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Entropy solution to nonlinear multivalued elliptic problem
with variable exponents and measure data

IsMAEL NYANQUINI, STANISLAS OUARO, AND SAFIMBA SOMA

ABSTRACT. We study a nonlinear elliptic problem governed by a general Leray-Lions operator
with variable exponents and diffuse Radon measure data that does not charge the sets of zero
p(.)-capacity. We prove a decomposition theorem for these measures (more precisely, as a sum
of a function in L!(Q2) and of a measure in W_lvpl(‘)(ﬂ)) and an existence and uniqueness
result of entropy solution.
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1. Introduction and main results

Our aim is to study the existence and uniqueness of a solution for the nonlinear
boundary value problem of the form

-V -a(z,Vu) + f(u) > p in Q,

P(B, ) :
u=20 on 01},

where £ is a maximal monotone graph on R such that 0 € 3(0), the vector field a is a
Leray-Lions operator with variable exponent, i is a bounded Radon diffuse measure
and  C RY is a smooth bounded domain (N > 1).

In [15], the authors studied the following problem

—Au+g(u)=p inQ
(1.1)
u=~0 on 0f),

where p is a bounded measure in  and g : (—o0, 1) — R is a continuous nondecreasing
function such that ¢(0) = 0 and

li t) = . 1.2

im g(t) = +00 (1.2)
It is well-known that (see, e.g., [7]) a solution of (1.1), whenever it exists, is unique.
It has also been proved by Boccardo [4] (in the spirit of Brezis-Strauss [10]) that, for
every € L1(Q2), problem (1.1) has a solution. Moreover, Boccardo also shows that
problem (1.1) has no solution if i is a Dirac mass d,, with a € Q. Consequently, in
[15], the authors introduced the notion of good measure. They said that p is a good
measure (relative to g) if problem (1.1) has a solution w.
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We denote by M(Q) the space of bounded Radon measures in ), equipped with its
standard norm ||.|[ vy, (). Given v € M, (Q), we say that v is diffuse with respect to

the capacity VVO1 P(Q) (p-capacity for short) if v(E) = 0, for every set E such that
Capp(E ,Q) = 0. The p-capacity of every subset E with respect to  is defined as

Cap,(E,Q) = inf{/ |Vul? dm}
Q

and the infimum is taken on all functions u € Wy (2)NCy () such that u = 1 almost
everywhere on F, u > 0 almost everywhere on 2. The set of bounded Radon diffuse
measures in the constant exponent setting is denoted by M? ().

Moreover, in [15], the authors introduced for the problem (1.1) the notion of reduced
measure denoted by p* associated with u. It corresponds to the right measure that
we can associate with p such that problem (1.1) with p replaced by p* has a unique
solution. Indeed, by using natural approximation scheme (keep u fixed and approxi-
mate g or keep g fixed and approximate p) and passing to the limit in the equation
they characterized the right part of u for which the problem (1.1) is well-posed. This
approach was deeply analyzed and studied in the literature for the laplacian (see [7],
[8], [9] and [15]).

In [18], the authors used a different approach to study the problem P(8,u) where
the vector field a is a Leray-Lions operator with constant exponent. For the maximal
monotone graph 3, the authors set in [18] the following.

int(domp) = (m, M) with —oo<m <0< M < +o0.

Recall that a Leray-Lions operator with constant exponent (see [21]) is a Carathéodory
function a : Q@ x RY = RY (i.e. a(x,&) is measurable in z € Q for every € € RY and
continuous in ¢ € RY, for almost every z € Q) such that

e there exists A > 0 such that V¢ € RY and a.e. z € ©,

a(z,€).§ = AlE["; (1.3)
o for any (&,7) € RY x RN with € # n and a.e. © € Q,

(a(2,&) = atz,m)- (¢ =) > 0; (1.4)
e there exists A > 0 such that for a.e. z € Q and for any ¢ € R,

latw,&)] < A(ja (@) + 1) (15)

where j; is a nonnegative function in L¥' (Q) with p’ = le .

Indeed, as a consequence of the preceding arguments in [15], it is clear that the
standard notion of weak solution neither standard renormalized/entropy solution is
not the natural one for P(3, ) when p is a Radon measure. Indeed, the singular
part of p with respect to Lebesgue measure creates an obstruction to the existence
of such kind of solutions. This is related to the fact that passing to the limit in
the approximation scheme, singular parts may appear in the equation and need to be
treated. In [18], the authors analyzed and studied the main feature of these quantities
in the case of p € M¥(Q2) and of maximal monotone graph 3. Handling these parts
give the right notion of solutions for P(3, 1) when p € M%(2). This notion of solution
is such that any measure in M?(Q2) is a good measure for P(S3, j1).

Recall that, taking the nonlinearity g satisfying (1.2), the authors of [15] have shown
that, there exists a diffuse measure p with respect to the capacity H*(£2) such that the
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problem (1.1) has no weak solution. So, in general, bounded Radon diffuse measures
are not good measures for problem (1.1) with respect to the standard notion of weak
solution. But, it is a good measure for (1.1) with respect to the notion of solution
introduced in [18]. Moreover, in [18], the authors proved that if

int(domp) = (m, M) with —oco<m <0< M < 400,

then the reduced measure and the good measure coincides i.e. any measure in M?¥ ()
is a reduced measure in the sense that the solution is unique.

In this paper, we generalized the work in [18] for the case of variable exponents.
Indeed, in [18], the authors used the following famous decomposition theorem of
measure in M7 ().

Theorem 1.1. (see [5], Theorem 2.1) Let p be a real number such that 1 < p < +o00.
Let p be an element of My,(Q). Then p € LY (Q)+W =1 (Q) if and only if p € M2 (Q).

In this paper we prove an equivalent theorem for the variable exponent setting. Given

v € My(Q), we say that v is diffuse with respect to the capacity Wol’p(')(Q) (p(.)-
capacity for short) if v(E) = 0 for every set I such that Cap,,(E,Q) = 0. The
set of bounded Radon diffuse measure in the variable exponent setting is denoted by
MY ().

We firstly prove a decomposition theorem for measures in Mf (')(Q). More precisely,
we prove the following.

Theorem 1.2. Let p(.) : Q — (1,+00) be a continuous function and u € My(Q2).
Then u € ./\/lf(')(Q) if and only if p € L*(Q) + W17 0(Q).

To give our notion of solution and the main results, we set
int(domp) = (m, M) with —oco<m <0< M < +o0.

For any r € R and any measurable function v on Q, [u = r|, [u < r] and [u > r]
denote, respectively, the sets {z € Q 1 u(z) =r}, {r € Q:u(z) <r}and {z € Q:
u(z) >}

Our main result is stated as follows:

Theorem 1.3. For any u € ./\/lg(')(ﬂ), the problem P(B, 1) has at least one solution
(u,w) in the sense that (u,w) € Wol’p(')(ﬂ) x LYQ), u € dom(B) LY — a.e. in Q,
w € B(u) LY — a.e. in Q, there exists v € Mf(')(ﬂ) such that v L LN,

v" is concentred on [u = M|, v~ is concentred on [u = m)]

and

/ a(z, Vu).Védz —|—/ wédz —|—/ Edv = / &dp, (1.6)
Q Q Q Q
for any £ € Wol’p(')(Q) N L>*(Q). Moreover

vt <l u=M] (L.7)

and
v < —pus| [u=m]. (1.8)

The connexion between our notion of solution and the entropic formulation (see [3])
of the solution is given in the following theorem.
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Theorem 1.4. 1. If (u,w) is a solution of P(B, p) in the sense of Theorem 1.3, then
(u, w) is a solution in the following sense : for any & € Wol’p(')(Q) NL>(Q) such that
& € domp,

/Qa(x, Vu). VT (u—§&)dr + /

wT(u — &)dx < / Ti(u—&)dp,  for any k > 0.
Q Q

(1.9)
2. The solution of P(f, u) is unique.

In particular, this equivalent formulation of entropy solution and the notion of solution
in Theorem 1.3 is very useful to prove the uniqueness of solution of problem P(S3, u).
Recalling that the notion of entropy solution was used in [2], to get the existence of
solutions for the problem

—div(a(z,u, Vu)) + g(z,u,Vu) = in Q,
u=~0 on 01,

under the assumption that y is a measure in L'(Q) + W17 0)(Q).

In [23], the authors proved the existence and uniqueness of entropy solution of P (3, 1),
where p € L*(€). This work also generalizes the ones done in [2], [23].

The paper is organized as follows. In section 2, we state some basic results, we prove
the Theorem 1.2 in section 3 and finally, in section 4, we deal with the proofs of
Theorem 1.3 and Theorem 1.4.

2. Assumptions and preliminary

We study the problem P(3, ) for a continuous variable exponent p(.). More precisely,
we assume that

p(.) : @ — (1,+00) is continuous such that 1 < p_ < p; < +o0, (2.1)
where p_ := ess inf p(z) and py := esssup p(x).
zeQ zeQ

We assume that the vector field a : Q x RN — R¥ is a Carathéodory function such
that:
e There exists a positive constant C7 such that

la(z, €)| < C1(j(x) + [P (2:2)

for almost every = € Q and for every & € RY where j is a non negative function in
LP'O(Q).
e For almost every = €  and for every &,1 € RV with & # 1,

(a(z, &) —a(x,n)).(€ —n) > 0. (2.3)

e There exists a positive constant Cs such that

a(z,€).£ > Cy | (2.4)

for almost every x € Q, Cy > 0 and for every ¢ € RV.
As the exponent p(.) appearing in (2.2) and (2.4) depends on the variable =, we must
work with Lebesgue and Sobolev spaces with variable exponents.
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We define the Lebesgue space with variable exponent LP()(Q) as the set of all mea-
surable functions u : 2 — R for which the convex modular

pp(')(u) = / |u|p(I)dx
Q
is finite. If the exponent is bounded, i.e., if p4 < 400, then the expression
ulpy =nf{A > 0: ppy(u/A) <1}

defines a norm in LP()(Q), called the Luxembourg norm. The space (LP()(Q), lIpcy)
is a separable Banach space.
Moreover, if 1 < p_ < py < +oo, then LP()(Q) is uniformly convex, hence reflexive,

and its dual space is isomorphic to Lpl(')(Q), where —— + — =1
p(x)  p'(z)
Finally, we have the Holder type inequality:
[ e < (S5t Yl o 25)
uvdx — +— | |u V| iy, .
o “\p-  ()- p() Mlp'(-)

for all u € Lp(')(Q) and v € LP/(-)(Q)_
Let

WLP(‘)(Q) = {u c Lp(‘)(Q) : |VU| € LP(~)(Q)}7

which is a Banach space equiped with the following norm
[ullpy = lulpe) + [Vulp).

The space (WP (Q), |.|[1 () is a separable and reflexive Banach space.
An important role in manipulating the generalized Lebesgue and Sobolev spaces is
played by the modular p,. of the space LPC) (). We have the following result [16]:

Proposition 2.1. If u,,u € LPV)(Q) and p, < 400, then the following properties
hold true:

(i) Julyy > 1= Julycy < ppy(u) < Julpfys

i) |’U"p(‘) <l= |u|g(+) < pp() (u) < |U|g5)§

i) |ul, ) <1 (respectively = 1;> 1) < pp()(u) <1 (respectively = 1;> 1);
W) [unl,) = 0 (respectively — +00) < py(.)(un) — 0 (respectively — +00);

(
(
(
() oo (u/ lulyy) = 1.

Next, we define Wy () as the closure of C§°(Q) in W()(Q) under the norm
[ull == [Vl -

The space (I/VO1 p0) (€),]-]) is a separable and reflexive Banach space. For more details
about Lebesgue and Sobolev spaces with variable exponent, we refer to [14], [19] and
the references therein.

We now recall some notations. For any given [,k > 0, we define the function h; by
hi(r) = min((l + 1 — |r|)*,1) and the truncation function 7} : R — R by Tk(s) =
max{—k, min(k, s)}.

We set

761”7(')(9) = {u :  — R, measurable such that Ty (u) € Wol’p(')(Q), for any k > 0} .
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For any Iy > 0, we define hg = hy, by
ho € CY(R),ho(r) >0 Vr € R,
ho(r) =1if |r] <lp and ho(r) =0if |r| > lp + 1.

If v is a maximal monotone operator defined on R, we denote by =y the main section
of v, i.e.

the element of minimal absolute value of v(s) if y(s) # 0,
0(s) = § +ooif [s, +00) N D(y) =0,

—o0 if (—o0,s] N D(y) = 0.
We give some useful convergence results.

Lemma 2.2. Let (8,)n>1 be a sequence of mazimal monotone graphs such that 8, —
B in the sense of the graph (for (z,y) € B, there exists (xn,yn) € Bn such that x,, — x
and y, — y). We consider two sequences (2p)n>1 C LY(Q) and (wp)n>1 C LY(Q).
We suppose that: ¥n > 1, wy, € By(zn), (Wn)n>1 is bounded in L'(Q) and 2z, — z in
LY(Q). Then

z € dom(p).

To prove Lemma 2.2, we need the “biting lemma of Chacon” [12]. Let us recall it.

Lemma 2.3. (biting lemma of Chacon).

Let @ C RY be an open bounded set of R and (f,,)nen+ a bounded sequence in L(2).
Then there exist f € L*(Q), a sequence (fn, )ken+ and a sequence of measurable sets
(Ej)jen+, E; C Q, Vj € N with E; 11 C Ej and jEI—Poo‘E‘” = 0, such that for any

JeN, fnk — fin Ll(Q\E])

Proof. (Proof of Lemma 2.2.) Since the sequence (wy,),,», is bounded in L*(Q), using
the “biting lemma of Chacon”, there exist w € L*(£2), a subsequence (w,,, ) r>1 and a
sequence of measurable sets (Ej),y in @ such that Ej 1 C Ej,Vj €N, lirf |Ej| =0

J—1+0o0

and Vj € N, w,,, — w in L'(Q\E}). Since z,,, — z in L'(Q) and so in L'(Q\E;),
Vj € N and f,, — 8 in the sense of graphs, we have w € 3(z) a.e. in Q\E;. Thus
z € dom(f) a.e. in Q\E;. Finally, we obtain z € dom(f) a.e. in Q. O

For E C Q, we denote
Sp()(B) = {u e WgP ()N Cp(Q) :u=1o0n E, u>0onQ}.
The Sobolev p(.)—capacity of F is defined by
C E,Q) f VulP®d
by ue;ﬁ)w)ﬁ ufr@d.

In the case Sp()(E) = 0, we set Cap,,(E,Q) =

If a property P(z) holds for all z € Q excepted for a set of zero p(.)—capacity, we say
that the property P(x) holds quasi-everywhere on £ and we note P(x) holds g.e..
We say that a function g : 2 — R is quasi continuous if for every € > 0, there exists
an open set A C  with Cap,,()(4,€2) < € such that g is continuous on Q\A.

Every u € W'P()(Q) has a quasi continuous representative denoted by @ which is
essentially unique. In fact if ¢ and @2 are quasi continuous, and ¢ = @2 a.e. (with
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respect to Lebesgue measure), then p; = 2 q.e..
We say that a sequence of functions (g, )n>0 converges to g q.e. if lirf gn(z) = g(x)
- n——+00o

q.e.. For more details about p(.)-capacity, we refer to [14], [17] and the references
therein.

3. Proof of the decomposition theorem of a measure in M:Z(")(Q)

Before we prove the Theorem 1.2, we need the following result.

Proposition 3.1. For any nonnegative measure p € ./\/lg(')(ﬂ) there exist a non

negative Radon measure v with v € W*I’p'(')(Q) and a nonnegative function h with
h € LY(Q,v) such that p = hry.

For the proof of Proposition 3.1 we need the following lemma.

Lemma 3.2. If (up)nen is a sequence in WHPO)(Q) which converges to u in WP ()
then there exits a subsequence (tn, )ken Of (Un)neny which converges to U q.e.

Proof. According to Proposition 2.1, the proof is similar to the proof of Theorem 4
in [22] (see also [13] for more details). O

Proof. (Proof of Proposition 3.1) Let F : W'P()(Q) — [0,400) be defined by

F(u) = Qmax{ﬂ,O}d,u where % denotes the quasi continuous representative of w.

The function F is convex and lower semicontinuous on W) (Q) (the lower semicon-
tinuity follows from Fatou’s Lemma and Lemma 3.2). Since W'2()(Q) is separable,
the function F' is the supremum of a countable family of continuous affine functions.
Therefore there exit a sequence (7, )nen in W17 ()(€) and a sequence (ay, )pen in R
such that F(u) = sup [<'yn,u> + an}, for every u € WhHr()(Q).

neN
Since F'(0) = 0, we have a,, < 0, hence

F(u) < Zlég <fyn,u>. (3.1)

For every t > 0 and for every u € W?()(Q), we have,
t<’yn,u> + a, < F(tu) = tF(u).

Dividing by t and letting ¢ goes to +o00, we get <'yn, u> < F(u). Hence, from (3.1) it
follows that

F(u) = itelg <’yn, u> (3.2)

For every ¢ € C§°(Q) with ¢ > 0, we have

thus <’yn, g0> > 0. By the Riesz representation Theorem, there exits a nonnegative

Radon measure on 2 still denoted by 7, such that

<vn,so> =/Q<pdvn,
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for every ¢ € C§°(2) with ¢ > 0.

For every Borel set, B C Q we define y(B) = f bnyn(B) where b, = 2_’””7””];/171@/(.)((2)'
Since ¥n(B) < [[Yn llw-1.0'0) () Capp.) (B, Q):Li:tlfollows that «y is a nonnegative Radon
measure on 2. As the series i" byYn converges in W12 () (Q) then v € W12 0)(Q).
For every n € N, the meaSGr:e1 Yn is absolutely continuous with respect to -y, thus,
there exists a non negative Borel function h,, : @ — R such that

u(B) = / hndr,
B

for every Borel set B C Q. From (3.2), it follows that

sup/ hndy = / wd, (3.3)
neNJQ Q
for every ¢ € C§° () with ¢ > 0. Hence
[ iy < (B, (3.4)
B

for every Borel set B C (2.
Let h = sup h,, and denote fr = sup h,,. We have fr T h as kK — +o0. Then, using

neN n<k
the Fatou’s Lemma yields from (3.4) that
[ hay < i),
B

for every Borel set B C (). Therefore

/ @dp = sup / phpdy < / phdry
Q neNJQ Q

for every ¢ € C§°(Q2) with ¢ > 0. This implies that

u(B) = [ han, (3.5)

for every Borel set B C ; that is u = h~y.
Since p is a bounded Radon measure on 2, setting B = Q in (3.5), one sees that
h e LY(Q,7) O

Proof. (Proof of Theorem 1.2.) (i) We first prove that if g € L'(Q) + W~12'()(Q)
then p € ./\/lg(')(ﬂ).

If e L' (Q) + W12 0)(Q) then there exist f € L'(Q) and F € (Lp/(')(Q))N such
that 4 = f —div(F) in D'(Q). Consider a subset E of Q such that Cap,,(,(E£,Q) = 0.
Then there exists ug € Sp()(£) such that /Q Vo |P® da = 0.

Let us consider a sequence (fy),, oy in L®-)'(Q) such that f, — f in L}(£2). We set
tn = fn—div(F). One has p,, — p in the sense of measures and then hI—E pn(E) =
n—-+oo

u(E).
Furthermore

un(E):/ dun:/ uodun:/ fnuodac—/ div(F)updz.
E E E E
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Hence, we get

|un (E)| = ‘/Efnuodx — /Ediv(F)uodx

S/ |fn|uod$+/ |div(F)| updz.
E E

Which implies
|pen (E)] §/ \fnu0|dw—|—/ |div(F)| updz. (3.6)
Q Q
The second term of the right hand side of (3.6) leads

/\div(F)|u0dx = /signo(div(F))div(F)uodm
Q Q

- /Q F.V (signg(div(F))uo) dz

IN

/Q F.V (signg (div(F))uo) d

< /Q\F.V(signo(div(F))uo)\d:r

/ |F.Vug| dz, where A :={zx € Q:div(F(z)) # 0}
A

/ |F.Vug| dz.
Q

IN

Then, it follows that

i) < [ Afaluoda + [ 1P| de (3.7)
For the second term of the right hand side of (3.7), we have

| 1P ualds < €Tl Vol (3.8)

Having in mind that ug € S,()(E), we get ug € L*°(£2) and the first term of the right
hand side of (3.7) gives

| fnluodr < ||fn||L(p*)'(Q) ||“0||Lp* Q-
Q

Since p~ > 1, LPO)(Q) < LP (Q) continuously then there exists C' > 0 such that
||UO||LP*(Q) < Cluolp()-
Now, since p(.) is continuous, by Poincaré’s inequality, we get

|U0|p(-) < C|VU0|p(-)'

Thus,
[ 1faluods < Clull o Tl (3.9)
Relations (3.7), (3.8) and (3.9) allow us to write
10 (B)] < Va0l (Cllull iy + COFls). (3.10)

Since / |Vuo[P@dz = 0, we get |Vug|py = 0 and the relation (3.10) reduces to
Q
|pn (E)| < 0. Hence |u(E) lim |u,(E)| < 0. Finally, one has u(E) = 0, therefore

| n—-+4oo
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ne MU (@),

1 e converse 1s proven as 1ollows: 1I y € ' then p € +W=> iS .
i) Th i follows: if € M?)(Q) th LYQ)+W 1P O(Q
The proof is done in three steps.

Step 1: We first observe that if Cap,,)(E, Q) = 0, then, both " (E) and u~ (E) are
equal to zero. This is a consequence of the definition of ™ and p~ and the mono-
tonicity of the p(.)-capacity. Recalling that p*(E) = sup{u(B) : B borelian, B C E},
then we may assume p to be positive in the next steps.

Step 2: By Proposition 3.1, we write p as p = hry, with v € W=12'0)(Q), 4 > 0 and
h € LY(Q,7), h > 0.
Let (K,)n>0 be an increasing sequence of compact sets contained in  such that

+oo

U K,, = and let us denote u,(zl) =T.(hxk, )Y-

n=0

Claim 3.1 (,ug,l)) is an increasing sequence of positive measures in W‘l’p,(')(Q)
n>0

with compact support in 2.

The fact that (Msll))nzo is an increasing sequence of positive measures with com-
pact support in € is obvious. Then, we prove that Vn > 0, MS) € W_l’pl(')(Q). For
any n > 0 and for any ¢ € WHP()(Q), we have

0< ‘ [ oau?
Q

= ‘/2¢Tn(hXKn)d7‘
¢

IN

1T (a2 2 /Q 6] dy

< COVNTu(hxr, ) L= @y llollwiec @) since v € Wt 0(Q)
< Cln, b )l¢llwiro @)

which means that, Vn > 0, p(?) € W=7 ()(Q). Let po = u(()l) and for any n >

1, pn = M,(zl) - ,ugll. The series Z,un converges strongly in M;(€Q) to p so that

n>0
+00 +00
o= Z fn. In particular Z | tin || A, () < +00. Recalling that for Z € My(Q2), Z >
n=0 n=0

Step 3: Let p be a function in C§° () such that p(z) > 0, Va € Q and / plx)dz = 1.
Q
Let (pn)n>0 be the sequence of mollifiers associated to p that is p, () = n'¥ p(nzx), Vo €

Q. For n > 0, if p, is the measure defined in Step 2, (ty, * pm)m>0 converges to p,
in W’Lp/(')(ﬂ) as m tends to infinity. By properties on p,, and pp,, ftn * pm belongs
to C§° () if m is large enough.

Choose m = m,, such that fi,%pm,, belongs to C§°(€2) and || pn*pm,, —Hn [lyy—1.07 () () <
27", We know that p, = fi+9gn with f,, = pin*pm,, and gn = iy, — i * pm,,. Thanks

—+oo
to the choice of m,,, the series Zgn converges in W‘l’p/(')(Q) and so g = Zgn
n>0 n>0

belongs to W~17'() ().
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Since ”fn”Ll(Q) = ||.Un * pmn”Ll(Q) < ||,unHMb(Q)a by Step 2, the series an con-

n>0
+oo
verges absolutely in L!(2) and so f = Z fn belongs to L*(€2). Thus, the three series
n>0

Z My Z gn and Z fn converge in the sense of distribution. Therefore
n>0 n>0 n>0

p=f+geL'(Q)+w 0@

4. Proof of the main results

Throughout this section, p € Mf(')(Q). By Theorem 1.2, we set x = f —div(F'), with

, N
feLl Q) and F € (Lp (')(Q)) . This section is devoted to the proof of Theorem
1.3 and Theorem 1.4.

For every € > 0, we consider the Yosida regularization 8. of S (see[11]), given by
1 _
5€:E(I—(I+eﬂ) 1.

Thanks to [11], there exists a non negative, convex and l.s.c. function j defined on R,
such that

B = 0j.
To regularize 3, we consider
1 2
j =min{ —|s—7r|*+j VseR, V .
jels) %ﬁ{?e's "l ](r)}, sER ez 0

By Proposition 2.11 in [11] we have

dom(pB) C dom(j) C dom(j) = dom(p),
. € . _
Je(s) = §|Be(3)|2 + j(Je(s)) where Je := (I + €p) 17
je is a convex, Frechet-differentiable function and 8. = Jj,
JeTjaselO.
Moreover, for any € > 0, (. is a nondecreasing and Lipschitz-continuous function.
To regularize p, for any € > 0, we define the functions

fe(z) = T;(f(x)) for any x € Q

and
e = fe—V-F for any € > 0.
Then, we consider the following approximating scheme problem
=V -a(z, Vue) + Be(ue) = pie in Q,
Pe(Be, pe)
U =0 on O0f).

Theorem 4.1. The problem P.(fc, jtc) admits a unique weak solution u. in the sense
that ue € WyP(Q), Be(ue) € LHQ) and Vo € WP (Q) N L2 (Q),

/Qa(a:,Vue).chdx—|—/Qﬂ5(u€)cpdz:/Qfgpdx—F/QF.Vgadx. (4.1)
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Proof. The techniques of this proof follow the proof of the Theorem 3.2 in [24] (see
also [6]).By the Theorem 3.1 in [20], for any k > 0, if g is a continuous nondecreasing
function with ¢g(0) = 0, the following problem

-V -a(z,Vu) + Ti(g(u)) =T in Q,
P(Tk(g)vr)
u=20 on O0f)

admits at least one weak solution uy € Wol’p(')(Q) such that Vi € Wol’p(') (Q)NL>®(Q),

/Qa(x,Vuk).Vgodx—l—/QTk(g(uk))cpdx:/QTgod:E, (4.2)

where T € L>(Q).
Furthermore

VE > [|T]|sc, l9(ur)] < [ T]|oo ace. in . (4.3)

Let us fix k > ||T|0o, we get the existence of solution of problem P(g,Y) for any g
and T as above.

The proof of (4.3) and the uniqueness proof are detailed in [24] (see also [6]). So, we
can set g = B and T = pu. to get the result of Theorem 4.1. O

The sequence (u¢)e>o satisfies the following lemma.

Lemma 4.2. Let u. be a weak solution of P.(B, iie), then

C(p, )
meas{‘u€| > k} S F (44)
and
Q
meas{|Vue| > k} < C(M; ) (4.5)
k@)

The proof of this lemma follow the proof of Proposition 4.7 and Proposition 4.8 in
[6].

We have the following results.

Proposition 4.3.

(¢) There exists 0 < C' < 400 such that for any k > 0,

/ |Vu[P@dz < Ck. (4.6)
(lucl <]

(i1) The sequence (Be(uc))eso is uniformly bounded in L'(Q).
(iii) For any k > 0, the sequence (Be(Tk(ue)))eso is uniformly bounded in L*((2).

Proof. (i) For any k > 0, taking ¢ = Ty (u.) in (4.1), we get
/ a(x, Vue). VT (ue)dx +/ Be(ue) T (ue)dr = / T (te)de. (4.7
Q Q Q
Using assumption (2.4), we obtain
Co / VT (ue) [P@ dz + / Be(ue) Ty (ue)da < / T (ue)dpte (4.8)
Q Q Q
From (4.8), it yields

o, / V[P e + / B, (1) Te(us)dz < K|u|(9). (4.9)
(el <A o
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All the terms in (4.9) are non negative so that we have

@/’ VPP da < klul(92) (4.10)
[Jue|<EK]

and
/ Be(ue)Tx (ue)dx < k|u|(£2). (4.11)
Q
Relation (4.6) follows from (4.10).
(#4) Dividing the terms in (4.11) by k£ > 0 and letting k goes to 0, we get

.1
m = [ B (ue) Ty (ue)dr < [ul(2)
k—0 O

which gives
/@mm@mmm=/wmmmswm>
Q Q

Therefore, (i%) follows.
(#41) Assertion (#7%) follows from (é4) and the fact for any k& > 0,

(I

Proposition 4.4. There exists u € Wol’p(')(ﬂ) C 761’]0(')((2) such that w € dom(p)
a.e. in Q and
Ue —> u in measure and a.e. in Q as e — 0. (4.12)

Proof. For k > 0, the sequence (VT (uc))eso is bounded in (Lp(')(Q))N, hence the
sequence (Tj(ue))eso is bounded in Wol’p(')(Q). Then, up to a subsequence we can

assume that for any k > 0, (Tk(uc))e>o converges weakly to oy, in Wol’p(')(Q) and so
(Tk(ue))eso converges strongly to oy in LP—(Q).
Let s > 0 and define

Ey = [|ue, | > k], Ea:=[Jue,| > k] and Es := [|Tk(ue,) — Th(tey)| > 5],
where k£ > 0 is to be fixed.

We have
Huel —’LLQ,‘ > S] C E1 UEQ UE3
and hence
meas {[|te, — Ue,| > 5]} < meas(E;) + meas(F2) + meas(F3). (4.13)
Let € > 0, using Lemma 4.2, we choose k = k(e) such that
meas(F1) < ¢/3 and meas(Es) < ¢/3. (4.14)
Since (Tk(uc)).so converges strongly in LP-(Q), then it is a Cauchy sequence in
LP-(Q).
Thus,

(4.15)

1
meas(E3) < — / I Tho(ue, ) — Th(ue,)P-da < <,
sP— Q 3

for all €1,€3 > ng(s,€).
Finally, we obtain

meas {[|te, — Uey| > 5]} < € for all €1, €3 > ng(s,€). (4.16)
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Hence, the sequence (u¢)eso is a Cauchy sequence in measure and there exists a
function u on €2 such that u. — u in measure. We can then extract a subsequence
still denoted (ue)eso such that ue — u a.e. in Q.

As for k > 0, Tj, is continuous, then Ti(ue) = T (uw) a.e. in Q and oy, = Ty (u) a.e. in
Q.

Finally, using Lemma 2.2 we deduce that for all & > 0, Tx(u) € dom(B) a.e. in Q.
Since Ty (u) € dom(B), we get u € dom(f) a.e. in Q and as dom() is bounded, then

we WP (). O

The following convergence results hold, for any k& > 0.

, N
Proposition 4.5. (i) a(z, VT (uc)) — a(z, VTi(u)) weakly in (Lp O(Q)) .
(i) VT (ue) — VTi(u) a.e. in Q.
(ii7) a(z, VT (ue)). Vg (ue) — a(x, VTk(u)).VTk(u) a.e.in Q and strongly in L*(£2).
() VT (ue) — VT (u) strongly in (Lp(')(ﬂ))N.
, N

Proof. (i) For any k > 0, the sequence (a(x, VIj(u.))) is bounded in (Lp (')(Q))

, N
We can extract a subsequence such that a(x, VIj(u.)) — @ in (Lp (')(Q))
Now, we show that ®y(z) = a(z, VTi(u)) a.e. x € Q. The proof consists of four steps.

Step 1: We prove that for every function h € WhT>(Q), h > 0 with a compact
support, supp(h) C [-1,]] C R,

lim sup /Q a2, V) V() (Th(ue) — T(w))] dz < 0. (4.17)

e—0

Let us take ¢ = h(ue)(Tk(ue) — Tk (w)) as a test function in (4.1).
We have

/Q a2, Vo). V() (T (ue) — T (w))] der + /Q B () h(ue) (To(ue) — Te(w)) dz

- /Q () (T () — The(w))dpe.

(4.18)
For any r > 0, sufficiently small, we consider

upr = (uA(M—=r))V(m+r).
For any k > 0, Ty (u,) € Wol’p(')(Q). Since

0 h(u6)<ﬁe(ue) - ﬁe(ur))(Tk(Ue) - Tk(u,«))dw >0,

we have

/&mmmmuw—ﬂWsz /MmmwMﬂmwmmmm
Q Q

+ [ Bu)Buu) (@) = Tufu)da,
Q

Note that
m4r<u.<M-—r,
so that
6€(m+r) < ﬁe(ur) < Be(M - T)'
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Using Lebesgue dominated convergence Theorem, we get

lim sup/Qh(ue),BE(uT)(Tk(us) — Ty(u,))dz = / h(w)Bo(ur) (Tk(u) — Tk (u,.))dz.

e—0 Q

Consider now the term

I:= / h(ue)Be(ue) (T (ur) — Ti(u))de.
Q
We have

1= [ ) (Tt - Tiwao - |

) a(z, Vue).V | h(ue) (T (ur) — Tk(u))} dx

+ /Q F.V{h(ue)(Tk(ur) ka(u))]d:c
:/ feh(ue)(Tk(uT)—Tk(u))dx—/ h(u)a(@, Vo).V (Te(uy) — To(u))dz
Q Q

—/ R (ue) (Te(ur) — Tk(u))a(x,VuE).Vugdx—i—/
Q

FV {h(ue)(Tk(ur) - Tk(u))} dz.
Q

Note that feh(ue)(Trk(ur)—Tk(uw)) = 0ae. inQasr — 0, | feh(ue) (Tk(ur) — Tx(u))| <
C(k)|fe| € L'(Q), where C(k)|fe| depends only on k and e. Then, by Lebesgue
dominated convergence Theorem, we get

lir% feh(ue)(Tr(ur) — Ti(u))dx = 0.
r—0 Jo

, N
As h(ue)a(x, Vue) = h(uc)a(z, VIi(ue)) is uniformly bounded in (Lp (')(Q)> (by
assumption (2.2)) and V [Ty (u,) — Ti(u)] — 0 as r — 0, then

limO h(ue)a(x, Vue). V(T (uy) — T (uw))dz = 0.
T— Q

For the third term of I, we have

/Qh'(ue)(Tk(ur) — Ty (uw))a(z, Vue).Vucdz

/Qh’(us)(Tk(ur) — T (uw)a(z, VTi(u)). VT (uc)dz

< rCh/Qa(a:,VTl(ue)).VTl(ue)dx
< rCh {/QTl(Ue)dMe —/QBE(uE)Tl(ue)dx}
< rC(h,1,Q, ),

where C(h,[,Q, 1) is a constant depending on h, [, and pu.
Then, we get

lim [ A'(ue)(Tk(ur) — T (uw))a(z, Vue).Vucdr = 0.
r—0 Jo
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For the last term of I, we have

/Q F.V[h(ue)(Tk(ur)—Tk(u))]d:v - /Q h(uE)F.V(Tk(uT)—Tk(u))dm

+/Qh’(u6)(Tk(ur)—Tk(u))F.VTl(uE)dx.

Using the results above, one sees that the last term of I goes to zero as r — 0.
Therefore, we obtain

tin [ () Be(u) (Tiuy) — Ti(w)dir = 0.
Q

Now, let us see that

() o (ur) (Ti(u) = Ti(ur)) > 0.
Indeed,

h(w)Bo(ur ) (Th(u) = Ti(ur)) = h(w)Bo(M — 7)(Ti(u) = Te(M — 7)) X{M-r<u<nry
Fh(u)Bo(m + ) (T (u) — Tp(m + )X {m<u<m+ry = 0,

since 0 € (0) and m+r <0< M —r.
It follows that

e—0
We also have h(ue)(Tx(ue) —Tk(u)) — 0a.e. in Q, [h(ue)(Tk(ue) — Tr(u))| < C(h, k) €
LY(Q), where C(h, k) is a constant which depends only on k and h. By the Lebesgue
dominated convergence Theorem, we deduce that h(u.)(Tk(u.) — Ti(u)) — 0 strongly
in L1(Q). As . — pu weakly x in sense of measure, then

hmmq&&@%@&ﬂwafﬂWDza

li_r)r(l) h(ue) (T (ue) — Tr(u)) dpe = 0.
Q

Passing to the limit in (4.18) and using the results above, we obtain (4.17).
Step 2: We prove that

lim sup lim sup/ a(z, Vue)Vue dx < 0. (4.19)
{I<|uc|<l+1}

l—+o00 e—0

Let us take for I > 0, ¢ = T3 (u. — Ti(ue)) as a test function in (4.1).
We have

/a(m,Vue).VTl(ue —Tl(ue))dx+/ B.(u) T (ue — Ty(us)) dae
Q Q

(4.20)
:/ﬂW—nm»w@
Q
The term / Be(ue)T1(ue — Ti(ue)) dr is nonnegative.
Q
We also have / a(x, Vue) VT (ue — Ti(ue)) de = / a(z, Vue)Vu, dzx.
Q {I<]uc|<I+1}

As in Step 1, we show that lir%/ T (ue — Ty (ue)) dpe = / T (u — Ty (w)) dp.

e~UJa Q
Since T1(u — Ty(u)) — 0 a.e. in Q as I — +oo, by using Lebesgue dominated conver-
gence Theorem, we obtain l ligl / Ty (u — T;(u)) du = 0 which implies that

— 00 Q

lim lim [ Ti(ue — Ti(ue)) dpe = 0.

l—+o00 e—0 Q
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Passing to the limit as e — 0 and to the limit as [ — +o00 in (4.20), we deduce (4.19).
Step 3: We prove that, for every k& > 0,

e—0

hmsup/ﬁa(a@7 Vue) V[T (ue) — Ti(u)] dz < 0. (4.21)

For v > k, we have,
a(x, Vue).Vh, (ue)(Tk(ue) — T (u))] de

I 5—

hy(ue)a(x, VT (ue)). V[T (ue) — Tr(u)] da
{luc|<k}

+ hy (ue)a(x, Vue). V[T (u)] dx
Jue|>k}

+ [ Kl (ue)[Tk(ue) — T(u)]a(z, Vu,).Vu, dr.
Q
Since v > k, on the set {|uc| < k}, it follows that h, (u.) =1 and we get

/ hy(ue)a(x, VT (ue)).V[Tk(ue) — T (u)] dz
{lucl<k}

_ / a(z, VTi(u)). V[Ti(ue) — Ti(u)) d
{lue|<k}

= /Qa(x, VT (ue)).V[Tk(ue) — T (w)] da,

as when {|u.| > k}, then {|u| > k}.
We can also write that

—/ hy (ue)a(x, Vue). VT (u) de = —/ hy(ue)a(x, VT, 41 (ue)). VT (u) d.
{luc|>k} {lucl>k}
Using Lebesgue dominated convergence Theorem, we deduce that

T () X (fuc > k) VT (1) = B (u)X (u 2y VTi(1) strongly in LPO(€).
The sequence (a(z, VT,4+1(ue)))eso is bounded in (Lp/(')(Q))N, then it converges
weakly in (Lp/(')(Q))N toT'yy1.

By Lebesgue dominated convergence Theorem, we find

lim (—/{ hy(ue)a(x, VT,41(ue)). VT (u) dw) = —/{ hy (W' 41.VTi(u) dz = 0.

=0 ue|>k} ul >k}

We also have

(= [ #tw)(0) = Tt V) Fu e

IN

/Q b, (ue) [Tk (ue) — Tk (uw)]a(z, Vue).Vue dz

< 2k a(z, Vue).Vue dz.
{v<|uc|<v+1}

Using the result in Step 2, we find that

lim sup lim sup < /Q B (ue)[Th (ue) — Ti(u)]alz, Vae). Ve da:) <.

v—+00 e—0
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Applying (4.17) with h replaced by h,, v > k, it follows that

limsup/ga(amVTk(ue))V[Tk(ue) — T (u)] dz

e—0

v—+00 e—0

< lim sup lim sup (—/ hy(ue)a(x, VT,11(ue)). VT (u) dx) =0.
{luel>k}

Therefore, (4.21) follows.
Step 4: Now, we prove, by standard monotonicity arguments, that, for all & > 0,
O =a(., VIi(u)) a.e. in Q. Let ¢ € D(Q) and A € R*. Using (4.21), we get

A ll_r}(l) ; a(x, VT (ue))Vedr

> lim sup/ﬂa(sc, VTi(ue)) [VIk(ue) — VT (u) + V(Ap)] dz

e—0

= limsup | a(z, V(Ti(w) = Ap)) [VTi(ue) = VIk(u) + VAp)] da

> lim Sup/ a(z, V(Tk(u) — Ap))V(Ap) dx since VT (ue) = VT (u)
e—0 O

> A A a(z, V(T (u) — Ap)) Vi dz.

Dividing by A > 0 and by A < 0, passing the limt with A — 0, it follows that

61% a(m,VTk(ug))Vgodx:/a(m,V(Tk(u)))Vgde.
Q Q

This means that, V k£ > 0, /CDngodx = /a(x,V(Tk(u)))Vgodx. Hence ¢, =
Q Q
a(,, V(Ti(w))) a.e. in Q and we have a(x, VIi(ue)) — a(z, V(Ti(u))) weakly in
, N
(LP (~)(Q))
(i) From (4.21), we deduce that for all kK > 0

h_If(l) [a(z, VT (ue)) — alz, V(T (w)))] - [VTk(ue) — VI (u)] de = 0.

«=0Jq

Now, set g.(.) = [a(., VTk(u.)) — a(., V(Tk ()] . [VTk(ue) — VT (u)] > 0.

ge(.) = 0 strongly in L'(Q2). Up to a subsequence, g.(.) — 0 a.e. in 2, which means
that there exists w C € such that meas(w) = 0 and g.(.) — 0 in Q\w. Let x € Q\w.
Using assumptions (2.2) and (2.4), it follows that the sequence (VT (uc(z)))eso is
bounded in RY and so we can extract a subsequence which converges to some  in
RY.

Passing to the limit in the expression of g.(z), it follows that

0=la(z,0) — a(z, V(Ti(w))]. [0 — VI (u)]

and this leads 8 = VT (u), YV € Q\w.

As the limit does not depend on the subsequence, the whole sequence (VT (uc(2)))eso0
converges to @ in RY. This means that VT (u.) — VT (u) a.e. in Q.

(iii) The continuity of a(z, &) with respect to & € RV gives us

a(x, VT (ue)) = a(x, VI (u)) a.e. in .
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Therefore,
a(x, VI (ue)). VT (ue) = alx, VI (uw)). VI (u) a.e. in Q.
Setting z. = a(z, VI (u.)).VIi(u.) and z = a(z, VI (u)). VT (u), we have
{ 2¢ > 0,2, = zae inQ,z€ LY(Q),

/zedx%/zd:r
Q Q

and as / |ze — 2| dx = 2/ (z—z)t d:H—/(z6 —2)dz and (2. — 2)T < z, it follows,
Q

Q 0
by using Lebesgue dominated convergence Theorem, that

hm/ |ze — z|dx =0,
which means that
a(x, VT (ue)).VTi(u) — a(z, VT (u)). VT (u) strongly in L' ().

(iv) By (2.4), we have |VT}(u)P™ < Cia(z, VTk(uc)).VTi(ue). Using the L'-
convergence of (iii) we obtain (iv). O
Lemma 4.6. For any h € C}(R) and £ € Wo’p( )(Q) NL>(Q),

VIh(ue)€] — V[h(w)E] strongly in (LP~ ()N as e — 0.
Proof. For any h € C}(R) and ¢ € Wol’p(')(Q) N L> (), we have

Vh(ue)l] = h(uc)VE+h'(uec)§Vue

= h(uc)VE+ 1 (ue)éVT,(ue) for I > 0 such that supp(h) C (=1, +1).

Using Lebesgue dominated convergence Theorem, we get
h(ue)VE —s h(u)VE strongly in (LP~ ()Y as e — 0.

Moreover, since |h/(ue)éVTi(ue)| < C|VTi(uc)|, then using generalized convergence
Theorem and Proposition 4.5-(iv), we deduce that

B (u)EVT(ue) — B (w)EVT(u) = B (u)€Vu strongly in (L7~ ()Y as € — 0.
So Lemma 4.6 follows. O

Now, we pass to the limit in 8. (u.). Since, for any k > 0, (hx(uc)ze)eso is bounded
in L'(Q), there exists 2, € M,(Q), such that

P () Be(ue) = 21, in My() as € — 0.
Moreover, for any £ € W1 S )(Q) N L (), we have

[ ez = [ ety dn= [ ae. Vo) Ve,

which implies that zj, € M]Z(')(Q) and, for any k <1,
z =2z on [|Tg(u)| < k]
Let us consider the Radon measure z defined by
z =z, on|[|Tp(u)| < k] for k € N*,

z=0 on ﬂ [T (u)| =

keN*

(4.22)



NONLINEAR MULTIVALUED ELLIPTIC PROBLEM 193
For any h € C.(R), h(u) € L*(Q,d|z|) and
[ wwgds =~ [ ate.vu)- Ve + [ nwed
Q Q Q

for any £ € Wol’p(')(Q) N L (). Indeed, let kg > 0 be such that supp(h) C [—ko, ko],

h(u)é dz
Q Q

h(u)¢ dzy,

= —lim [ a(z,Vu) - V(h(ue)§)dz + }51(1) /Q h(ue)édpe

e—0 Q
= —l% QCL(:I:,VT;CO(uE))~V(h(ue)f)dﬂc—i—eli_I}(l)/Qh(ue)«fd,u6
_ / a(z, Vu) - V(h(w)€)da + / h(u)edy.

Q Q

Moreover, we have

Lemma 4.7. The Radon-Nikodym decomposition of the measure z given by (4.22)
with respect to LN,

z=w LN +v with vl LV

satisfies the following properties
we Bu) LY — a.e. inQ, we LYQ), ve MY (Q),
vt is concentrated on [u = M),

v~ is concentrated on [u = m].

Proof. Since, for any € > 0, z. € 9j(uc), we have
G(t) > Ge(t) > je(ue) + (t —u)ze LY —ae. inQ, VteR.
Then, for any h € C.(R), h > 0 and k > 0 such that supp(h) C [k, k], we have
Eh(ue)j(t) = Eh(ue)je(ue) + (¢ — ue)Sh(ue)hr (uc)zc.
In addition, for any 0 < € < €, we have
Eh(ue)j(t) = Eh(uc)je(ue) + (8 — uc)Eh(ue)hi(uc)ze

and, integrating over () gives

/th(uﬁ)j(t)dxz/th(uf)jg(ué)dx—|—/Q(t—ue)gh(ue)hk(uﬁ)zedx.

As € — 0, we get by using Fatou’s Lemma

/Uz(u)j(t)dx > /gh(u)jg(u)d:ﬁ—i—limi(r)lf (t — ue)Eh(ue)hg (ue) zed.
Q Q e Q

Now, for any & € C1(Q) and t € R, setting
h(r) = (t = r)h(r),
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we have
lim [ (t = u)h(ue)éhi(u)zede = lim h(we)Ehg (ue) zeda
€E—> Q €E—> Q
= /(t—u)h(u){dz;c
Q
_ / (t — wh(u)&dz.
Q
So,

/th(u)j(t)dxz/Qéh(u)jg(u)dx—i—/ﬂﬁ(t—u)h(u)dz.

As € — 0, we get by using again Fatou’s Lemma

[ entwitis > [ enwituds+ [ e whta-
From the inequality above, we have
h(u)j(t) > h(w)j(u) + (t —u)h(u)z, in My(Q), Vt € R. (4.23)

Using the Radon-Nikodym decomposition of z we have z = wLN +v with v L LY jw € L'(f),
then comparing the regular part and the singular part of (4.23), for any h € C.(R),
we obtain

h(u)j(t) > h(u)j(u) + (t —w)h(u)w LY —ae. inQ, V¢t €R (4.24)

and

(t —u)h(u)r <0 in Myp(Q), V t € dom(j). (4.25)
From (4.24) we get
G(t) > j(u) + (t —w)w LY —ae. in Q, Vt R,
so that w € dj(u) LY — a.e in Q. As to (4.25), this implies that for any ¢t € dom(j),
v>0in [u € (¢,00) Nsupp(h)] (4.26)
and
v <0in [u € (—oo,t) Nsupp(h)]. (4.27)
In particular, this implies that
v(fm <u < M])=0.
Then (4.27) (resp. (4.26)) implies that
v~ is concentrated on [u = m| (resp. v is concentrated on [u = M]).
So the proof of the Lemma 4.7 is finished. O

To end the proof of Theorem 1.3, we consider £ € Wol’p(') (Q)NL>®(Q) and h € CL(R).
Then, we take h(ue)€ as test function in (4.1) to get

/Q a(, Vu). V[h(u )] da + /Q B, (ue)h(ug)¢d = /Q h(ud)ef.dz + /Q FV[h(u)da.

(4.28)
Using Lemma 4.6, it is not hard to see that

lim < /Q h(ud)ef.dz + /Q F.V[h(ue)g]dz> _ /Q h(u)dp.

e—0
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The first term of (4.28) can be written as

/a(z,Vue).V[h(ue)g]dxz/a(x,Vﬂ0+1(u€)).V[h(ue)§]d4E,
Q

Q

for some Iy > 0 so that, by Proposition 4.5-(7) and Lemma 4.6, we have

lim [ a(z,Vue).V[h(u)élde = lim [ a(x, VT t1(ue)).-Vih(ue)é]de

—0 Jo =0Jq
= /Qa(:l:,VTlU+1(U))-v[h(U)§]dx
_ / a(z, Va). V[h(u)¢]de.
Q

From the convergence result of Lemma 4.6, Proposition 4.5-(i) and using (4.28), we
get

eli_r>r(1) Qﬁe(ue)h(ue)ﬁdm = /Qh(u)fdu—/Qa(:v,Vu).V[h(u)ﬁ]dw
/h(u)fdz
Q

/Qh(u)w§dx—|—/ h(u)&dv.

Q

Letting € goes to 0 in (4.28), we have:

/Q a2, V).V h(u)€)de + / wh(u)édz + /

Q Q

h(u)fdu:/gh(u)fd,u. (4.29)

Since (4.29) holds for any h € C}(R), we can take h = hy, with [m, M] C [~lo, +lo]
so that (1.6) holds.

Let us show (1.7) and (1.8) to conclude that (u,w) is a solution of P(S, y).

To this end we prove the following lemma.

Lemma 4.8. Letn € Wol’p(')(ﬂ), Z e Mf:(')(Q) and A € R be such that

n<Aae inQ (resp. n >N,

(4.30)
Z = —div a(z,Vn) in D'(Q).
Then
/ €z >0, (4.31)
[1=A]
(resp.)
/ €dzZ <0, (4.32)
[n=A]

for any £ € CH(Q), € > 0.

Proof. The proof of this lemma follows the same steps of [1]. For seek of completeness,
let us give the arguments. For n > 1, let o, (r) = inf(1, (nr + 1 — nA)"). Note that
@n(r) converges to X|x,cc)(r) for every r € R, so ¢, (n(x)) converges to X[ o0)(7(T))
at every x where 7(r) is defined. As 7 is defined quasi everywhere and X[ o) ©
N = X{zeQm(x)=2}, then the convergence of ©, (1) to x[x,00)(7) is quasi everywhere.
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Therefore, since Z is diffuse, then ¢, (1) converges to X{zcq:n(x)=2}, Z—a.e. in €.
Next, we use the Lebesgue dominated convergence theorem and (2.4) to get

/n_)\de = Jdm /Q Epn(n)dZ

= lim [ a(z, V)V (Epn(n))dx

n—-+oo O

.
= lim | ale, Vn)ea(n)Vede
> — V¢l lim la(z, V)| dx

n—+oo {wEQ:)\—%Sn(az)g)\}

> Vel [ la(z, 0)] de
f— O7

since a(z,0) = 0 for a.e. x € Q. Indeed for x € Q fixed, denote z = a(z,0) € RV.
By the continuity of a(z,.), we have ilir% a(z,£) = z. Suppose now that z # 0 and
—

choose § = —sz with s > 0 used to tend toward 0; then a(z,&).&o = —s(z +
€(s)).z < —s |z + s |2| |e(s)|, where lirr%) le(s)| = 0. Therefore, for s sufficiently small,
s—

—s|2)* + sz| |e(s)| < 0, which is a contradiction by assumption (2.4). Thus, z = 0.

Finally, if n > A, we do the same calculus with 7 = —n, A = =X and a(z,n) =
—a(z, —n) to get the result. O
Since

v =div a(x, Vu) —wL™ + p,
we have
p—v—wly = —div a(z, Vu).
By Lemma 4.8, for any £ € C1(Q), £ > 0, we have

/ &dvt §/ fduf/ Ewdx

[u=M] [u=M] [u=M]

/ Edv™ < —/ fdu—i—/ Ewdz.
[u=m] [u=m] [u=m]

The first inequality implies that

[ vt < [ caullu=n1- [ wxpmanda.
Q Q Q
)

Consequently (1.7) holds. Similarly we get (1.8).

and

Proof of Theorem 1.4.

1. If (u,w) is a solution of P(B,u) in the sense of Theorem 1.3, for any & €
Wol’p(‘)(Q) N L>®(Q) with ¢ € dom(B) and for any k > 0 the function Tj(u — &)
belongs to Wol’p(')(ﬂ) N L*>(£2) and then this can be used as test function in (1.6) to
get

/Q a(x, Vu).VTk(u—f)dx+/

Q

wTk(u—f)dm—i—/ﬂTk(u—f)dl/:/QTk(u—f)dﬂ. (4.33)
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We split the third term in (4.

4.33) as
—&)d — )dvt — —&)dv™
/Q To(u — €)dv /[u_M]Tkw €)dv /[u_m]Tkm £)dv

= [ ne-gwt - [ Tm- o
[u=M)] [u=m]

0.

Then from (4.33), we have (1.9).

Y

2. Suppose that (ug,wr), (ug,ws) are two solutions of P(S3, ). For uq, we choose
€ = uy as test function in (1.9) to get

/Qa(x,Vul).VTk(ul — up)da +/

w1 T (ug — ug)dr < / Ti(u1 — ug)dp.
Q

Q
Similarly we get for us by taking £ = uy as test function in (1.9),

/Qa(x,VUQ).VTk(UQ —ul)der/

Q
Adding these two last inequalities yields

woTy (ug — uq)dx < / Ti(ug — uq)dp.
Q

/Q (a(x,Vul)fa(o:,Vu2)>.VTk(u17u2)dx+/Q (w1 — ws) Tg(ug —ug)dx < 0. (4.34)

For any k > 0, from (4.34) it yields
/ (a(x, Vuy) — a(z, Vug)).VTk(ul —ug)dz = 0. (4.35)
Q

From (4.35), it follows that there exists a constant ¢ such that u; —ug = ¢ a.e. in Q.
Using the fact that uy = us = 0 on 92 we get ¢ = 0. Thus, u; = ug a.e. in . At
last, let us see that w; = ws a.e. in Q and v1 = v5. Indeed for any ¢ € D(Q), taking
¢ as test function in (1.6) for the solutions (u1,w;) and (u1,ws), after substraction
of these equalities we get

/(wl - 'Ll]2)<;0d-7j +/ (Pd(Vl — 1/2) =0.
Q O

/w1<pdx—|—/<pd1/1:/wggadx—l—/gadzxg.
Q Q Q Q

wi LY + v = wo LN + vy,

Since the Radon-Nikodym decomposition of a measure is unique, we get w; = ws a.e.
in Q and v; = . O

Hence

Therefore
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