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The Hadamard’s inequality for quasi-convex functions via
fractional integrals
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Abstract. In this paper, we give the Riemann-Liouville fractional integrals definitions. We
use these Riemann-Liouville fractional integrals to establish some new integral inequalities
for quasi-convex functions. Also, some applications for special means of real numbers are
provided.
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1. Introduction

Let real function f be defined on some nonempty interval I of real line R. The
function f is said to be quasi-convex on I if inequality

f (tx+ (1− t)y) ≤ max {f(x), f(y)} (QC)

holds for all x, y ∈ I and t ∈ [0, 1] (see [15]).
Let f : I ⊂ R → R be a convex function on the interval of I of real numbers and

a, b ∈ I with a < b. The following double inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1)

is well-known in the literature as Hadamard’s inequality. For several recent results
concerning the inequality (1) we refer the interested reader to ([1], [2], [3], [9], [12]-
[15]). Clearly, any convex function is a quasi-convex function. Furthermore, there exist
quasi-convex functions which are not convex. For example, consider the following:

Let f : R+ → R,
f(x) = lnx, x ∈ R+.

This function is quasi-convex. However f is not convex functions.

Definition 1.1. [15] The mapping f : I → R is Jensen- or J-quasi-convex if

f

(
x+ y

2

)
≤ max {f(x), f(y)} (JQC)

for all x, y ∈ I.

Definition 1.2. [15] For I ⊂ R, the mapping f : I → R is Wright-quasi-convex if,
for all x, y ∈ I and t ∈ [0, 1], one has the inequality

1

2
[f(tx+ (1− t)y) + f((1− t)x+ ty)] ≤ max {f(x), f(y)} (WQC)
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or equivalently
1

2
[f(y) + f(x+ δ)] ≤ max {f(x), f(y + δ)}

for every x, y + δ ∈ I with x < y and δ > 0.

In [15], Dragomir and Pearce proved the following results connected with the in-
equality (1):

Theorem 1.1. [15] Let f : I → R be a Wright-quasi-convex map on I and suppose
a, b ∈ I ⊆ R with a < b and f ∈ L1[a, b]. Then we have the inequality

1

b− a

∫ b

a

f(t)dt ≤ max {f(a), f(b)} . (2)

Theorem 1.2. [15] Let WQC(I) denote the class of Wright-quasi-convex functions
on I ⊆ R. Then

QC(I) ⊂ WQC(I) ⊂ JQC(I).

In [12], Ion proved the following results connected with quasi-convex function:

Theorem 1.3. [12] Assume a, b ∈ R with a < b and f : [a, b] → R is a differentiable
function on (a, b). If |f ′| is quasi-convex on [a, b] then the following inequality holds
true ∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

4
max {|f ′(a)| , |f ′(b)|} . (3)

Theorem 1.4. [12] Assume a, b ∈ R with a < b and f : [a, b] → R is a differentiable

function on (a, b). Assume p ∈ R with p > 1. If |f ′|p/(p−1)
is quasi-convex on [a, b]

then the following inequality holds true∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

2(p+ 1)1/p

[
max

{
|f ′(a)|

p
p−1 , |f ′(b)|

p
p−1

}] p−1
p

.

(4)

In [2], Alomari et al. proved the following theorem for quasi-convex function:

Theorem 1.5. [2] Let f : I◦ ⊂ R → R be a differentiable mapping on I◦ , a, b ∈ I◦

with a < b. If |f ′|q is quasi-convex on [a, b], q ≥ 1, then the following inequality holds:∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

4

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q . (5)

Now we give some necessary definitions and mathematical preliminaries of frac-
tional calculus theory which are used throughout this paper.

Definition 1.3. [11] Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jα
a+f and

Jα
b−f of order α > 0 with a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ(α)

x∫
a

(x− t)
α−1

f(t)dt, x > a

and

Jα
b−f(x) =

1

Γ(α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

respectively where Γ(α) =
∞∫
0

e−uuα−1du. Here is J0
a+f(x) = J0

b−f(x) = f(x).
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In the case of α = 1, the fractional integral reduces to the classical integral.
For some recent results connected with fractional integral inequalities see ([4]-[8]).
In [13], Sarıkaya et al. proved the following Lemma and established some inequal-

ities for fractional integrals

Lemma 1.6. [13] Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b.
If f ′ ∈ L[a, b], then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

=
b− a

2

1∫
0

[(1− t)
α − tα] f ′(ta+ (1− t)b)dt.

The aim of this paper is to establish Hadamard type inequalities for quasi-convex
functions via Riemann-Liouville fractional integral.

2. MAIN RESULTS

Theorem 2.1. Let f : [a, b] → R, be a positive function with 0 ≤ a < b and f ∈
L1[a, b]. If f is a quasi-convex function on [a, b], then the following inequality for
fractional integrals holds:

Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] ≤ max {f(a), f(b)}

with α > 0.

Proof. Since f is quasi-convex function on [a, b], we have

f (ta+ (1− t)b) ≤ max {f(a), f(b)}
and

f ((1− t)a+ tb) ≤ max {f(a), f(b)} .
By adding these inequalities we get

1

2
[f (ta+ (1− t)b) + f ((1− t)a+ tb)] ≤ max {f(a), f(b)} (6)

Then multiplying both sides of (6) by tα−1 and integrating the resulting inequality
with respect to t over [0, 1], we obtain

1∫
0

tα−1f (ta+ (1− t)b) dt +

1∫
0

tα−1f ((1− t)a+ tb) dt

=

a∫
b

(
b− u

b− a

)α−1

f(u)
du

a− b
+

b∫
a

(
v − a

b− a

)α−1

f(v)
dv

b− a

≤ 2

α
max {f(a), f(b)} ,

i.e.
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] ≤ max {f(a), f(b)} .

The proof is complete. �
Remark 2.1. If we choose α = 1 in Theorem 2.1, we have the inequality (2).
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Theorem 2.2. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b.
If |f ′| is quasi-convex on [a, b] and α > 0, then the following inequality for fractional
integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣ (7)

≤ b− a

α+ 1

(
1− 1

2α

)
max {|f ′(a)| , |f ′(b)|} .

Proof. Using Lemma 1.6 and the quasi-convex of |f ′| with properties of modulus, we
have∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣
≤ b− a

2

1∫
0

|(1− t)
α − tα| |f ′(ta+ (1− t)b)| dt

≤ b− a

2

1∫
0

|(1− t)
α − tα|max {|f ′(a)| , |f ′(b)|} dt

=
b− a

2
max {|f ′(a)| , |f ′(b)|}


1
2∫
0

[(1− t)
α − tα] dt+

1∫
1
2

[tα − (1− t)
α
] dt


=

b− a

α+ 1

(
1− 1

2α

)
max {|f ′(a)| , |f ′(b)|} .

where we use the fact that

1∫
0

|(1− t)
α − tα| dt =

1
2∫
0

[(1− t)
α − tα] dt+

1∫
1
2

[tα − (1− t)
α
] dt =

2

α+ 1

(
1− 1

2α

)

which completes the proof. �

Remark 2.2. If we choose α = 1 in (7), then the inequality (7) reduces to the
inequality (3) of Theorem 1.3.

Theorem 2.3. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b
such that f ′ ∈ L1[a, b]. If |f ′|q is quasi-convex on [a, b], and p > 1, then the following
inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣ (8)

≤ b− a

2(αp+ 1)
1
p

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

where 1
p + 1

q = 1 and α ∈ [0, 1].
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Proof. From Lemma 1.6 and using Hölder inequality with properties of modulus, we
have ∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣
≤ b− a

2

1∫
0

|(1− t)
α − tα| |f ′(ta+ (1− t)b)| dt

≤ b− a

2

 1∫
0

|(1− t)
α − tα|p dt


1
p
 1∫

0

|f ′(ta+ (1− t)b)|q dt


1
q

.

We know that for α ∈ [0, 1] and ∀t1, t2 ∈ [0, 1],

|tα1 − tα2 | ≤ |t1 − t2|α ,

hence

1∫
0

|(1− t)
α − tα|p dt ≤

1∫
0

|1− 2t|αp dt

=

1
2∫
0

[1− 2t]
αp

dt+

1∫
1
2

[2t− 1]
αp

dt

=
1

αp+ 1
.

Since |f ′|q is quasi-convex on [a, b], we get∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣
≤ b− a

2(αp+ 1)
1
p

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

which completes the proof. �

Remark 2.3. If in Theorem 2.3, we choose α = 1, then the inequality (8) becomes
the inequality (4) of Theorem 1.4.

Theorem 2.4. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b
such that f ′ ∈ L1[a, b]. If |f ′|q is quasi-convex on [a, b] and q ≥ 1, then the following
inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣ (9)

≤ b− a

α+ 1

(
1− 1

2α

)(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

with α > 0.
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Proof. From Lemma 1.6 and using power-mean inequality with properties of modulus,
we can write∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣
≤ b− a

2

1∫
0

|(1− t)
α − tα| |f ′(ta+ (1− t)b)| dt

≤ b− a

2

 1∫
0

|(1− t)
α − tα| dt

1− 1
q
 1∫

0

|(1− t)
α − tα| |f ′(ta+ (1− t)b)|q dt


1
q

.

Since |f ′|q is quasi-convex on [a, b], we have∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣
≤ b− a

2

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

 1∫
0

|(1− t)
α − tα| dt


=

b− a

2

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q


1
2∫
0

[(1− t)
α − tα] dt+

1∫
1
2

[tα − (1− t)
α
] dt


=

b− a

α+ 1

(
1− 1

2α

)(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q ,

which completes the proof. �

Remark 2.4. We note that the obtained inequality (9) is better than the inequality
(8) meaning that the approach via the power mean inequality is a better approach
than that through Hölder’s inequality.

Remark 2.5. If in Theorem 2.4, we choose α = 1, then the inequality (9) becomes
the inequality (5) of Theorem 1.5.

3. APPLICATIONS TO SPECIAL MEANS

We now consider the means for arbitrary real numbers α, β (α ̸= β). We take
(1) Arithmetic mean :

A(α, β) =
α+ β

2
, α, β ∈ R+.

(2) Logarithmic mean:

L(α, β) =
α− β

ln |α| − ln |β|
, |α| ̸= |β| , α, β ̸= 0, α, β ∈ R+.

(3) Generalized log −mean:

Ln(α, β) =

[
βn+1 − αn+1

(n+ 1)(β − α)

] 1
n

, n ∈ Z\{−1, 0}, α, β ∈+ .

Now using the results of Section 2, we give some applications for special means of
real numbers.
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Proposition 3.1. Let a, b ∈ R+, a < b and n ∈ Z. Then, we have

|A(an, bn)− Ln
n(a, b)| ≤

b− a

4
max {|a|n , |b|n} .

Proof. The assertion follows from Theorem 2.2 applied to the quasi-convex mapping
f(x) = xn, x ∈ R and α = 1. �
Proposition 3.2. Let a, b ∈ R+, a < b and n ∈ Z. Then, for all q ≥ 1, we have

|A(an, bn)− Ln
n(a, b)| ≤

b− a

4

(
max

{
(|a|n)q , (|b|n)q

}) 1
q .

Proof. The assertion follows from Theorem 2.4 applied to the m-convex mapping
f(x) = xn, x ∈ R and α = 1. �

References

[1] M. Alomari and M. Darus, On the Hadamard’s inequality for log-convex functions on the coor-
dinates, Journal of Inequalities and Applications (2009), Article ID 283147, 13 pages.

[2] M. Alomari, M. Darus and S.S. Dragomir, Inequalities of Hermite-Hadamard’s type for functions

whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll. 12, Supplement,
Article 14.
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