Annals of the University of Craiova, Mathematics and Computer Science Series Volume 40(1), 2013, Pages 76–83 ISSN: 1223-6934

Localization of divisible residuated lattices

JUSTIN PARALESCU

ABSTRACT. The aim of the present paper is to define the localization of a divisible residuated lattices L with respect to a topology \mathcal{F} on L. In the last part of the paper is proved that the maximal divisible residuated lattice of quotients (defined in [15]) and the divisible residuated lattice of fractions relative to an \wedge - closed system (defined in [3]) are divisible residuated lattices of localization.

2010 Mathematics Subject Classification. Primary 18B35; Secondary 18C05. Key words and phrases. divisible residuated lattices, topology, $\mathcal{F}-$ multiplier, strong $\mathcal{F}-$ multiplier, divisible residuated lattice of localization.

Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced by Hájek in [11] to cope with the logic of continuous t-norms and their residua.

A remarkable construction in ring theory is the *localization ring* $A_{\mathcal{F}}$ associated with a Gabriel topology \mathcal{F} on a ring A.

Using the model of localization ring, in [10], G. Georgescu defined for a bounded distributive lattice L the localization lattice $L_{\mathcal{F}}$ of L with respect to a topology \mathcal{F} on L and prove that the maximal lattice of quotients for a distributive lattice is a lattice of localization (relative to the topology of regular ideals); analogous results we have for lattices of fractions of bounded distributive lattices relative to \wedge - closed systems.

The main aim of this paper is to develop a theory of localization for divisible residuated lattices. Since BL- algebras are particular classes of divisible residuated lattices, the results of this paper generalize a part of the results from [2] for BL- algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [19]) is an algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) equipped with an order \leq satisfying the following:

 (a_1) $(L, \wedge, \vee, 0, 1)$ is a bounded lattice, whose order is \leq ;

 (a_2) $(L, \odot, 1)$ is a commutative ordered monoid;

(a₃) (\odot, \rightarrow) is an adjoint pair, i.e. $z \leq x \rightarrow y$ if and only if $x \odot z \leq y$ for every $x, y, z \in L$.

The class \mathcal{RL} of residuated lattices is equational (see [12]). For examples of residuated lattices see [3] and [19].

In this section by L we denote the universe of a residuated lattice. For $x \in L$, we denote $x^* = x \to 0$ and $(x^*)^* = x^{**}$.

We review some rules of calculus for residuated lattices L used in this paper: **Theorem 1.1.** ([1], [19]) Let $x, y, z \in L$. Then we have the following:

Received May 28, 2013.

Supported by the University of Craiova, Faculty of Mathematics and Computer Science, A.I. Cuza Street, no. 13, 200585, Craiova, Romania.

- (c₁) $1 \to x = x, x \to x = 1, y \le x \to y, x \odot (x \to y) \le y, x \to 1 = 1, 0 \to x = 1, x \odot 0 = 0;$
- (c₂) $x \leq y$ iff $x \to y = 1$;
- (c₃) $x \leq y$ implies $x \odot z \leq y \odot z, z \to x \leq z \to y$ and $y \to z \leq x \to z$;
- $(c_4) \ x \to (y \to z) = (x \odot y) \to z = y \to (x \to z), \ so \ (x \odot y)^* = x \to y^* = y \to x^*;$
- (c₅) $x \odot x^* = 0$ and $x \odot y = 0$ iff $x \le y^*$;
- $(c_6) \ x \odot (y \lor z) = (x \odot y) \lor (x \odot z);$
- $(c_7) \ x \to (y \land z) = (x \to y) \land (x \to z).$

By B(L) we denote the set of all complemented elements in the lattice $(L, \land, \lor, 0, 1)$. Complements are generally not unique, unless the lattice is distributive; in the case of residuated lattices, however, although the underlying lattices need not be distributive, the complements are unique ([9]). Also, if b is the complement of a, then a is the complement of b, $b = a^*, a^2 = a$ and $a^{**} = a$ ([1], [3]). So, B(L) is a Boolean subalgebra of L, called the *Boolean center* of L.

Theorem 1.2. ([3]) For $e \in L$ the following assertions are equivalent: (i) $e \in B(L)$;

(*ii*) $e \lor e^* = 1$.

Theorem 1.3. ([3]) If $e, f \in B(L)$ and $x, y \in L$, then:

 $(c_8) \ e \odot x = e \land x;$

 $(c_9) \ x \odot (x \to e) = e \land x, e \odot (e \to x) = e \land x;$

 $(c_{10}) \ e \odot (x \to y) = e \odot [(e \odot x) \to (e \odot y)];$

 $(c_{11}) \ x \odot (e \to f) = x \odot [(x \odot e) \to (x \odot f)].$

Definition 1.2. ([11]) A divisible residuated lattice is a residuated lattice satisfying the divisibility equation:

(d) $x \odot (x \to y) = x \land y$.

The variety of divisible residuated lattices will be denoted by \mathcal{RL}_d . For examples of divisible residuated lattices see [4, 15, 16, 19].

Proposition 1.4. ([15]) For a residuated lattice L, the following conditions are equivalent:

- (i) $L \in \mathcal{RL}_d;$
- (ii) For every $x, y \in L$ with $x \leq y$ there exists $z \in L$ such that $x = y \odot z$;
- (iii) For every $x, y, z \in L$ we have:
- $(c_{12}) \ x \to (y \land z) = (x \to y) \odot [(x \land y) \to z].$

Corollary 1.5. ([4]) Let $L \in \mathcal{RL}_d$. Then for every $x, y, z \in L$ we have:

- $(c_{13}) \quad (x^{**} \to x)^* = 0, (x \to y)^{**} = x^{**} \to y^{**}, (x \odot y)^{**} = x^{**} \odot (x^{**} \land y^*)^*, (x \land y)^{**} = x^{**} \land y^{**};$
- $(c_{14}) \ x \odot (y \land z) = (x \odot y) \land (x \odot z);$
- $(c_{15}) \ x \land (y \lor z) = (x \land y) \lor (x \land z);$
- $(c_{16}) \ y^* \le x \Rightarrow x \to (x \odot y)^{**} = y^{**}.$

Definition 1.3. Let (P, \leq) an ordered set. A nonempty subset I of P is called *order ideal (or decreasing set)* if, whenever $x \in I, y \in P$ and $y \leq x$, we have $y \in I$; we denote by I(P) the set of all order ideals of P.

For a divisibile residuated lattice L we denote by Id(L) the set of all ideals of the lattice (L, \wedge, \vee) .

Remark 1.6. Clearly, $Id(L) \subseteq I(L)$ and if $I_1, I_2 \in I(L)$, then $I_1 \cap I_2 \in I(L)$. Also, if $I \in I(L)$, then $0 \in I$.

J. PARALESCU

2. Topologies on a divisible residuated lattice

In what follows, by L we denote the universe of a divisible residuated lattice.

Definition 2.1. A non-empty set \mathcal{F} of elements $I \in I(L)$ will be called a *topology* on L if the following axioms hold:

 (a_4) If $I_1 \in \mathcal{F}, I_2 \in I(L)$ and $I_1 \subseteq I_2$, then $I_2 \in \mathcal{F}$ (hence $L \in \mathcal{F}$);

 (a_5) If $I_1, I_2 \in \mathcal{F}$, then $I_1 \cap I_2 \in \mathcal{F}$.

- **Remark 2.1.** 1. \mathcal{F} is a topology on L if and only if \mathcal{F} is a filter of the lattice of power set of L; for this reason a topology on I(L) is usually called a Gabriel filter on I(L).
 - 2. Clearly, if \mathcal{F} is a topology on L, then $(L, \mathcal{F} \cup \{\emptyset\})$ is a topological space.

Any intersection of topologies on L is a topology; so, the set T(L) of all topologies of L is a complete lattice with respect to inclusion.

Example 2.1. If $I \in I(L)$, then the set $\mathcal{F}(I) = \{I' \in I(L) : I \subseteq I'\}$ is a topology on L.

Definition 2.2. ([15]) A non-empty set $I \subseteq L$ will be called *regular* if for every $x, y \in A$ such that $e \wedge x = e \wedge y$ for every $e \in I \cap B(A)$, then x = y.

Example 2.2. If we denote $R(L) = \{I \subseteq L : I \text{ is a regular subset of } L\}$, then $I(L) \cap R(L)$ is a topology on L.

Example 2.3. A nonempty set $I \subseteq L$ will be called *dense* (see [10]) if for $x \in L$ such that $e \wedge x = 0$ for every $e \in I \cap B(L)$, then x = 0. If we denote by D(L) the set of all dense subsets of L, then $R(L) \subseteq D(L)$ and $\mathcal{F} = I(L) \cap D(L)$ is a topology on L.

Definition 2.3. ([3]) A subset $S \subseteq L$ is called $\wedge -closed$ if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

Example 2.4. For any \wedge - closed subset S of L, the set

$$\mathcal{F}_S = \{ I \in I(L) : I \cap S \cap B(L) \neq \emptyset \}$$

is a topology on L.

- 1. If S is a \wedge -closed systems of L such that $0 \in S$ we have $I \cap S \cap B(L) \neq \emptyset$ for every $I \in I(L)$, so $\mathcal{F}_S = I(L)$.
- 2. If $0 \notin S$ then $\mathcal{F}_S = \{L\}$ (because, if $I \in I(L)$ and $1 \in I$ implies I = L).

3. *F*-multipliers and localization divisible residuated lattices

Let \mathcal{F} be a topology on a MTL-algebra L and we consider the relation $\theta_{\mathcal{F}}$ of L defined in the following way: $(x, y) \in \theta_{\mathcal{F}} \Leftrightarrow$ there exists $I \in \mathcal{F}$ such that $e \wedge x = e \wedge y$ for any $e \in I \cap B(L)$.

Lemma 3.1. $\theta_{\mathcal{F}}$ is a congruence on L.

Proof. As in [2] for the case of BL- algebras.

We shall denote by $a/\theta_{\mathcal{F}}$ the congruence class of an element $a \in L$ and by $p_{\mathcal{F}}: L \to L/\theta_{\mathcal{F}}$ the canonical morphism of residuated lattices.

Proposition 3.2. For $a \in L$, $a/\theta_{\mathcal{F}} \in B(L/\theta_{\mathcal{F}})$ if and only if there exists $I \in \mathcal{F}$ such that $a \lor a^* \ge e$ for every $e \in I \cap B(L)$. So, if $a \in B(L)$, then $a/\theta_{\mathcal{F}} \in B(L/\theta_{\mathcal{F}})$.

78

Proof. Using Theorem 1.2, for $a \in L$, we have

$$\begin{aligned} a/\theta_{\mathcal{F}} \in B(L/\theta_{\mathcal{F}}) &\Leftrightarrow a/\theta_{\mathcal{F}} \vee (a/\theta_{\mathcal{F}})^* = 1/\theta_{\mathcal{F}} \Leftrightarrow (a \vee a^*)/\theta_{\mathcal{F}} = 1/\theta_{\mathcal{F}} \\ &\Leftrightarrow \text{ there exist } I \in \mathcal{F} : (a \vee a^*) \wedge e = 1 \wedge e = e, \\ &\text{ for every } e \in I \cap B(L) \\ &\Leftrightarrow a \vee a^* \geq e, \text{ for every } e \in I \cap B(L). \end{aligned}$$

If $a \in B(L)$, then for every $I \in \mathcal{F}$, $1 = a \lor a^* \ge e$, for every $e \in I \cap B(L)$, hence $a/\theta_{\mathcal{F}} \in B(L/\theta_{\mathcal{F}})$.

Corollary 3.3. If $\mathcal{F} = I(L) \cap R(L)$, then for $a \in L$, $a/\theta_{\mathcal{F}} \in B(L/\theta_{\mathcal{F}})$ if and only if $a \in B(L)$.

Definition 3.1. Let \mathcal{F} be a topology on L. A \mathcal{F} - multiplier is a mapping $f : I \to L/\theta_{\mathcal{F}}$ where $I \in \mathcal{F}$ and for every $x \in I$ and $e \in B(L)$ the following axioms are fulfilled:

 $\begin{array}{ll} (a_6) & f(e \odot x) = e/\theta_{\mathcal{F}} \wedge f(x) = e/\theta_{\mathcal{F}} \odot f(x); \\ (a_7) & f(x) \leq x/\theta_{\mathcal{F}}. \end{array}$

By $dom(f) \in \mathcal{F}$ we denote the domain of f; if dom(f) = L, we called f total.

To simplify language, we will use $\mathcal{F}-$ multiplier instead partial $\mathcal{F}-$ multiplier, using total to indicate that the domain of a certain $\mathcal{F}-$ multiplier is L.

If $\mathcal{F} = \{L\}$, then $\theta_{\mathcal{F}}$ is the identity congruence of L so a \mathcal{F} - multiplier is a total multiplier.

The maps $\mathbf{0}, \mathbf{1} : L \to L/\theta_{\mathcal{F}}$ defined by $\mathbf{0}(x) = 0/\theta_{\mathcal{F}}$ and $\mathbf{1}(x) = x/\theta_{\mathcal{F}}$ for every $x \in L$ are \mathcal{F} - multipliers in the sense of Definition 3.1.

Also, for $a \in B(L)$, $f_a : L \to L/\theta_{\mathcal{F}}$ defined by $f_a(x) = a/\theta_{\mathcal{F}} \wedge x/\theta_{\mathcal{F}}$ for every $x \in L$, is a \mathcal{F} - multiplier. If $dom(f_a) = L$, we denote f_a by $\overline{f_a}$; clearly, $\overline{f_0} = \mathbf{0}$ and $\overline{f_1} = \mathbf{1}$.

We shall denote by $M(I, L/\theta_{\mathcal{F}})$ the set of all the $\mathcal{F}-$ multipliers having the domain $I \in \mathcal{F}$ and $M(L/\theta_{\mathcal{F}}) = \bigcup_{I \in \mathcal{F}} M(I, L/\theta_{\mathcal{F}})$. If $I_1, I_2 \in \mathcal{F}$, $I_1 \subseteq I_2$ we have a canonical mapping $\varphi_{I_1,I_2} : M(I_2, L/\theta_{\mathcal{F}}) \to M(I_1, L/\theta_{\mathcal{F}})$ defined by $\varphi_{I_1,I_2}(f) = f_{|I_1}$ for $f \in M(I_2, L/\theta_{\mathcal{F}})$. Let us consider the directed system of sets

 $\{\{M(I, L/\theta_{\mathcal{F}})\}_{I \in \mathcal{F}}, \{\varphi_{I_1, I_2}\}_{I_1, I_2 \in \mathcal{F}, I_1 \subseteq I_2}\}$ and denote by $L_{\mathcal{F}}$ the inductive limit (in the category of sets) $L_{\mathcal{F}} = \varinjlim_{I \in \mathcal{F}} M(I, L/\theta_{\mathcal{F}})$. For any \mathcal{F} - multiplier $f: I \to L/\theta_{\mathcal{F}}$ we

shall denote by (I, f) the equivalence class of f in $L_{\mathcal{F}}$.

Remark 3.4. If $f_i : I_i \to L/\theta_{\mathcal{F}}$, i = 1, 2, are \mathcal{F} - multipliers, then $\widehat{(I_1, f_1)} = \widehat{(I_2, f_2)}$ (in $L_{\mathcal{F}}$) iff there exists $I \in \mathcal{F}$, $I \subseteq I_1 \cap I_2$ such that $f_{1|I} = f_{2|I}$.

Proposition 3.5. If $I_1, I_2 \in \mathcal{F}$ and $f_i \in M(I_i, L/\theta_{\mathcal{F}}), i = 1, 2, then$ $(c_{17}) f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] = f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)], for every \ x \in I_1 \cap I_2.$

Proof. Using (d), for $x \in I_1 \cap I_2$ we have $f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \stackrel{(a_7)}{=} (x/\theta_{\mathcal{F}} \wedge f_1(x)) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \stackrel{(d)}{=} x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x)) = [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_2(x))] \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \stackrel{(a_7)}{=} f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)].$

Let $f_i: I_i \to L/\theta_F$, (with $I_i \in \mathcal{F}$, i = 1, 2), \mathcal{F} -multipliers. Let us consider the mappings $f_1 \wedge f_2, f_1 \vee f_2, f_1 \otimes f_2, f_1 \rightsquigarrow f_2: I_1 \cap I_2 \to L/\theta_F$ defined by

$$(f_1 \wedge f_2)(x) = f_1(x) \wedge f_2(x), (f_1 \vee f_2)(x) = f_1(x) \vee f_2(x)$$

J. PARALESCU

$$(f_1 \otimes f_2)(x) = f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \stackrel{(c_{17})}{=} f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)],$$

$$(f_1 \rightsquigarrow f_2)(x) = x/\theta_{\mathcal{F}} \odot [f_1(x) \to f_2(x)],$$

for any $x \in I_1 \cap I_2$, and let

$$\widehat{(I_1,f_1)} \land \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \land f_2), \widehat{(I_1,f_1)} \lor \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \lor f_2),$$

$$\widehat{(I_1,f_1)} \otimes \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \otimes f_2), \widehat{(I_1,f_1)} \longmapsto \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \rightsquigarrow f_2)$$

Clearly, the definitions of the operations $\lambda, \Upsilon, \otimes$ and \mapsto on $L_{\mathcal{F}}$ are correct.

As in the case of BL-algebras(see[2]) we deduce

Lemma 3.6. $f_1 \wedge f_2, f_1 \vee f_2, f_1 \otimes f_2, f_1 \rightsquigarrow f_2 \in M(I_1 \cap I_2, L/\theta_F).$

Proposition 3.7. $(L_{\mathcal{F}}, \lambda, \Upsilon, \otimes, \longmapsto, \mathbf{0} = (\widehat{L, \mathbf{0}}), \mathbf{1} = (\widehat{L, \mathbf{1}}))$ is a divisible residuated lattice.

Proof. We verify the axioms of divisible residuated lattices.

 (a_1) . Obviously $(L_{\mathcal{F}}, \lambda, \gamma, \mathbf{0} = (L, \mathbf{0}), \mathbf{1} = (L, \mathbf{1}))$ is a bounded lattice, where the order on $L_{\mathcal{F}}$ is given by $(I_1, f_1) \leq (I_2, f_2)$ iff there is $I \in \mathcal{F}, I \subseteq I_1 \cap I_2$ such that $f_1(x) \leq f_2(x)$ for every $x \in I$.

 (a_2) . As in the case of BL- algebras (see [2]), by using (c_{17}) .

(a₃). Let $f_i \in M(I_i, L/\theta_{\mathcal{F}})$ where $I_i \in \mathcal{F}, i = 1, 2, 3$.

If $(\widehat{I_1, f_1}) \leq (\widehat{I_2, f_2}) \mapsto (\widehat{I_3, f_3})$, then $(\widehat{I_1, f_1}) \leq (I_2 \cap \widehat{I_3, f_2} \rightsquigarrow f_3)$, so there is $I \in \mathcal{F}$ such that $I \subseteq I_1 \cap I_2 \cap I_3$ and for every $x \in I$, we have $f_1(x) \leq (f_2 \rightsquigarrow f_3)(x) \Rightarrow f_1(x) \leq x/\theta_{\mathcal{F}} \odot [f_2(x) \to f_3(x)]$. So, by (c_3) , $f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \leq x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \leq f_2(x) \to f_3(x)] \stackrel{(d)}{\Rightarrow} f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \leq f_2(x) \odot [f_2(x) \to f_3(x)] \leq f_3(x)$, that is, $(\widehat{I_1, f_1}) \otimes (\widehat{I_2, f_2}) \leq (\widehat{I_3, f_3})$. Conversely, if $(\widehat{I_1, f_1}) \otimes (\widehat{I_2, f_2}) \leq (\widehat{I_3, f_3})$, then there is $I \in \mathcal{F}$, $I \subseteq I_1 \cap I_2 \cap I_3$ such that for every $x \in I$, $(f_1 \otimes f_2)(x) \leq f_3(x) \Rightarrow f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)] \leq f_3(x)$. Obviously for $x \in I$, $x/\theta_{\mathcal{F}} \to f_1(x) \leq (f_2 \rightsquigarrow f_3)(x)$. So, $(\widehat{I_1, f_1}) \leq (\widehat{I_2, f_2}) \mapsto (\widehat{I_3, f_3})$. Then $(\widehat{I_1, f_1}) \leq (\widehat{I_2, f_2}) \mapsto (\widehat{I_3, f_3})$ iff $(\widehat{I_2, f_2}) \otimes (\widehat{I_1, f_1}) \leq (\widehat{I_2, f_2}) \mapsto (\widehat{I_3, f_3})$. Then $(\widehat{I_1, f_1}) \leq (\widehat{I_2, f_2}) \mapsto (\widehat{I_3, f_3})$ iff $(\widehat{I_2, f_2}) \otimes (\widehat{I_1, f_1}) \leq (\widehat{I_2, f_2}) \mapsto (\widehat{I_3, f_3})$. Then $(\widehat{I_1, f_1}) \leq (\widehat{I_2, f_2}) \mapsto (\widehat{I_3, f_3})$ iff $(\widehat{I_2, f_2}) \otimes (\widehat{I_1, f_1}) \leq (\widehat{I_3, f_3})$. Since the divisibility (d) is proved as in the case of BL- algebras (see [2]), we deduce that $(L_{\mathcal{F}, \lambda, \gamma, \otimes, \mapsto$ $, \mathbf{0} = (\widehat{L, \mathbf{0}}), \mathbf{1} = (\widehat{L, \mathbf{1}})$ is a divisible residuated lattice. \square

Definition 3.2. The divisible residuated lattice $L_{\mathcal{F}}$ will be called the localization divisible residuated lattice of L with respect to the topology \mathcal{F} .

Remark 3.8. If divisible residuated lattice $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is a BL- algebra in [2] $(L_{\mathcal{F}}, \land, \curlyvee, \otimes, \longmapsto, \mathbf{0} = \widehat{(A, \mathbf{0})}, \mathbf{1} = \widehat{(A, \mathbf{1})})$ called the localization BL-algebra of L with respect to the topology \mathcal{F} .

Lemma 3.9. Let the map $v_{\mathcal{F}} : B(L) \to L_{\mathcal{F}}$ defined by $v_{\mathcal{F}}(a) = (\widehat{L, f_a})$ for every $a \in B(L)$. Then:

- (i) $v_{\mathcal{F}}$ is a morphism of residuated lattices;
- (*ii*) For $a \in B(L)$, $(L, \overline{f_a}) \in B(L_{\mathcal{F}})$;
- (*iii*) $v_{\mathcal{F}}(B(L)) \in R(L_{\mathcal{F}}).$

Proof. (i), (iii). As in the case of BL- algebras (see [2]).

(*ii*). For $a \in B(L)$ we have $a \vee a^* = 1$, hence $(a \wedge x) \vee [x \odot (a \wedge x)^*] = (a \wedge x) \vee [x \odot (a^* \vee x^*)] \stackrel{(c_6)}{=} (a \wedge x) \vee [(x \odot a^*) \vee (x \odot x^*)] \stackrel{(c_5)}{=} (a \wedge x) \vee [(x \odot a^*) \vee 0) \stackrel{(c_8)}{=}$

80

 $\begin{array}{l} (a \wedge x) \vee (x \wedge a^*) \stackrel{(c_{15})}{=} x \wedge (a \vee a^*) = x \wedge 1 = x, \text{ for every } x \in L. \text{ Since } L \in \mathcal{F} \text{ we} \\ \text{deduce that } (a \wedge x)/\theta_{\mathcal{F}} \vee [x/\theta_{\mathcal{F}} \odot ((a \wedge x)/\theta_{\mathcal{F}})^*] = x/\theta_{\mathcal{F}} \text{ hence } \overline{f_a} \vee (\overline{f_a})^* = \mathbf{1} \text{ , that} \\ \text{is, } (\widehat{L, \overline{f_a}}) \curlyvee (\widehat{L, \overline{f_a}})^* = (\widehat{L, \mathbf{1}}), \text{ so } (\widehat{L, \overline{f_a}}) \in B(L_{\mathcal{F}}). \end{array}$

4. Applications

In the following we describe the localization divisible residuated lattice $L_{\mathcal{F}}$ in some special instances.

1. If $I \in I(L)$, and \mathcal{F} is the topology $\mathcal{F}(I) = \{I' \in I(L) : I \subseteq I'\}$ (see Example 2.1), then $L_{\mathcal{F}}$ is isomorphic with $M(I, L/\theta_{\mathcal{F}})$ and $v_{\mathcal{F}} : B(L) \to L_{\mathcal{F}}$ is defined by $v_{\mathcal{F}}(a) = \overline{f_a}_{|I|}$ for every $a \in B(L)$.

If I is a regular subset of L, then $\theta_{\mathcal{F}}$ is the identity, hence $L_{\mathcal{F}}$ is isomorphic with M(I, L), which in generally is not a Boolean algebra. For example, if I = L = [0, 1] is the Lukasiewicz structure (see [16]) then $L_{\mathcal{F}}$ is not a Boolean algebra (see [2]).

2. Main remark. To obtain the maximal divisible residuated lattice of quotients Q(L) (introduced in [15]) as a localization relative to a topology \mathcal{F} , we have to develop another theory of multipliers (meaning we add new axioms for \mathcal{F} -multipliers).

Definition 4.1. Let \mathcal{F} be a topology on L. A strong - \mathcal{F} - multiplier is a mapping $f: I \to L/\theta_{\mathcal{F}}$ (where $I \in \mathcal{F}$) which verifies the axioms $(a_6), (a_7)$ (see Definition 3.1) and

(a₈) If $e \in I \cap B(L)$, then $f(e) \in B(L/\theta_{\mathcal{F}})$;

 (a_9) $(x/\theta_{\mathcal{F}}) \wedge f(e) = (e/\theta_{\mathcal{F}}) \wedge f(x)$, for every $e \in I \cap B(L)$ and $x \in I$.

Remark 4.1. If $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is a divisible residuated lattice, the maps $\mathbf{0}, \mathbf{1} : L \to L/\theta_{\mathcal{F}}$ defined by $\mathbf{0}(x) = 0/\theta_{\mathcal{F}}$ and $\mathbf{1}(x) = x/\theta_{\mathcal{F}}$ for every $x \in L$ are strong - \mathcal{F} - multipliers. We recall that if $f_i : I_i \to L/\theta_{\mathcal{F}}$, (with $I_i \in \mathcal{F}, i = 1, 2$) are \mathcal{F} -multipliers $f_1 \land f_2, f_1 \lor f_2, f_1 \otimes f_2, f_1 \rightsquigarrow f_2 : I_1 \cap I_2 \to A/\theta_{\mathcal{F}}$ defined by $(f_1 \land f_2)(x) = f_1(x) \land f_2(x), (f_1 \lor f_2)(x) = f_1(x) \lor f_2(x), (f_1 \otimes f_2)(x) = f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \stackrel{(c_{17})}{=} f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)], (f_1 \rightsquigarrow f_2)(x) = x/\theta_{\mathcal{F}} \odot [f_1(x) \to f_2(x)], \text{ for any } x \in I_1 \cap I_2 \text{ are } \mathcal{F}$ -multipliers. If f_1, f_2 are strong - \mathcal{F} - multipliers then the multipliers $f_1 \land f_2, f_1 \lor f_2, f_1 \gg f_2$ are also strong - \mathcal{F} - multipliers (the proof is as in the case of BL-algebras, see [2]).

Remark 4.2. Analogous as in the case of \mathcal{F} - multipliers if we work with strong- \mathcal{F} multipliers we obtain a divisible residuated lattice of $L_{\mathcal{F}}$ denoted by $s - L_{\mathcal{F}}$ which
will be called the *strong-localization divisible residuated lattice of L with respect to the*topology \mathcal{F} .

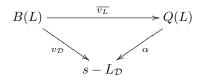
So, if $\mathcal{F} = I(L) \cap R(L)$ is the topology of regular ideals, then $\theta_{\mathcal{F}}$ is the identity congruence of L and we obtain the definition for multipliers on L, so

$$s - L_{\mathcal{F}} = \varinjlim_{I \in \mathcal{F}} (s - M(I, L)),$$

where s - M(I, L) is the set of strong multipliers of L having the domain I. In this situation we obtain:

Proposition 4.3. In the case $\mathcal{F} = I(L) \cap R(L)$, $L_{\mathcal{F}}$ is exactly the maximal divisible residuated lattice Q(L) of quotients of L (introduced in [15]) which is a Boolean algebra. If divisible residuated lattice L is a BL- algebra, $L_{\mathcal{F}}$ is exactly the maximal BL-algebra Q(L) of quotients of L.

3. Denoting by \mathcal{D} the topology of dense ordered ideals of L, then (since $R(L) \subseteq D(L)$) there exists a morphism of residuated lattices $\alpha : Q(L) \to s - L_{\mathcal{D}}$ such that the diagram



is commutative (i.e. $\alpha \circ \overline{v_A} = v_D$). Indeed, if $[f, I] \in Q(L)$ (with $I \in I(L) \cap R(L)$ and $f : I \to L$ a strong multiplier) we denote by f_D the strong - \mathcal{D} -multiplier $f_D : I \to L/\theta_D$ defined by $f_D(x) = f(x)/\theta_D$ for every $x \in I$. Thus, α is defined by $\alpha([f, I]) = [f_D, I]$.

4. Let $S \subseteq L$ a \wedge -closed system of divisible residuated lattice L. Consider the following congruence on $L : (x, y) \in \theta_S \Leftrightarrow$ there exists $e \in S \cap B(L)$ such that $x \wedge e = y \wedge e$ (see [3]). $L[S] = L/\theta_S$ will be called the *divisible residuated lattice of fractions of L relative to the* \wedge -closed system S.

As in the case of BL-algebras we obtain the following result:

Proposition 4.4. If \mathcal{F}_S is the topology associated with a \wedge -closed system $S \subseteq L$, then the divisible residuated lattice $s - L_{\mathcal{F}_S}$ is isomorphic with B(L[S]).

Remark 4.5. In the proof of Proposition 4.4 the axiom (a_9) is not necessarily.

Concluding remarks

Since in particular a BL- algebra is a divisible residuated lattice we obtain a part of the results about localization of BL- algebras (see [2]), so we deduce that the main results of this paper are generalization of the analogous result relative to BLalgebras from [2].

We use in the construction of localization divisible residuated lattice $L_{\mathcal{F}}$ the Boolean center B(L) of divisible residuated lattice L; as a consequence of this fact, $s - L_{\mathcal{F}}$ is a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the localization for divisible residuated lattice or residuated lattices without use the Boolean center.

References

- [1] T. S. Blyth and M. F. Janovitz, Residuation Theory, Pergamon Press, 1972.
- D. Buşneag and D. Piciu, Localization of BL-algebras, Soochow Journal of Mathematics 32 (2006), no.1, 127–159.
- [3] D. Buşneag and D. Piciu, Residuated lattices of fractions relative to an ∧-closed system, Bull. Math. Soc. Math. Roumanie 49(97) (2006), no. 1, 13–24.
- [4] D. Buşneag, D. Piciu and J. Paralescu Divisible and semi-divisible residuated lattices, to appear in Analele Stiințifice ale Univ. A. I. Cuza din Iaşi(SN).
- [5] W. H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra 32 (1974), 339–355.
- [6] F. Esteva and L. Godo, Monoidal t-norm based logic : towards a logic for left-continuous tnorms, Fuzzy Sets and Systems 124 (2001), 271–288.
- [7] P. Flondor, G. Georgescu and A. Iorgulescu, Pseudo t-norms and pseudo-BL algebras, Soft Computing 5 (2001), no. 5, 355–371.
- [8] H. Freytes, Injectives in residuated algebras, Algebra Universalis 51 (2004), 373–393.

- [9] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, *Residuated lattices: an algebraic glimpse at structural logic*, Studies in Logic and the foundations of math., Vol. 151, Elsevier Science, 2007.
- [10] G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis 21 (1985), 181–197.
- [11] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
- [12] P. M. Idziak, Lattice operations in BCK-algebras, Mathematica Japonica 29 (1984), 839–846.
 [13] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.
- [14] W. Nemitz, Semi-Boolean lattices, Notre Dame Journal of Formal Logic 10 (1969), no.3, 235–238.
- [15] J. Paralescu, Divisible residuated lattice of fractions and maximal divisible residuated lattice of quotients, to appear in *Mathematical Reports*.
- [16] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
- [17] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics 6 (1980), no. 3, 401–425.
- [18] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai 33 (1980), Szeged, Hungary.
- [19] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999.

(Justin Paralescu) National College "Ecaterina Teodoroiu", 1 Decembrie 1918 Street no. 25, Târgu-Jiu, Romania

E-mail address: paralescu_iustin@yahoo.com