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Localization of divisible residuated lattices

Justin Paralescu

Abstract. The aim of the present paper is to define the localization of a divisible residuated
lattices L with respect to a topology F on L. In the last part of the paper is proved that the

maximal divisible residuated lattice of quotients (defined in [15]) and the divisible residuated
lattice of fractions relative to an ∧− closed system (defined in [3]) are divisible residuated
lattices of localization.
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Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced
by Hájek in [11] to cope with the logic of continuous t-norms and their residua.

A remarkable construction in ring theory is the localization ring AF associated
with a Gabriel topology F on a ring A.

Using the model of localization ring, in [10], G. Georgescu defined for a bounded
distributive lattice L the localization lattice LF of L with respect to a topology F on
L and prove that the maximal lattice of quotients for a distributive lattice is a lattice
of localization (relative to the topology of regular ideals); analogous results we have
for lattices of fractions of bounded distributive lattices relative to ∧− closed systems.

The main aim of this paper is to develop a theory of localization for divisible
residuated lattices. Since BL− algebras are particular classes of divisible residuated
lattices, the results of this paper generalize a part of the results from [2] for BL−
algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [19]) is an algebra (L,∧,∨,⊙,→, 0, 1) of
type (2, 2, 2, 2, 0, 0) equipped with an order ≤ satisfying the following:
(a1) (L,∧,∨, 0, 1) is a bounded lattice, whose order is ≤;
(a2) (L,⊙, 1) is a commutative ordered monoid;
(a3) (⊙, →) is an adjoint pair, i.e. z ≤ x → y if and only if x ⊙ z ≤ y for every

x, y, z ∈ L.

The class RL of residuated lattices is equational (see [12]). For examples of resid-
uated lattices see [3] and [19].

In this section by L we denote the universe of a residuated lattice. For x ∈ L, we
denote x∗ = x → 0 and (x∗)∗ = x∗∗.

We review some rules of calculus for residuated lattices L used in this paper:

Theorem 1.1. ([1], [19]) Let x, y, z ∈ L. Then we have the following:
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(c1) 1 → x = x, x → x = 1, y ≤ x → y, x ⊙ (x → y) ≤ y, x → 1 = 1, 0 → x =
1, x⊙ 0 = 0;

(c2) x ≤ y iff x → y = 1;
(c3) x ≤ y implies x⊙ z ≤ y ⊙ z, z → x ≤ z → y and y → z ≤ x → z;
(c4) x → (y → z) = (x⊙ y) → z = y → (x → z), so (x⊙ y)∗ = x → y∗ = y → x∗;
(c5) x⊙ x∗ = 0 and x⊙ y = 0 iff x ≤ y∗;
(c6) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z);
(c7) x → (y ∧ z) = (x → y) ∧ (x → z).

By B(L) we denote the set of all complemented elements in the lattice (L,∧,∨, 0, 1).
Complements are generally not unique, unless the lattice is distributive; in the case of
residuated lattices, however, although the underlying lattices need not be distributive,
the complements are unique ([9]). Also, if b is the complement of a, then a is the
complement of b, b = a∗, a2 = a and a∗∗ = a ([1], [3]). So, B(L) is a Boolean
subalgebra of L, called the Boolean center of L.

Theorem 1.2. ([3]) For e ∈ L the following assertions are equivalent:
(i) e ∈ B(L);
(ii) e ∨ e∗ = 1.

Theorem 1.3. ([3]) If e, f ∈ B(L) and x, y ∈ L, then:
(c8) e⊙ x = e ∧ x;
(c9) x⊙ (x → e) = e ∧ x, e⊙ (e → x) = e ∧ x;
(c10) e⊙ (x → y) = e⊙ [(e⊙ x) → (e⊙ y)];
(c11) x⊙ (e → f) = x⊙ [(x⊙ e) → (x⊙ f)].

Definition 1.2. ([11]) A divisible residuated lattice is a residuated lattice satisfying
the divisibility equation:
(d) x⊙ (x → y) = x ∧ y.

The variety of divisible residuated lattices will be denoted by RLd. For examples
of divisible residuated lattices see [4, 15, 16, 19].

Proposition 1.4. ([15]) For a residuated lattice L, the following conditions are equiv-
alent:
(i) L ∈ RLd;
(ii) For every x, y ∈ L with x ≤ y there exists z ∈ L such that x = y ⊙ z;
(iii) For every x, y, z ∈ L we have:
(c12) x → (y ∧ z) = (x → y)⊙ [(x ∧ y) → z].

Corollary 1.5. ([4]) Let L ∈ RLd. Then for every x, y, z ∈ L we have:
(c13) (x∗∗ → x)∗ = 0, (x → y)∗∗ = x∗∗ → y∗∗, (x⊙y)∗∗ = x∗∗⊙ (x∗∗∧y∗)∗, (x∧y)∗∗ =

x∗∗ ∧ y∗∗;
(c14) x⊙ (y ∧ z) = (x⊙ y) ∧ (x⊙ z);
(c15) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);
(c16) y∗ ≤ x ⇒ x → (x⊙ y)∗∗ = y∗∗.

Definition 1.3. Let (P,≤) an ordered set. A nonempty subset I of P is called order
ideal (or decreasing set) if, whenever x ∈ I, y ∈ P and y ≤ x, we have y ∈ I; we
denote by I(P ) the set of all order ideals of P.

For a divisibile residuated lattice L we denote by Id(L) the set of all ideals of the
lattice (L,∧,∨).
Remark 1.6. Clearly, Id(L) ⊆ I(L) and if I1, I2 ∈ I(L), then I1 ∩ I2 ∈ I(L). Also,
if I ∈ I(L), then 0 ∈ I.
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2. Topologies on a divisible residuated lattice

In what follows, by L we denote the universe of a divisible residuated lattice.

Definition 2.1. A non-empty set F of elements I ∈ I(L) will be called a topology
on L if the following axioms hold:
(a4) If I1 ∈ F , I2 ∈ I(L) and I1 ⊆ I2, then I2 ∈ F (hence L ∈ F);
(a5) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F .

Remark 2.1. 1. F is a topology on L if and only if F is a filter of the lattice
of power set of L; for this reason a topology on I(L) is usually called a Gabriel
filter on I(L).

2. Clearly, if F is a topology on L, then (L,F ∪{∅}) is a topological space.

Any intersection of topologies on L is a topology; so, the set T (L) of all topologies
of L is a complete lattice with respect to inclusion.

Example 2.1. If I ∈ I(L), then the set F(I) = {I ′ ∈ I(L) : I ⊆ I ′} is a topology on
L.

Definition 2.2. ([15]) A non-empty set I ⊆ L will be called regular if for every
x, y ∈ A such that e ∧ x = e ∧ y for every e ∈ I ∩B(A), then x = y.

Example 2.2. If we denote R(L) = {I ⊆ L : I is a regular subset of L}, then
I(L) ∩R(L) is a topology on L.

Example 2.3. A nonempty set I ⊆ L will be called dense (see [10]) if for x ∈ L such
that e∧ x = 0 for every e ∈ I ∩B(L), then x = 0. If we denote by D(L) the set of all
dense subsets of L, then R(L) ⊆ D(L) and F = I(L) ∩D(L) is a topology on L.

Definition 2.3. ([3]) A subset S ⊆ L is called ∧−closed if 1 ∈ S and x, y ∈ S
implies x ∧ y ∈ S.

Example 2.4. For any ∧− closed subset S of L, the set

FS = {I ∈ I(L) : I ∩ S ∩B(L) ̸= ⊘}
is a topology on L.

1. If S is a ∧−closed systems of L such that 0 ∈ S we have I ∩ S ∩ B(L) ̸= ⊘ for
every I ∈ I(L), so FS = I(L).

2. If 0 /∈ S then FS = {L} (because, if I ∈ I(L) and 1 ∈ I implies I = L).

3. F-multipliers and localization divisible residuated lattices

Let F be a topology on a MTL−algebra L and we consider the relation θF of L
defined in the following way: (x, y) ∈ θF ⇔ there exists I ∈ F such that e∧x = e∧ y
for any e ∈ I ∩B(L).

Lemma 3.1. θF is a congruence on L.

Proof. As in [2] for the case of BL− algebras. �
We shall denote by a/θF the congruence class of an element a ∈ L and by

pF : L → L/θF the canonical morphism of residuated lattices.

Proposition 3.2. For a ∈ L, a/θF ∈ B(L/θF ) if and only if there exists I ∈ F such
that a ∨ a∗ ≥ e for every e ∈ I ∩B(L). So, if a ∈ B(L), then a/θF ∈ B(L/θF ).
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Proof. Using Theorem 1.2, for a ∈ L, we have

a/θF ∈ B(L/θF ) ⇔ a/θF ∨ (a/θF )
∗ = 1/θF ⇔ (a ∨ a∗)/θF = 1/θF

⇔ there exist I ∈ F : (a ∨ a∗) ∧ e = 1 ∧ e = e,

for every e ∈ I ∩B(L)

⇔ a ∨ a∗ ≥ e, for every e ∈ I ∩B(L).

If a ∈ B(L), then for every I ∈ F , 1 = a ∨ a∗ ≥ e, for every e ∈ I ∩ B(L), hence
a/θF ∈ B(L/θF ). �

Corollary 3.3. If F = I(L) ∩R(L), then for a ∈ L, a/θF ∈ B(L/θF ) if and only if
a ∈ B(L).

Definition 3.1. Let F be a topology on L. A F− multiplier is a mapping f : I
→ L/θF where I ∈ F and for every x ∈ I and e ∈ B(L) the following axioms are
fulfilled:
(a6) f(e⊙ x) = e/θF ∧ f(x) = e/θF ⊙ f(x);
(a7) f(x) ≤ x/θF .

By dom(f) ∈ F we denote the domain of f ; if dom(f) = L, we called f total.
To simplify language, we will use F− multiplier instead partial F− multiplier,

using total to indicate that the domain of a certain F− multiplier is L.
If F = {L}, then θF is the identity congruence of L so a F− multiplier is a total

multiplier.
The maps 0,1 : L → L/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every

x ∈ L are F− multipliers in the sense of Definition 3.1.
Also, for a ∈ B(L), fa : L → L/θF defined by fa(x) = a/θF ∧ x/θF for every

x ∈ L, is a F− multiplier. If dom(fa) = L, we denote fa by fa ; clearly, f0 = 0 and
f1 = 1.

We shall denote by M(I, L/θF ) the set of all the F− multipliers having the domain
I ∈ F and M(L/θF ) = ∪

I∈F
M(I, L/θF ). If I1, I2 ∈ F , I1 ⊆ I2 we have a canonical

mapping φI1,I2 : M(I2, L/θF ) → M(I1, L/θF ) defined by φI1,I2(f) = f|I1 for f ∈
M(I2, L/θF ). Let us consider the directed system of sets

⟨{M(I, L/θF )}I∈F , {φI1,I2}I1,I2∈F ,I1⊆I2⟩ and denote by LF the inductive limit (in
the category of sets) LF = lim−→

I∈F
M(I, L/θF ). For any F− multiplier f : I → L/θF we

shall denote by (̂I, f) the equivalence class of f in LF .

Remark 3.4. If fi : Ii → L/θF , i = 1, 2, are F− multipliers, then (̂I1, f1) = (̂I2, f2)
(in LF ) iff there exists I ∈ F , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Proposition 3.5. If I1, I2 ∈ F and fi ∈ M(Ii, L/θF ), i = 1, 2, then
(c17) f1(x)⊙ [x/θF → f2(x)] = f2(x)⊙ [x/θF → f1(x)], for every x ∈ I1∩ I2.

Proof. Using (d), for x ∈ I1∩ I2 we have f1(x)⊙ [x/θF → f2(x)]
(a7)
= (x/θF ∧f1(x))⊙

[x/θF → f2(x)]
(d)
= x/θF ⊙ (x/θF → f1(x)) ⊙ (x/θF → f2(x)) = [x/θF ⊙ (x/θF →

f2(x))]⊙ (x/θF → f1(x))
(a7)
= f2(x)⊙ [x/θF → f1(x)]. �

Let fi : Ii → L/θF , (with Ii ∈ F , i = 1, 2), F−multipliers. Let us consider the
mappings f1 ∧ f2, f1 ∨ f2, f1 ⊗ f2, f1  f2 : I1 ∩ I2 → L/θF defined by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x), (f1 ∨ f2)(x) = f1(x) ∨ f2(x),
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(f1 ⊗ f2)(x) = f1(x)⊙ [x/θF → f2(x)]
(c17)
= f2(x)⊙ [x/θF → f1(x)],

(f1  f2)(x) = x/θF ⊙ [f1(x) → f2(x)],

for any x ∈ I1 ∩ I2, and let

(̂I1, f1)f (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2), (̂I1, f1)g (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),

(̂I1, f1)⊗ (̂I2, f2) = ̂(I1 ∩ I2, f1 ⊗ f2), (̂I1, f1) 7−→ (̂I2, f2) = ̂(I1 ∩ I2, f1  f2).

Clearly, the definitions of the operations f,g,⊗ and 7−→ on LF are correct.
As in the case of BL−algebras(see[2]) we deduce

Lemma 3.6. f1 ∧ f2, f1 ∨ f2, f1 ⊗ f2, f1  f2 ∈ M(I1 ∩ I2, L/θF ).

Proposition 3.7. (LF ,f,g,⊗, 7−→,0 = (̂L,0),1 = (̂L,1)) is a divisible residuated
lattice.

Proof. We verify the axioms of divisible residuated lattices.

(a1). Obviously (LF ,f,g,0 = (̂L,0),1 = (̂L,1)) is a bounded lattice, where the

order on LF is given by ̂(I1, f1) ≤ ̂(I2, f2) iff there is I ∈ F , I ⊆ I1 ∩ I2 such that
f1(x) ≤ f2(x) for every x ∈ I.

(a2). As in the case of BL− algebras (see [2]), by using (c17).
(a3). Let fi ∈ M(Ii, L/θF ) where Ii ∈ F , i = 1, 2, 3.

If ̂(I1, f1) ≤ ̂(I2, f2) 7→ ̂(I3, f3), then ̂(I1, f1) ≤ ̂(I2 ∩ I3, f2  f3), so there is I ∈ F
such that I ⊆ I1∩I2∩I3 and for every x ∈ I, we have f1(x) ≤ (f2  f3)(x) ⇒ f1(x) ≤
x/θF ⊙ [f2(x) → f3(x)]. So, by (c3), f1(x) ⊙ [x/θF → f2(x)] ≤ x/θF ⊙ [x/θF →
f2(x)] ⊙ [f2(x) → f3(x)]

(d)⇒ f1(x) ⊙ [x/θF → f2(x)] ≤ f2(x) ⊙ [f2(x) → f3(x)] ≤
f3(x) ⇒ (f1 ⊗ f2)(x) ≤ f3(x), that is, ̂(I1, f1) ⊗ ̂(I2, f2) ≤ ̂(I3, f3). Conversely, if
̂(I1, f1) ⊗ ̂(I2, f2) ≤ ̂(I3, f3), then there is I ∈ F , I ⊆ I1 ∩ I2 ∩ I3 such that for
every x ∈ I, (f1 ⊗ f2)(x) ≤ f3(x) ⇒ f2(x) ⊙ [x/θF → f1(x)] ≤ f3(x). Obviously

for x ∈ I, x/θF → f1(x) ≤ f2(x) → f3(x)
(c3)⇒ x/θF ⊙ (x/θF → f1(x)) ≤ x/θF ⊙

(f2(x) → f3(x)) ⇒ f1(x) ≤ (f2  f3)(x). So, (̂I1, f1) ≤ (̂I2, f2) 7−→ (̂I3, f3). Then

(̂I1, f1) ≤ (̂I2, f2) 7−→ (̂I3, f3) iff (̂I2, f2)⊗ (̂I1, f1) ≤ (̂I3, f3). Since the divisibility (d)
is proved as in the case of BL− algebras (see [2]), we deduce that (LF ,f,g,⊗, 7−→
,0 = (̂L,0),1 = (̂L,1)) is a divisible residuated lattice. �
Definition 3.2. The divisible residuated lattice LF will be called the localization
divisible residuated lattice of L with respect to the topology F .

Remark 3.8. If divisible residuated lattice (L,∧,∨,⊙,→, 0, 1) is a BL− algebra in

[2] (LF ,f,g,⊗, 7−→,0 = (̂A,0),1 = (̂A,1)) called the localization BL-algebra of L
with respect to the topology F .

Lemma 3.9. Let the map vF : B(L) → LF defined by vF (a) = (̂L, fa) for every
a ∈ B(L). Then:
(i) vF is a morphism of residuated lattices;

(ii) For a ∈ B(L), (̂L, fa) ∈ B(LF );
(iii) vF (B(L)) ∈ R(LF ).

Proof. (i), (iii). As in the case of BL− algebras (see [2]).
(ii). For a ∈ B(L) we have a ∨ a∗ = 1, hence (a ∧ x) ∨ [x ⊙ (a ∧ x)∗] = (a ∧ x) ∨

[x ⊙ (a∗ ∨ x∗)]
(c6)
= (a ∧ x) ∨ [(x ⊙ a∗) ∨ (x ⊙ x∗)]

(c5)
= (a ∧ x) ∨ [(x ⊙ a∗) ∨ 0)

(c8)
=
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(a ∧ x) ∨ (x ∧ a∗)
(c15)
= x ∧ (a ∨ a∗) = x ∧ 1 = x, for every x ∈ L. Since L ∈ F we

deduce that (a ∧ x)/θF ∨ [x/θF ⊙ ((a ∧ x)/θF )
∗] = x/θF hence fa ∨ (fa)

∗ = 1 , that

is, (̂L, fa)g (̂L, fa)
∗
= (̂L,1), so (̂L, fa) ∈ B(LF ). �

4. Applications

In the following we describe the localization divisible residuated lattice LF in some
special instances.
1. If I ∈ I(L), and F is the topology F(I) = {I ′ ∈ I(L) : I ⊆ I ′} (see Example
2.1), then LF is isomorphic with M(I, L/θF ) and vF : B(L) → LF is defined by
vF (a) = fa|I for every a ∈ B(L).

If I is a regular subset of L, then θF is the identity, hence LF is isomorphic with
M(I, L), which in generally is not a Boolean algebra. For example, if I = L = [0, 1]
is the Lukasiewicz structure (see [16]) then LF is not a Boolean algebra (see [2]).
2. Main remark. To obtain the maximal divisible residuated lattice of quotients
Q(L) (introduced in [15]) as a localization relative to a topology F , we have to develop
another theory of multipliers (meaning we add new axioms for F-multipliers).

Definition 4.1. Let F be a topology on L. A strong - F− multiplier is a mapping
f : I → L/θF (where I ∈ F) which verifies the axioms (a6), (a7) (see Definition 3.1)
and
(a8) If e ∈ I ∩B(L), then f(e) ∈ B(L/θF );
(a9) (x/θF ) ∧ f(e) = (e/θF ) ∧ f(x), for every e ∈ I ∩B(L) and x ∈ I.

Remark 4.1. If (L,∧,∨,⊙,→, 0, 1) is a divisible residuated lattice, the maps 0,1 : L
→ L/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every x ∈ L are strong -
F− multipliers. We recall that if fi : Ii → L/θF , (with Ii ∈ F , i = 1, 2) are
F−multipliers f1 ∧ f2, f1 ∨ f2, f1 ⊗ f2, f1  f2 : I1 ∩ I2 → A/θF defined by (f1 ∧
f2)(x) = f1(x) ∧ f2(x), (f1 ∨ f2)(x) = f1(x) ∨ f2(x), (f1 ⊗ f2)(x) = f1(x) ⊙ [x/θF →
f2(x)]

(c17)
= f2(x) ⊙ [x/θF → f1(x)], (f1  f2)(x) = x/θF ⊙ [f1(x) → f2(x)], for any

x ∈ I1∩I2 are F−multipliers. If f1, f2 are strong - F− multipliers then the multipliers
f1 ∧ f2, f1 ∨ f2, f1 ⊗ f2, f1  f2 are also strong - F− multipliers (the proof is as in
the case of BL−algebras, see [2]).

Remark 4.2. Analogous as in the case of F− multipliers if we work with strong-F−
multipliers we obtain a divisible residuated lattice of LF denoted by s − LF which
will be called the strong-localization divisible residuated lattice of L with respect to the
topology F .

So, if F = I(L) ∩ R(L) is the topology of regular ideals, then θF is the identity
congruence of L and we obtain the definition for multipliers on L, so

s− LF = lim−→(
I∈F

s−M(I, L)),

where s−M(I, L) is the set of strong multipliers of L having the domain I.
In this situation we obtain:

Proposition 4.3. In the case F = I(L) ∩R(L), LF is exactly the maximal divisible
residuated lattice Q(L) of quotients of L (introduced in [15]) which is a Boolean al-
gebra. If divisible residuated lattice L is a BL− algebra, LF is exactly the maximal
BL-algebra Q(L) of quotients of L.
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3. Denoting by D the topology of dense ordered ideals of L, then (since R(L) ⊆ D(L))
there exists a morphism of residuated lattices α : Q(L) → s−LD such that the diagram

B(L)

vD $$I
II

II
II

II
vL // Q(L)

α
zzuuu

uu
uu
uu

s− LD

is commutative (i.e. α ◦ vA = vD). Indeed, if [f, I] ∈ Q(L) (with I ∈ I(L) ∩ R(L)
and f : I → L a strong multiplier) we denote by fD the strong - D−multiplier
fD : I → L/θD defined by fD(x) = f(x)/θD for every x ∈ I. Thus, α is defined by
α([f, I]) = [fD, I].
4. Let S ⊆ L a ∧-closed system of divisible residuated lattice L. Consider the
following congruence on L : (x, y) ∈ θS ⇔ there exists e ∈ S ∩ B(L) such that
x ∧ e = y ∧ e (see [3]). L[S] = L/θS will be called the divisible residuated lattice of
fractions of L relative to the ∧−closed system S.

As in the case of BL−algebras we obtain the following result:

Proposition 4.4. If FS is the topology associated with a ∧-closed system S ⊆ L,
then the divisible residuated lattice s− LFS is isomorphic with B(L[S]).

Remark 4.5. In the proof of Proposition 4.4 the axiom (a9) is not necessarily.

Concluding remarks

Since in particular a BL− algebra is a divisible residuated lattice we obtain a part
of the results about localization of BL− algebras (see [2]), so we deduce that the
main results of this paper are generalization of the analogous result relative to BL−
algebras from [2].

We use in the construction of localization divisible residuated lattice LF the Boolean
center B(L) of divisible residuated lattice L; as a consequence of this fact, s− LF is
a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the local-
ization for divisible residuated lattice or residuated lattices without use the Boolean
center.
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[2] D. Buşneag and D. Piciu, Localization of BL-algebras, Soochow Journal of Mathematics 32

(2006), no.1, 127–159.
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[4] D. Buşneag, D. Piciu and J. Paralescu Divisible and semi-divisible residuated lattices, to appear
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