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The Hadamard’s inequality for quasi-convex functions via
fractional integrals
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ABSTRACT. In this paper, we give the Riemann-Liouville fractional integrals definitions. We
use these Riemann-Liouville fractional integrals to establish some new integral inequalities
for quasi-convex functions. Also, some applications for special means of real numbers are
provided.
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1. Introduction

Let real function f be defined on some nonempty interval I of real line R. The
function f is said to be quasi-convex on I if inequality

[tz + (1 =t)y) <max{f(x), fy)}  (QC)

holds for all z,y € I and ¢t € [0, 1] (see [15]).
Let f: I C R — R be a convex function on the interval of I of real numbers and
a,b € I with a < b. The following double inequality

r(45) < 5 [ < LA I0 )

is well-known in the literature as Hadamard’s inequality. For several recent results

concerning the inequality (1) we refer the interested reader to ([1], [2], [3], [9], [12]-

[15]). Clearly, any convex function is a quasi-convex function. Furthermore, there exist

quasi-convex functions which are not convex. For example, consider the following:
Let f: RT — R,

f(z)=Inz, zeR".

This function is quasi-convex. However f is not convex functions.

Definition 1.1. [15] The mapping f : I — R is Jensen- or J-quasi-convex if

F(55) smx @) 00)

for all z,y € I.

Definition 1.2. [15] For I C R, the mapping f : I — R is Wright-quasi-convez if,
for all z,y € I and t € [0, 1], one has the inequality

% [f(tx + (1 = t)y) + f((1 = t)z + ty)] < max{f(z), f(y)} (WQC)
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or equivalently

1
3 W)+ fz+9)] < max{f(z), f(y + )}
for every z,y + 6 € I with x <y and § > 0.
In [15], Dragomir and Pearce proved the following results connected with the in-
equality (1):

Theorem 1.1. [15] Let f : I — R be a Wright-quasi-convex map on I and suppose
a,be I CR witha <b and f € Li]a,b]. Then we have the inequality

b
7 | Fde < max{f(a), F0)}. 2)

Theorem 1.2. [15] Let WQC(I) denote the class of Wright-quasi-convex functions
on I CR. Then
QC(I) cwWQC(I) c JQC(I).

In [12], Ion proved the following results connected with quasi-convex function:

Theorem 1.3. [12] Assume a,b € R with a <b and f : [a,b] — R is a differentiable
function on (a,b). If | f'| is quasi-convex on [a,b] then the following inequality holds

true
fla) + f(b)
‘ 5 —a/f )dx

< 2 max {17 (@) 1B 3)

Theorem 1.4. [12] Assume a,b € R with a <b and f : [a,b] = R is a differentiable
function on (a,b). Assume p € R with p > 1. If |f’|p/(p71) is quasi-convez on [a, b]
then the following inequality holds true

f(a)2 —a/f

In [2], Alomari et al. proved the following theorem for quasi-convex function:

Theorem 1.5. [2] Let f : I° C R — R be a differentiable mapping on I° , a,b € I°
with a < b. If | f'|? is quasi-convex on [a,b], ¢ > 1, then the following inequality holds:

fla) + f(b)
2 b—a/f Jdz

p—1

p“?”f’{ maxc {|'(@)|7 7 | BT }] 7
(4)

<278 max {If @I PO ()

Now we give some necessary definitions and mathematical preliminaries of frac-
tional calculus theory which are used throughout this paper.

Definition 1.3. [11] Let f € Li[a,b]. The Riemann-Liouville integrals J, f and
J- f of order a > 0 with a > 0 are defined by

xT

T fa) = ﬁ/ (@ =0 f(@O)dt, x> a

a

and
b

T () = F(la)/ (t—2) L f)dt, < b
respectively where I'(a) = Ofoe*“uo‘*ldu. Here is JO, f(z) = J_ f(z) = f(x).
0



THE HADAMARD’S INEQUALITY FOR QUASI-CONVEX FUNCTIONS 169

In the case of o = 1, the fractional integral reduces to the classical integral.

For some recent results connected with fractional integral inequalities see ([4]-[8]).

In [13], Sarikaya et al. proved the following Lemma and established some inequal-
ities for fractional integrals

Lemma 1.6. [13] Let f : [a,b] — R, be a differentiable mapping on (a,b) with a < b.
If f' € L[a,b], then the following equality for fractional integrals holds:

f(a) + f(b) Dla+1) a
T - e ) g f(a)
1
b—a

= = /[(1 — )" —t*] f'(ta + (1 — t)b)dt.
0

The aim of this paper is to establish Hadamard type inequalities for quasi-convex
functions via Riemann-Liouville fractional integral.

2. MAIN RESULTS

Theorem 2.1. Let f : [a,b] — R, be a positive function with 0 < a < b and f €
Lifa,b). If f is a quasi-convex function on [a,b], then the following inequality for
fractional integrals holds:
MNa+1) ;4 o
O D) e )+ S f(a)) < max {f(a), F0)
2(b—a)
with o > 0.

Proof. Since f is quasi-convex function on [a, b], we have

f(ta+ (1 —t)b) <max{f(a), f(b)}
and

F (1= )+ th) < max {£(a), £(B)} -
By adding these inequalities we get
1
5 f (ta+ (1 =1)b) + f((1 —t)a+th)] < max{f(a), f(b)} (6)
Then multiplying both sides of (6) by t*~! and integrating the resulting inequality
with respect to t over [0, 1], we obtain
1
/ta‘lf (ta+ (1 —t)b)dt +

0

t*7Lf (1 —t)a + tb) dt

(=) r 2+ [ (22)" sy

1
LI o~ » o~~~

< Zimax{f(a), F0)
S e F0) + T ()] < e {£(0) £}
The proof is complete. U

Remark 2.1. If we choose @ = 1 in Theorem 2.1, we have the inequality (2).
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Theorem 2.2. Let f : [a,b] = R, be a differentiable mapping on (a,b) with a < b.
If | f'| is quasi-convez on [a,b] and a > 0, then the following inequality for fractional
integrals holds:

‘f(a) +f(0) ((ba +a1)L (7% f(b) + J f(a)] (7)
< 28 (1 g ) mer @l )

Proof. Using Lemma 1.6 and the quasi-convex of |f’| with properties of modulus, we
have

‘f(a) +/0)  Tlet1)

[Ja+ (0) + Jp= f(a)]

2(b—a)”
1
< [0 = el e 0 o)
b 1
< oo [10= 0" =t max {|f (@)l |f' 0]} at
0
b % 1
= St max (I @LIFONS [ 1007 = eaes [ - 0o
0 1
b 1
= 28 (1 g ) a7 @L PO
where we use the fact that
1 1 9 1
(1 =) =t dt = [ [(1—t)* —tY]dt + (1—1)Ydt = <1—a>
[ / / a+1 2
which completes the proof. (I

Remark 2.2. If we choose o = 1 in (7), then the inequality (7) reduces to the
inequality (3) of Theorem 1.3.

Theorem 2.3. Let f : [a,b] — R, be a differentiable mapping on (a,b) with a < b
such that f € Lyla,b]. If | f'|? is quasi-convex on [a,b], and p > 1, then the following
inequality for fractional integrals holds:

f@+f®) T+ ., .
3 gy Ve )+ I (@) ®)

b—a
2ap+1)»

Q=

IN

(max {|f"(a)|*, |F'(0)|"})

where%+é:1 and o € [0,1].
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Proof. From Lemma 1.6 and using Holder inequality with properties of modulus, we

have

- a [Jar F(0) + 5 f(a)]

‘f(a)Jrf(b) [la+1)
2 2(b—a)

—a
2

IN

1
/| 1—8)" =t |f (ta+ (1 — t)b)| dt

1
P 1

0

We know that for o € [0,1] and V¢, t5 € [0, 1],

1 — 5] < [t — to|”,

hence
1 1
/|(1—t)a—t"|pdt < /|1—2t|o‘pdt
0 0
3 1
= / O‘pdt—i-/ 1" dt
0
1
- ap+1°

Since |f’|? is quasi-convex on [a, b], we get
fla)+f(b)  T(a+1) [

2 2(b—a)*

b—a
2ap +1)7

Ja+ F(0) + J5- f(a)]

(max {|f'(a)|", | (B)|"}) "

A\

which completes the proof.

0
b 1
< 279 /|1—t — P dt /|f’(ta+(1—t)b)\th
0

O

Remark 2.3. If in Theorem 2.3, we choose @ = 1, then the inequality (8) becomes

the inequality (4) of Theorem 1.4.

Theorem 2.4. Let f : [a,b] — R, be a differentiable mapping on (a,b) with a < b
such that f' € Li[a,b]. If | f'|? is quasi-convex on [a,b] and q > 1, then the following

inequality for fractional integrals holds:

fla)+f(0)  T(a+1)
2 2(b—a)”

b—a 1 q q
- a+1<1—2a>(max{|f )17 B)7Y)

[Ja+ f(0) + Ji- f(a)]

Q=

with o > 0.

9)
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Proof. From Lemma 1.6 and using power-mean inequality with properties of modulus,
we can write

‘f(a) + /) Tlet+1)

20h—a) [Ja+ F(0) + Jp- f(a)]

1

< 2“/| (1 —4)" — ]|/ (ta + (1 — £)b)| dt
0

1 1
-3 /1 5

1
< {|1—t o] dt z|(1—t) — 91 (ta + (1 — 0)b)| de

Since | f’|? is quasi-convex on [a, b], we have

‘f(a) + /) 2F(<:_+a1)1 T2 () + Jg- f(a)

b

< 8 (max {|f(@)*, 11/

1—t —t%| dt
5 I |

1
[(1-8)" —t“]dt+/[t“—(1—t)o‘]dt

1
2

b—
= 2 max {1 )l 1

1
;
q
0
1
2
l
q
0

Q=

_ Z;i@_;)(max{u (@I, 1f/®)"})7,

which completes the proof. O

Remark 2.4. We note that the obtained inequality (9) is better than the inequality
(8) meaning that the approach via the power mean inequality is a better approach
than that through Hoélder’s inequality.

Remark 2.5. If in Theorem 2.4, we choose o = 1, then the inequality (9) becomes
the inequality (5) of Theorem 1.5.

3. APPLICATIONS TO SPECIAL MEANS

We now consider the means for arbitrary real numbers a, 8 (a # ). We take
(1) Arithmetic mean :

Ala, B) = O‘;ﬁ, o, B € R
(2) Logarithmic mean:
a—p
L(a, B) = ol —m 3]’ lal # 18], a,f #0, a, € R*.

(3) Generalized log — mean:

ﬁnJrl _ an+1 n N
Ly(a,B) = {(n—i—l)(ﬂ—a)] , neZ\{-1,0}, a,B €.

Now using the results of Section 2, we give some applications for special means of
real numbers.
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Proposition 3.1. Let a,b € R*, a < b and n € Z. Then, we have
bh—
[A(a",b") = Li(a,b)| < == max{[a|", "}

Proof. The assertion follows from Theorem 2.2 applied to the quasi-convex mapping
flz)=2", z€Rand a =1. O

Proposition 3.2. Let a,b € RT, a < b and n € Z. Then, for all ¢ > 1, we have
n n n b—a :
|A(a",6") = Ly(a,b)| < —— (max {(la|™)*, ([6]")*}) " -

Proof. The assertion follows from Theorem 2.4 applied to the m-convex mapping
f(z) =2, z€Rand a = 1. O
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