If X is complete, the the following conditions are equivalent:
a) x = (xjkl) is statistically convergent to L,
b) x = (xjkl) is statistically Cauchy,
c) There exists a subsequence y = (yjkl) of x = (xjkl) such that limj,k,l yjkl = L.
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