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Localization of divisible residuated lattices

JUSTIN PARALESCU

ABSTRACT. The aim of the present paper is to define the localization of a divisible residuated
lattices L with respect to a topology F on L. In the last part of the paper is proved that the
maximal divisible residuated lattice of quotients (defined in [15]) and the divisible residuated
lattice of fractions relative to an A— closed system (defined in [3]) are divisible residuated
lattices of localization.
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Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced
by Héjek in [11] to cope with the logic of continuous t-norms and their residua.

A remarkable construction in ring theory is the localization ring Ar associated
with a Gabriel topology F on a ring A.

Using the model of localization ring, in [10], G. Georgescu defined for a bounded
distributive lattice L the localization lattice Ly of L with respect to a topology F on
L and prove that the maximal lattice of quotients for a distributive lattice is a lattice
of localization (relative to the topology of regular ideals); analogous results we have
for lattices of fractions of bounded distributive lattices relative to A— closed systems.

The main aim of this paper is to develop a theory of localization for divisible
residuated lattices. Since BL— algebras are particular classes of divisible residuated
lattices, the results of this paper generalize a part of the results from [2] for BL—
algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [19]) is an algebra (L,A,V,®,—,0,1) of
type (2,2,2,2,0,0) equipped with an order < satisfying the following:
(a1) (L,A,V,0,1) is a bounded lattice, whose order is <;
(a2) (L,®,1) is a commutative ordered monoid;
(az) (®, —) is an adjoint pair, i.e. z < & — y if and only if z ® z < y for every
x,y,z € L.

The class RL of residuated lattices is equational (see [12]). For examples of resid-
uated lattices see [3] and [19].

In this section by L we denote the universe of a residuated lattice. For x € L, we
denote z* =z — 0 and (z*)* = z**.

We review some rules of calculus for residuated lattices L used in this paper:

Theorem 1.1. ([1], [19]) Let x,y,z € L. Then we have the following:
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()l vz=zc—oz=1lLy<z—=>yzo0x—y <yzx—>1=10—>z=
1,x®0=0;

(c2) z<yiffr>y=1

(c3) <y impliesr®z<yez,z—or<z—=yandy—z<x— 2

() z=(y—o2)=@0y) mz=y—=(x—2),s (x0y) =x—y =y —>a%
(c5) 2Oz*=0andx @y =0 iff x <y*;

(c6) 2O (yVz)=(zOy)V(rOz2);

(c7) z = (YNz)=(x =y A(z— 2).

By B(L) we denote the set of all complemented elements in the lattice (L, A, V, 0, 1).
Complements are generally not unique, unless the lattice is distributive; in the case of
residuated lattices, however, although the underlying lattices need not be distributive,
the complements are unique ([9]). Also, if b is the complement of a, then a is the
complement of b, b = a*,a®> = a and a** = a ([1], [3]). So, B(L) is a Boolean
subalgebra of L, called the Boolean center of L.

Theorem 1.2. ([3]) For e € L the following assertions are equivalent:
(i) e € B(L);

(i) eve* =1.

Theorem 1.3. ([3]) Ife, f € B(L) and z,y € L, then:

(cg) ez =eAu;

(c9) 2O (x —e)=eNhz,e®(e—>x)=eAx;

(c10) e@(z = y)=e0[leOr) = (cOY);

(cn) z0(e=f)=z0(zoe) = (0 f)].

Definition 1.2. ([11]) A divisible residuated lattice is a residuated lattice satisfying
the divisibility equation:
d) z0(x—=y) =zAy.

The variety of divisible residuated lattices will be denoted by RL,. For examples
of divisible residuated lattices see [4, 15, 16, 19].

Proposition 1.4. ([15]) For a residuated lattice L, the following conditions are equiv-
alent:
(i) L € RLy;
(i1) For every x,y € L with © <y there exists z € L such that x =y ® z;
(i73) For every x,y,z € L we have:
(c12) 2= (YA2)=(x = y)O(xAy) = 2]

Corollary 1.5. ([4]) Let L € RLy. Then for every x,y,z € L we have:
A y**;
(c1a) 2O (YA2)=(zOY) A (z©2);
(c15) e A(yVz)=(zAy)V (zAz);
(c16) Y¥" <z=>2— (2OY)™ =y*™.
Definition 1.3. Let (P, <) an ordered set. A nonempty subset I of P is called order

ideal (or decreasing set) if, whenever x € I,y € P and y < x, we have y € I; we
denote by I(P) the set of all order ideals of P.

For a divisibile residuated lattice L we denote by Id(L) the set of all ideals of the
lattice (L, A, V).

Remark 1.6. Clearly, Id(L) C I(L) and if I,I € I(L), then I NI, € I(L). Also,
if I € I(L), then 0 € I.
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2. Topologies on a divisible residuated lattice

In what follows, by L we denote the universe of a divisible residuated lattice.

Definition 2.1. A non-empty set F of elements I € I(L) will be called a topology
on L if the following axioms hold:

(aq) It I, € F, Iy € I(L) and I; C I, then I, € F (hence L € F);

(a5) IfI1,Ib € F,then 1 NIy € F .

Remark 2.1. 1. F is a topology on L if and only if F is a filter of the lattice
of power set of L; for this reason a topology on (L) is usually called a Gabriel
filter on I(L).

2. Clearly, if F is a topology on L, then (L, F U{f}) is a topological space.

Any intersection of topologies on L is a topology; so, the set T'(L) of all topologies
of L is a complete lattice with respect to inclusion.

Example 2.1. If I € I(L), then the set F(I) ={I' € I(L) : I C I'} is a topology on
L.

Definition 2.2. ([15]) A non-empty set I C L will be called regular if for every
x,y € A such that e Ax = e Ay for every e € I N B(A), then = = y.

Example 2.2. If we denote R(L) = {I C L : I is a regular subset of L}, then
I(L)N R(L) is a topology on L.

Example 2.3. A nonempty set I C L will be called dense (see [10]) if for € L such
that e Az = 0 for every e € I N B(L), then z = 0. If we denote by D(L) the set of all
dense subsets of L, then R(L) C D(L) and F = I(L)N D(L) is a topology on L.

Definition 2.3. ([3]) A subset S C L is called A—closed if 1 € S and z,y € S

implies x Ay € S.

Example 2.4. For any A— closed subset S of L, the set
Fs={IeI(L):INnSNB(L) # 2}

is a topology on L.

1. If S is a A—closed systems of L such that 0 € S we have INSN B(L) # © for
every I € I(L), so Fg = I(L).
2. If 0 ¢ S then Fg = {L} (because, if I € I(L) and 1 € I implies I = L).

3. F-multipliers and localization divisible residuated lattices

Let F be a topology on a MT L—algebra L and we consider the relation  of L
defined in the following way: (x,y) € 07 < there exists I € F such that e Az =eAy
for any e € I N B(L).

Lemma 3.1. 0r is a congruence on L.
Proof. As in [2] for the case of BL— algebras. O

We shall denote by a/8x the congruence class of an element a € L and by
pr : L — L/0F the canonical morphism of residuated lattices.

Proposition 3.2. Fora € L, a/0r € B(L/0F) if and only if there exists I € F such
that a vV a* > e for every e € IN B(L). So, if a € B(L), then a/0x € B(L/0F).
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Proof. Using Theorem 1.2, for a € L, we have
a/0F € B(L/0F) < a0V (a/0r) =1/0F < (aVa")/0Fr=1/0F
& thereexist € F:(aVa')Ae=1Ae=c¢,
for every e € I'N B(L)
& aVa*>e, forevery e € INB(L).

If a € B(L), then for every I € F, 1 = aV a* > e, for every e € I N B(L), hence
a/0r € B(L/0x). O

Corollary 3.3. If F = I(L) N R(L), then fora € L, a/0x € B(L/0F) if and only if
a € B(L).

Definition 3.1. Let F be a topology on L. A F— multiplier is a mapping f : I
— L/0r where I € F and for every x € I and e € B(L) the following axioms are
fulfilled:

(as) fle®@x) = e/0r A f(x) = /05 © f(2);

(a7) f(z) < x/0F.

By dom(f) € F we denote the domain of f; if dom(f) = L, we called f total.

To simplify language, we will use F— multiplier instead partial F— multiplier,
using total to indicate that the domain of a certain F— multiplier is L.

If 7 = {L}, then 0 is the identity congruence of L so a F— multiplier is a total
multiplier.

The maps 0,1 : L — L/0r defined by 0(z) = 0/0x and 1(z) = z/0x for every
x € L are F— multipliers in the sense of Definition 3.1.

Also, for a € B(L), fo : L — L/0F defined by f,(x) = a/0 N x/0x for every
x € L, is a F— multiplier. If dom(f,) = L, we denote f, by f, ; clearly, fo = 0 and
h=1

We shall denote by M (I, L/07) the set of all the F— multipliers having the domain
I € Fand M(L/0F) = Ing(I, L/0F). If I1,I, € F, I C I, we have a canonical

mapping PI,I> ¢ M<12aL/9.7:) - M(IhL/Q}-) defined by (1011,12(f> = f|I1 for f €
M (I3, L/6F). Let us consider the directed system of sets
{M(I,L/0F)}1er, {01} 1 1.eF . 1nCly) and denote by Lz the inductive limit (in
the category of sets) Ly = lim M (I, L/0F). For any F— multiplier f: I — L/6F we
IeF

shall denote by (I, f) the equivalence class of f in L.

—_—

Remark 3.4. If f; : I; — L/0x ,i = 1,2, are F— multipliers, then (Iy, f1) = (12, f2)
(in L) iff there exists I € F , I C I N I3 such that fi;; = for.

Proposition 3.5. If I, I € F and f; € M(I;,L/0F),i = 1,2, then
(c17) fi(x) ©[z/0F — fa(z)] = fo(z) @ [x/0F — fi(x)], for every x € I1N Is.

Proof. Using (d), for = € [N I, we have f,(2)® [z/05 — fo(2)] ‘% (¢/65 A f1(2) ®

d
(/07 = fo(@)] € 2/07 © (2/05 = fi(2) © (2/05 = fo(z)) = [2/65 © (/05 —
L)) © (2/67 = fi(@) E fola) © [2/05 — fi(2)). O
Let f; : I; —» L/0F , (with I; € F, i = 1,2), F—multipliers. Let us consider the

mappings fi A fa, f1V fo, f1 @ fa, f1 ~ fo : [1 NIy — L/0F defined by

(fi A fa)(x) = fi(x) A fo(2), (f1V f2)(z) = fi(2) V fo(2),
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(hr @ fo) (@) = fi(2) © [2/07 = fo(@)] Y fola) @ [2/05 — fi(2)],
(fi = f2)(@) = 2/0F © [f1(z) = fa()],

for any x € I; N I, and let

(11, [1) A (T2, f2) = (I N Iz, f1 A f2), (I1, f1) Y (T2, f2) = (11 N 12, f1 V fa),
(I, f1) @ (I2, f2) = (11 N Iz, f1 ® fa), (11, f1) /= (L2, f2) = (11 N 12, f1 ~ f2).
Clearly, the definitions of the operations A, Y,® and — on Lz are correct.
As in the case of BL—algebras(see[2]) we deduce

Lemma 3.6. f1 A fo, f1V fo, 1 ® fo, f1 ~ fo€ M(I1 NI, L/0x).

Proposition 3.7. (Lr, A, Y,®,—,0 = (f,\())7 1= (/L,\l)) 18 a divisible residuated
lattice.

Proof. We verify the axioms of divisible residuated lattices.

—_—

(a1). Obviously (Lz, A,Y,0 = (L,0),1 = (L,1)) is a bounded lattice, where the
order on Lx is given by (I, f1) < (I3, f2) iff there is I € F, I C I N I5 such that
fi(z) < fo(x) for every x € I.

(az2). As in the case of BL— algebras (see [2]), by using (c17).

(ag). Let f; € M(I;,L/0F) where I, € F,i=1,2,3.

If (I1, f1) < (I2, f2) = (I3, f3), then (I1, f1) < (2 N I3, fo ~ f3), so thereis I € F
such that I C I;NIsN13 and for every x € I, we have fi(z) < (fa ~ f3)(z) = fi(z) <
z/0F © [fa(z) — fs(x)]. So, by (c3), fi(x) © [z/0F = fo(2)] < 2/0F © [x/0F —

L) o (@) = fi)] D fie) 0 /0r = f@)] < b)) = f5(@)] <

'

fa(x) = (f;@\fg)(l‘)/ﬁ_i;(x), that is, (I1, f1) ® (L2, f2) < (I3, f3). Conversely, if

P

(I1, f1) ® (I2, f2) < (I3, f3), then there is I € F, I C I NIy N I3 such that for
every v € I, (fi @ f2)(x) < fa(z) = fo(x) © [2/07 — filw)] < fs(x). Obviously

for 2 € I, /07 — fix) < fo(x) + fs(x) L 2/07 © (/07 — fi(2)) < 2/07 ©
(ﬁ\@) — fi(l’\)) = fl@é (fg ﬂ)(z)/S(),\([l,f/)é(Ig,h) — (Ig,fg). Then

(I, f1) < (L2, f2) — (I3, f3) iff (I2, f2) @ (1, f1) < (I3, f3). Since the divisibility (d)
is proved as in the case of BL— algebras (see [2]), we deduce that (Lz, A, Y, ®,—

,0 = @TO), 1= (/LH)) is a divisible residuated lattice. O
Definition 3.2. The divisible residuated lattice Lz will be called the localization
divisible residuated lattice of L with respect to the topology JF.

Remark 3.8. If divisible residuated lattice (L, A,V,®,—,0,1) is a BL— algebra in

—_—

[2] (Lr, A, Y,®,—,0 = (A4,0),1 = (A, 1)) called the localization BL-algebra of L
with respect to the topology F .

o —

Lemma 3.9. Let the map vr : B(L) — Lz defined by vr(a) = (L, f,) for every
a € B(L). Then:
(i) vr is a morphism of residuated lattices;

(i) Forac B(L), (L, Ta) € B(Ly):
(iid) vr(B(L)) € R(L7).
Proof. (i), (iii). As in the case of BL— algebras (see [2]).
(#4). For a € B(L) we have aV a* =1, hence (aAz)V [z ® (aAz)*] = (aAx)V

o @ve) L @rn)Vvieod)VvEos) € @iz Ve oa) v &
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(CE’)

(a Nz)V (zAa*) A(aVa*) =z A1l =z, for every z € L. Since L € F we
deduce that (a/\a:)/@; Viz/8r ® (( 7)/07)*] = x/0F hence f, V (f.)* =1, that
s (LT Y (L. T2) = (1), so (L. Ja) € B(L). O

4. Applications

In the following we describe the localization divisible residuated lattice Lx in some
special instances.
1. If I € I(L), and F is the topology F(I) = {I' e I(L) : I
2.1), then Lz is isomorphic with M (I,L/0x) and vy : B(L)
vF(a) = fay; for every a € B(L).

If I is a regular subset of L, then 0£ is the identity, hence L is isomorphic with
M (I, L), which in generally is not a Boolean algebra. For example, if I = L = [0, 1]
is the Lukasiewicz structure (see [16]) then Lz is not a Boolean algebra (see [2]).
2. Main remark. To obtain the maximal divisible residuated lattice of quotients
Q(L) (introduced in [15]) as a localization relative to a topology F, we have to develop
another theory of multipliers (meaning we add new axioms for F-multipliers).

"} (see Example
f

-
— is defined by

Definition 4.1. Let F be a topology on L. A strong - F— multiplier is a mapping
f:I —= L/0x (where I € F) which verifies the axioms (ag), (a7) (see Definition 3.1)
and

(ag) If e€ INB(L), then f(e) € B(L/0F);

(ag) (z/07) N f(e) = (e/0F) A f(x), for every e € INB(L) and = € I.

Remark 4.1. If (L, A, V,®,—,0,1) is a divisible residuated lattice, the maps 0,1 : L
— L/0F defined by 0(z) = 0/07 and 1(z) = z/0r for every x € L are strong -
F— multipliers. We recall that if f; : I, » L/0r , (with I, € F, i = 1,2) are
F—multipliers f1 N fg,fl V fg,fl X fg,fl s fg LNl — A/e}‘ defined by (f1 A
f2)(@) = fi(z) A fa(@), (fr V f2)(2) = [i(@) V falz), (L @ f2)(2) = fi(2) © [z/0F —

@) “E fol@) @ [2/05 = fi(@),(f1 ~ f2)(@) = 2/05 © [fi(x) = fo(2)), for any
x € I1NIs are F—multipliers. If fq, fo are strong - F— multipliers then the multipliers
fiNfo, 1V fa, f1 ® fa, f1 ~ fa are also strong - F— multipliers (the proof is as in
the case of BL—algebras, see [2]).

Remark 4.2. Analogous as in the case of F— multipliers if we work with strong-F—
multipliers we obtain a divisible residuated lattice of Lx denoted by s — Lz which
will be called the strong-localization divisible residuated lattice of L with respect to the
topology F.

So, if F = I(L) N R(L) is the topology of regular ideals, then 6r is the identity
congruence of L and we obtain the definition for multipliers on L, so
s— Ly = lig(s—M(I,L)),
IeF

where s — M (I, L) is the set of strong multipliers of L having the domain 1.
In this situation we obtain:

Proposition 4.3. In the case F = I(L) N R(L), Lz is exactly the mazimal divisible
residuated lattice Q(L) of quotients of L (introduced in [15]) which is a Boolean al-
gebra. If divisible residuated lattice L is a BL— algebra, Lx is exactly the mazimal
BL-algebra Q(L) of quotients of L.
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3. Denoting by D the topology of dense ordered ideals of L, then (since R(L) C D(L))
there exists a morphism of residuated lattices o : Q(L) — s—Lp such that the diagram

B(L) = Q(L)

S—LD

is commutative (i.e. @ o = vp). Indeed, if [f,I] € Q(L) (with I € I(L) N R(L)

and f : I — L a strong multiplier) we denote by fp the strong - D—multiplier
fo : I — L/0p defined by fp(x) = f(x)/0p for every x € I. Thus, « is defined by
a(lf, 1]) = [fp. 1)
4. Let S C L a A-closed system of divisible residuated lattice L. Consider the
following congruence on L : (z,y) € 6g < there exists e € S N B(L) such that
xANe=yAe (see [3]). L[S] = L/0s will be called the divisible residuated lattice of
fractions of L relative to the A—closed system S.

As in the case of BL—algebras we obtain the following result:

Proposition 4.4. If Fg is the topology associated with a A-closed system S C L,
then the divisible residuated lattice s — Lx, is isomorphic with B(L[S]).

Remark 4.5. In the proof of Proposition 4.4 the axiom (ag) is not necessarily.

Concluding remarks

Since in particular a BL— algebra is a divisible residuated lattice we obtain a part
of the results about localization of BL— algebras (see [2]), so we deduce that the
main results of this paper are generalization of the analogous result relative to BL—
algebras from [2].

We use in the construction of localization divisible residuated lattice L » the Boolean
center B(L) of divisible residuated lattice L; as a consequence of this fact, s — Lx is
a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the local-
ization for divisible residuated lattice or residuated lattices without use the Boolean
center.
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