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Some further results on belonging of trigonometric series to
Orlicz space

Xhevat Z. Krasniqi

Abstract. Here in this paper we have introduced a new condition which is not worse than the
condition that satisfy numerical sequences of Rest Bounded Variation Mean Sequences. This

condition is used to obtain some integrability conditions of the functions g(x) and f(x) (which
denote formal sine and cosine trigonometric series respectively) such that these functions are
going to belong to the Orlicz space. This study may be considered as a continuation of the

investigations previously done by L. Leindler [5] and S. Tikhonov [14].
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1. Introduction

Many authors have studied the integrability of the formal series

g(x) :=
∞∑

n=1

λn sinnx (1)

and

f(x) :=

∞∑
n=1

λn cosnx (2)

imposing certain conditions on the coefficients λn (see for example [2], [3], [8], [9], and
[11]–[13]).

As initial example, R. P. Boas in [1] proved the following result for (1):

Theorem 1.1. If λn ↓ 0 then for 0 ≤ γ ≤ 1, x−γg(x) ∈ L[0, π] if and only if∑∞
n=1 n

γ−1λn converges.

This result had previously been proved for γ = 0 by W.H. Young [15] and it was
later extended by P. Heywood [4] for 1 < γ < 2.

Later on the monotonicity condition on the coefficients λn was replaced to more
general ones by S.M. Shah [12] and L. Leindler [7].

Recently, S. Tikhonov [14] has proved two theorems giving sufficient conditions of
belonging of g(x) and f(x) to Orlicz space. Before we state his theorems we shall
recall some notions and notations.

L. Leindler [7] introduced a class of numerical sequences which has an interesting
property and useful in many applications. A sequence c := {cn} of positive numbers
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tending to zero is of rest bounded variation, or briefly R+
0 BV S, if it possesses the

property
∞∑

n=m

|cn − cn+1| ≤ K(c)cm (3)

for all natural numbers m, where K(c) is a constant depending only on c.
A sequence γ := {γn} of positive terms will be called almost increasing (decreasing)

if there exists constant C := C(γ) ≥ 1 such that

Cγn ≥ γm (γn ≤ Cγm)

holds for any n ≥ m.
Here and further C,Ci denote positive constants that are not necessarily the same

at each occurrence, and also we use the notion u≪ w (u≫ w) at inequalities if there
exists a positive constant C such that u ≤ Cw (u ≥ Cw) holds.

We will denote (see [10]) by △(p, q), (0 ≤ q ≤ p) the set of all nonnegative functions
Φ(x) defined on [0, 1) such that Φ(0) = 0 and Φ(x)/xp is nonincreasing and Φ(x)/xq

is nondecreasing. It is clear that △(p, q) ⊂ △(p, 0), (0 < q ≤ p). As an example,
△(p, 0) contains the function Φ(x) = log(1 + x).

Here and in the sequel, a function γ(x) is defined by the sequence γ in the following
way: γ

(
π
n

)
:= γn, n ∈ N and there exist positive constants C1 and C2 such that

C1γn+1 ≤ γ(x) ≤ C2γn for x ∈
(

π
n+1 ,

π
n

)
.

A locally integrable almost everywhere positive function γ(x) : [0, π] → [0,∞) is
said to be a weight function. Let Φ(t) be a nondecreasing continuous function defined
on [0,∞) such that Φ(0) = 0 and limt→∞ Φ(t) = +∞. For a weight γ(x) the weighted
Orlicz space L(Φ, γ) is defined by

L(Φ, γ) =

{
h :

∫ π

0

γ(x)Φ(ε|h(x)|)dx <∞ for some ε > 0

}
. (4)

Tikhonov’s results now can be read as follows:

Theorem 1.2. Let Φ(x) ∈ △(p, 0), 0 ≤ p. If λn ∈ R+
0 BV S, and the sequence {γn}

is such that {γnn−1+ε} is almost decreasing for some ε > 0, then
∞∑

n=1

γn
n2

Φ(nλn) <∞ ⇒ ψ(x) ∈ L(Φ, γ), (5)

where a function ψ(x) is either a sine or cosine series.

Theorem 1.3. Let Φ(x) ∈ △(p, q), 0 ≤ q ≤ p. If λn ∈ R+
0 BV S, and the sequence

{γn} is such that {γnn−(1+q)+ε} is almost decreasing for some ε > 0, then
∞∑

n=1

γn
n2+q

Φ(n2λn) <∞ ⇒ g(x) ∈ L(Φ, γ). (6)

A null-sequence c of nonnegative numbers possessing the property

∞∑
n=2m

|cn − cn+1| ≤
K(c)

m

2m−1∑
ν=m

cν (7)

is called a sequence of mean rest bounded variation, in symbols, c ∈MRBV S.
In [5] L. Leindler extended Theorem 1.2 and Theorem 1.3 so that the sequence {λn}

belongs the class MRBV S instead of the class R+
0 BV S. His results are formulated

as follows:
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Theorem 1.4. Theorems 1.2 and 1.3 can be improved when the condition λn ∈
R+

0 BV S is replaced by the assumption λn ∈ MRBV S. Furthermore the conditions
of (5) and (6) may be modified as follows:

∞∑
n=1

γn
n2

Φ

(
2n−1∑
ν=n

λν

)
<∞ ⇒ ψ(x) ∈ L(Φ, γ), (8)

and
∞∑

n=1

γn
n2+q

Φ

(
n

2n−1∑
ν=n

λν

)
<∞ ⇒ g(x) ∈ L(Φ, γ), (9)

respectively.

Let C := Cn := 1
n+1

∑n
i=0 ck, where ck is a sequence of nonnegative numbers. Very

recently, R. N. Mohapatra and B. Szal [16] introduced the following class of sequences
of nonnegative numbers:

If C ∈ RBV S, i.e.
∞∑

k=m

|Ck − Ck+1| ≤ K(c)Cm, (10)

then it is said that C is of rest bounded variation means sequence, briefly denoted by
C ∈ RBVMS.

Aiming to prove the counterparts of Theorem 1.2 and Theorem 1.3 so that the
sequence {λn} belongs the class RBVMS instead of the classesMRBV S or R+

0 BV S,
we were not in able. However, we have proved two theorems, when not a worse
condition than (10) will be fulfilled. Indeed, we have required that the sequence {λn}
satisfies condition (obviously not worse than condition (10))

∞∑
k=n

k|Vk − Vk+1| ≤ KVn, (n = 1, 2, . . . ), (11)

where Vk := 1
k

∑k
j=1 λj .

To prove our main results we need some helpful statements given in next section.

2. Auxiliary lemmas

We shall use the following lemmas for the proof of the main results.

Lemma 2.1 ([6]). If an ≥ 0, bn > 0, and if p ≥ 1, then

∞∑
n=1

bn

(
n∑

v=1

av

)p

≤ C
∞∑

n=1

b1−p
n apn

( ∞∑
v=n

av

)p

.

Lemma 2.2 ([10]). Let Φ ∈ △(p, q), 0 ≤ q ≤ p, and tj ≥ 0, j = 1, 2, . . . , n, n ∈ N.
Then
(1) θpΦ(t) ≤ Φ(θt) ≤ θqΦ(t), 0 ≤ θ ≤ 1, t ≥ 0,

(2) Φ
(∑n

j=1 tj

)
≤
(∑n

j=1 Φ
1/p∗(tj)

)p∗
, p∗ := max(1, p).

Lemma 2.3. Let Φ ∈ △(p, q), 0 ≤ q ≤ p. If ρn > 0, λn ≥ 0, and if

Vν+j ≪ Vν , Vν :=
1

ν

ν∑
j=1

λj (12)
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holds for all j, ν ∈ N, j ≤ ν, then
∞∑

n=1

ρnΦ

(
n

n∑
k=1

Vk

)
≪

∞∑
n=1

ρnn
pΦ(nVn)

(∑∞
v=n v

pρv
ρnnp+1

)p∗

,

where p∗ := max(1, p).

Proof. Let be ξ be an integer such that 2ξ ≤ n < 2ξ+1. Then based on (12) we have

n∑
v=1

Vk ≤
ξ∑

m=0

2m+1−1∑
v=2m

Vv +

n∑
v=2ξ

Vv ≤ C1

ξ∑
m=0

2mV2m .

Lemma 2.2 and the properties of Φ imply

Φ

(
n

n∑
k=1

Vk

)
≤ Φ

(
C12

ξ+1

ξ∑
m=0

2mV2m

)
≤ (C12

ξ+1)pΦ

(
ξ∑

m=0

2mV2m

)

≤ CnpΦ

(
ξ∑

m=0

2mV2m

)
≤ Cnp

(
ξ∑

m=0

Φ
1
p∗ (2mV2m)

)p∗

≤ Cnp

(
n∑

m=0

Φ
1
p∗ (mVm)

m

)p∗

.

Finally by Lemma 2.1, we obtain

∞∑
n=1

ρnΦ

(
n

n∑
k=1

Vk

)
≤ C

∞∑
n=1

ρnn
p

(
n∑

m=0

Φ
1
p∗ (mVm)

m

)p∗

≤ C

∞∑
n=1

ρnn
pΦ(nVn)

(∑∞
v=n v

pρv
ρnnp+1

)p∗

.

�
Lemma 2.4. Let λk → 0 as k → ∞. Then the following representations of g(x) and
f(x) hold true:

g(x) =
∞∑
k=1

 k∑
j=1

λj

 [sin kx− sin (k + 1)x]

and

f(x) =

∞∑
k=1

 k∑
j=1

λj

 [cos kx− cos (k + 1)x].

Proof. These equalities are immediate results of the summation by parts. This is why
we omit the proof. �

3. Main results

First, we establish the following.

Theorem 3.1. Let Φ(x) ∈ △(p, 0), p ≥ 0. If λn satisfies condition (11) and the
sequence {γn} is such that {γnn−1+p+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

γn
n2(1−p)

Φ

 1

n

n∑
j=1

λj

 <∞ =⇒ ψ(x) ∈ L(Φ, γ), (13)
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where a function ψ(x) is either a sine or cosine series.

Proof. Let x ∈
(

π
n+1 ,

π
n

]
. Based on Lemma 2.4 and applying the summation by parts

we obtain

|g(x)| ≤ 2
n∑

k=1

 k∑
j=1

λj

+

∣∣∣∣∣
∞∑

k=n

 k∑
j=1

λj

 [sin kx− sin (k + 1)x]

∣∣∣∣∣
≤ 2

n∑
k=1

 k∑
j=1

λj

+
∞∑

k=n

|Vk − Vk+1|
∣∣D̂k(x)

∣∣+ Vn
∣∣D̂n−1(x)

∣∣,
where Vk and D̂k(x) are defined by

Vk :=
1

k

k∑
j=1

λj ,

and

D̂k(x) :=
cos x

2 − cos
(
k + 3

2

)
x− 2k sin x

2 sin(k + 1)x

2 sin x
2

, k ∈ N,

respectively.

Subsequently, taking into account that |D̂k(x)| = O
(
k+1
x

)
, (0, π], and {λn} satisfies

(11) we have that

|g(x)| ≪
n∑

k=1

 k∑
j=1

λj

+
∞∑

k=n

|Vk − Vk+1|
∣∣D̂k(x)

∣∣+ Vn
∣∣D̂n−1(x)

∣∣
≪

n∑
k=1

 k∑
j=1

λj

+ n
∞∑

k=n

k|Vk − Vk+1|+ n2Vn

≪
n∑

k=1

 k∑
j=1

λj

+
n∑

j=1

λj + n2Vn.

Moreover,

Vn ≫
∞∑

k=n

k|Vk − Vk+1| ≥ |nVn + Vn+1 + Vn+2 + · · · | ≥ nVn =⇒ n2Vn ≪
n∑

j=1

λj ,

and since the condition
∞∑

k=n

|Vk − Vk+1| ≤ KVn

also holds, then

KVn ≥
∞∑

k=n

|Vk − Vk+1| ≥
∞∑

k=m

|Vk − Vk+1| ≥ Vm =⇒ Vm ≪ Vn ∀m ≥ n.

Therefore

|g(x)| ≪ n

n∑
k=1

1

k

k∑
j=1

λj

+
1

n

n∑
j=1

λj

n∑
k=1

1 ≪ n

n∑
k=1

1

k

k∑
j=1

λj

 .
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Similarly, we have:

|f(x)| ≤ 2
n∑

k=1

 k∑
j=1

λj

+

∣∣∣∣∣
∞∑

k=n

 k∑
j=1

λj

 [cos kx− cos (k + 1)x]

∣∣∣∣∣
≤ 2

n∑
k=1

 k∑
j=1

λj

+
∞∑

k=n

|Vk − Vk+1|
∣∣D̃k(x)

∣∣+ Vn
∣∣D̃n−1(x)

∣∣
≪

n∑
k=1

 k∑
j=1

λj

+ n
∞∑

k=n

k|Vk − Vk+1|+ n2Vn

≪
n∑

k=1

 k∑
j=1

λj

+

n∑
j=1

λj + n2Vn ≪ n

n∑
k=1

1

k

k∑
j=1

λj

 ,

where D̃k(x) are defined by

D̃k(x) :=
sin
(
k + 1

2

)
x− sin x

2 − 2k sin x
2 cos(k + 1)x

2 sin x
2

, k ∈ N.

Thus

|ψ(x)| ≪ n
n∑

k=1

1

k

k∑
j=1

λj

 , (14)

where a function ψ(x) is either a f(x) or a g(x).
According to Lemma 2.3 (the condition (12) is satisfied), and using (14) we obtain

∫ π

0

γ(x)Φ(|ψ(x)|)dx ≪
∞∑

n=1

Φ

n n∑
k=1

1

k

k∑
j=1

λj

∫ π/n

π/(n+1)

γ(x)dx

≪
∞∑

n=1

γn
n2

Φ

n n∑
k=1

1

k

k∑
j=1

λj


≪

∞∑
n=1

Φ

 n∑
j=1

λj

 γn
n2−p

(
n1−p

γn

∞∑
ν=n

γν
ν2−p

)p∗

≪
∞∑

n=1

γn
n2(1−p)

Φ

 1

n

n∑
j=1

λj

(n1−p

γn

∞∑
ν=n

γν
ν2−p

)p∗

,

where p∗ := max(1, p).
Finally, by the assumption on {γn}, we get

n1−p

γn

∞∑
ν=n

γν
ν1−p−ε

ν−ε−1 ≪ 1

which together with above inequality immediately imply (13). The proof is completed.
�
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Theorem 3.2. Let Φ(x) ∈ △(p, q), 0 ≤ q ≤ p. If λn satisfies (11) and the sequence
{γn} is such that {γnn−1−2q+p+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

γn
n2(1+q)−p

Φ

n2 n∑
j=1

λj

 <∞ =⇒ g(x) ∈ L(Φ, γ). (15)

Proof. Let x ∈
(

π
n+1 ,

π
n

]
. Then

|g(x)| ≪
n∑

k=1

kx

 k∑
j=1

λj

+

∣∣∣∣∣
∞∑

k=n

 k∑
j=1

λj

 [sin kx− sin (k + 1)x]

∣∣∣∣∣
≪ 1

n

n∑
k=1

k

 k∑
j=1

λj

+
∞∑

k=n

|Vk − Vk+1|
∣∣D̂k(x)

∣∣+ Vn
∣∣D̂n−1(x)

∣∣
≪ 1

n

n∑
k=1

k

 k∑
j=1

λj

+
n∑

j=1

λj + n2Vn

≪ 1

n

n∑
k=1

k

 k∑
j=1

λj

+
1

n(n+ 1)

n∑
j=1

λj

n∑
k=1

k

≪ 1

n

n∑
k=1

k

 k∑
j=1

λj

 . (16)

By Lemmas 2.2–2.3 and the estimate (16) we have∫ π

0

γ(x)Φ(|g(x)|)dx ≪
∞∑

n=1

Φ

 1

n

n∑
k=1

k

 k∑
j=1

λj

∫ π/n

π/(n+1)

γ(x)dx

≪
∞∑

n=1

γn
n2(1+q)

Φ

n n∑
k=1

k

 k∑
j=1

λj

 (17)

≪
∞∑

n=1

Φ

n2 n∑
j=1

λj

 γn
n2(1+q)−p

(
n1+2q−p

γn

∞∑
ν=n

γν
ν2(1+q)−p

)p∗

,

where p∗ := max(1, p).
By the assumption on {γn}, we get

n1+2q−p

γn

∞∑
ν=n

γν
ν1+2q−p−ε

ν−ε−1 ≪ 1,

and hence (17) takes its form∫ π

0

γ(x)Φ(|g(x)|)dx≪
∞∑

n=1

γn
n2(1+q)−p

Φ

n2 n∑
j=1

λj

 ,

which proves (15). With this the proof of theorem is finished. �
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4. Applications to Lp(0, π) (p ≥ 0) spaces

Let Φ(t) = t. Then the following are true.

Corollary 4.1. Let p ≥ 0. If λn satisfies condition (11) and the sequence {γn} is
such that {γnn−1+p+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

n2p−3γn

n∑
j=1

λj <∞ =⇒ ψ(x) ∈ L(0, π),

where a function ψ(x) is either a sine or cosine series.

Corollary 4.2. Let 0 ≤ q ≤ p. If λn satisfies (11) and the sequence {γn} is such
that {γnn−1−2q+p+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

np−2qγn

n∑
j=1

λj <∞ =⇒ g(x) ∈ L(0, π).

Let Φ(t) = tp. Then:

Corollary 4.3. Let p ≥ 0. If λn satisfies condition (11) and the sequence {γn} is
such that {γnn−1+p+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

np−2γn

 n∑
j=1

λj

p

<∞ =⇒ ψ(x) ∈ Lp(0, π),

where a function ψ(x) is either a sine or cosine series.

Corollary 4.4. Let 0 ≤ q ≤ p. If λn satisfies (11) and the sequence {γn} is such
that {γnn−1−2q+p+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

n3p−2q−2γn

 n∑
j=1

λj

p

<∞ =⇒ g(x) ∈ Lp(0, π).
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