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Additional results for an anisotropic problem with variable
exponents
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Abstract. We treat a nonlinear elliptic problem with constant Dirichlet condition involving
−→p (·)-Laplace type operators. More exactly, we discuss the uniqueness the multiplicity of the
solution, under different hypotheses.
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1. Introduction and preliminaries

In the present paper we consider Ω ⊂ RN (N ≥ 2) to be a rectangular-like domain,
that is, a union of finitely many rectangular domains (or cubes) with edges parallel
to the coordinate axes. We are interested in problems involving −→p (·)-Laplace type
operators, where p : Ω → RN is the vectorial function

→
p (x) = (p1(x), . . . , pN (x)) ,

with pi ∈ C+(Ω)for all i ∈ {1, . . . , N} and

C+(Ω) = {r ∈ C(Ω;R) : inf
x∈Ω

r(x) > 1}.

We introduce the following notations to help us simplify our writting.

pM (x) = max{p1(x), . . . , pN (x)},

pm(x) = min{p1(x), . . . , pN (x)}
and

p(x) =
N

N∑
i=1

1/pi(x)

.

In addition, for r ∈ C+(Ω), we denote

r+ = sup
x∈Ω

r(x), r− = inf
x∈Ω

r(x)

and

r⋆(x) =

{
Nr(x)/[N − r(x)] if r(x) < N,
∞ if r(x) ≥ N.
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Our goal is to continue the study started in [6] concerning the following class of
anisotropic problems with variable exponents, −

N∑
i=1

∂xiai (x, ∂xiu) + b(x)|u|pM (x)−2u = λf(x, u), for x ∈ Ω

u(x) ≡ constant, for x ∈ ∂Ω

(1)

where the functions b : Ω → R, ai : Ω × R → R, f : Ω × R → R are fulfilling the
following hypotheses for every i ∈ {1, . . . , N}.
(B): b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.
(A0): ai is a Carathéodory function.
(A1): There exists a positive constant c̄i such that ai fulfills

|ai(x, s)| ≤ c̄i

(
di(x) + |s|pi(x)−1

)
,

for all x ∈ Ω and all s ∈ R, where di ∈ Lp′
i(·)(Ω) (with 1/pi(x) + 1/p′i(x) = 1) is

a nonnegative function.
(A2): There exists ki > 0 such that

ki|s|pi(x) ≤ ai(x, s)s ≤ pi(x) Ai(x, s),

for all x ∈ Ω and all s ∈ R.
(A3): The monotonicity condition

[ai(x, s)− ai(x, t)](s− t) > 0

takes place for all x ∈ Ω and all s, t ∈ R with s ̸= t.
(A4): ai(x, 0) = 0 for all x ∈ ∂Ω.
(F0): f is a Carathéodory function.
(F1): There exist k > 0 and q ∈ C+(Ω) with p+M < q− < q+ < p∗(x) for all x ∈ Ω,

such that f verifies

|f(x, s)| ≤ k
(
1 + |s|q(x)−1

)
for all x ∈Ω and all s ∈R.

(F2): There exist γ > p+M and s0 > 0 such that the Ambrosetti-Rabinowitz condi-
tion

0 < γF (x, s) ≤ sf(x, s)

holds for all x ∈ Ω and for all s ∈ R with |s| > s0.

(F3): lim
|s|→0

f(x, s)

|s|p+
M−1

= 0 for all x ∈ Ω.

Under the above hypotheses, the existence of problem (1) was established in ([6,
Theorem 4]). By adding hypothesis
(F4): f is fulfilling

(f(x, s)− f(x, t))(s− t) < 0,

for all x ∈ Ω and s, t ∈ R with s ̸= t.
we will show the uniqueness of this solution.

On the other hand, if instead of (F4) we add hypotheses
(A5): Ai is even in s, that is, Ai(x,−s) = Ai(x, s) for all x ∈ Ω

and
(F5): f is odd in V , that is, f(x,−s) = −f(x, s) for all x ∈ Ω,



114 D. N. UDREA

we infer the existence of infinitely many weak solutions to problem (1).
The interest in treating problem (1) is not purely mathematical. It is important

to note that having such a general operator as

N∑
i=1

∂xiai(x, ∂xiu) (2)

can lead to a large scale of applications since we can obtain various operators from
it. We refer here to two well known operators that are particular cases of (2). When
taking

ai(x, s) = |s|pi(x)−2s for all i ∈ {1, . . . , N},

(2) becomes in particular the
→
p (·) - Laplace operator

∆→
p (x)

(u) =
N∑
i=1

∂xi

(
|∂xiu|

pi(x)−2
∂xiu

)
. (3)

This is why the operators (3) are often known as generalized
→
p (·) - Laplace type

operators. At the same time, when choosing

ai(x, s) = (1 + |s|2)(pi(x)−2)/2s for all i ∈ {1, ..., N},

we are led to the anisotropic mean curvature operator with variable exponent

N∑
i=1

∂xi

[(
1 + |∂xiu|

2
)(pi(x)−2)/2

∂xiu

]
.

Working with variable exponents, hence working in the framework of variable expo-
nent spaces, opens the door for multiple applications.

We refer here to the electrorheological fluids and to the thermorheological fluids
that have multiple applications to hydraulic valves and clutches, brakes, shock ab-
sorbers, robotics, space technology, tactile displays etc (see for example [1, 18, 21, 22,
23]). In addition, the variable exponent spaces are involved in studies that provide
other types of applications, like the ones in elastic materials [25], image restoration
[8], contact mechanics [4] etc. We recall in what follows the definition of the variable
exponent Lebesgue space, that is,

Lr(·)(Ω) = {u : u is a measurable real-valued function such that

∫
Ω

|u(x)|r(x) dx < ∞},

where r ∈ C+(Ω). This space, endowed with the Luxemburg norm,

∥u∥Lr(·)(Ω) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)µ

∣∣∣∣r(x) dx ≤ 1

}
,

is a separable and reflexive Banach space [15, Theorem 2.5, Corollary 2.7].
Furthermore, the Hölder-type inequality∣∣∣∣∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ 2 ∥u∥Lr(·)(Ω)∥v∥Lr′(·)(Ω) (4)

holds for all u ∈ Lr(·)(Ω) and v ∈ Lr′(·)(Ω) (see [15, Theorem 2.1]), where we denoted

by Lr′(·)(Ω) the conjugate space of Lr(·)(Ω), obtained by conjugating the exponent
pointwise, that is, 1/r(x) + 1/r′(x) = 1 (see [15, Corollary 2.7]).
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Starting from these variable exponent spaces, a theory of anisotropic spaces with
variable exponents was developed (see [12]) and lately many problems were studies in
this framework (see for example [5, 9]).

The anisotropic space with variable exponent is

W 1,
→
p (·)(Ω) = {u ∈ LpM (·)(Ω) : ∂xiu ∈ Lpi(·)(Ω) for all i ∈ {1, . . . , N}}

and it is endowed with the norm

∥u∥
W 1,

→
p (·)(Ω)

= ∥u∥LpM (·)(Ω) +
N∑
i=1

∥∂xiu∥Lpi(·)(Ω) .

The space
(
W 1,

→
p (·)(Ω), ∥ · ∥

W 1,
→
p (·)(Ω)

)
is a reflexive Banach space (see [9, Theorems

2.1 and 2.2]).
Of course, these spaces have many other interesting properties, which were omitted

for brevity, but they can be found in the previously mentioned references.

We recall a subspace of W 1,
→
p (·)(Ω), that is,

V =
{
u ∈ W 1,

→
p (·)(Ω) : u

∣∣
∂Ω

≡ constant
}
. (5)

(V, ∥ · ∥
W 1,

→
p (·)(Ω)

) is a reflexive Banach space (see [6, Theorem 5]) and it represents

the space in which we search for weak solutions.

2. Main results

Taking into consideration condition (A4) we can introduce the notion of weak
solution to our problem.

Definition 2.1. We define the weak solution for problem (1) as a function u ∈ V
satisfying:∫

Ω

N∑
i=1

ai(x, ∂xiu)∂xiv dx+

∫
Ω

b(x)|u|pM (x)−2uv dx− λ

∫
Ω

f(x, u)v dx = 0, (6)

for all v ∈ V .

As in [6], the energy functional corresponding to (1) is defined as I : V → R,

I(u) =

∫
Ω

N∑
i=1

Ai(x, ∂xiu) dx+

∫
Ω

b(x)

pM (x)
|u|pM (x) dx− λ

∫
Ω

F (x, u) dx. (7)

Functional I is of class C1 and its given by

⟨I ′(u), v⟩ =
∫
Ω

N∑
i=1

ai(x, ∂xi
u)∂xi

v dx+

∫
Ω

b(x)|u|pM (x)−2uv dx− λ

∫
Ω

f(x, u)v dx,

for all u, v ∈ V .

2.1. The existence result.

Theorem 2.1. Let pi ∈C+(Ω) for all i ∈ {1, . . . , N} with p+M < p∗(x) for all x ∈ Ω.

Assume that b : Ω → R, f : Ω × R → R and ai : Ω × R → R, i ∈ {1, . . . , N}, satisfy
conditions (B), (F0)-(F4), respectively (A0)-(A4). Then, problem (1) has a unique
nontrivial weak solution in V for every λ > 0.

We recall the existence result for problem (1) (see [6, Theorem 4]).



116 D. N. UDREA

Theorem 2.2. Let pi ∈C+(Ω) for all i ∈ {1, . . . , N} with p+M < p∗(x) for all x ∈ Ω.

Assume that b : Ω → R satisfies (B) and that f : Ω × R → R and ai : Ω × R → R,
i ∈ {1, . . . , N}, are Carathéodory functions satisfying (F1)-(F3), respectively (A1)-
(A4). Then, problem (1) has at least a nontrivial weak solution in V for every λ > 0.

So, it remains to prove the uniqueness of the solution for problem (1). For this, we
need the following lemma.

Lemma 2.3. Let pi ∈C+(Ω) for all i ∈ {1, . . . , N} with p+M < p∗(x) for all x ∈ Ω.

Assume that b : Ω → R satisfies (B) and that f : Ω × R → R and ai : Ω × R → R,
i ∈ {1, . . . , N}, are Carathéodory functions satisfying (F1)-(F4) respectively (A1)-
(A4). Then, problem (1) has at most a nontrivial weak solution in V for every λ > 0.

Proof. By proceeding as in [3], we suppose that there exist two nontrivial solutions
to problem (1), that is, u1 and u2. Making in (6) the substitutions u with u1 and v
with u1 − u2, we obtain∫

Ω

N∑
i=1

ai(x, ∂xiu1)∂xi(u1 − u2) dx +

∫
Ω

b(x)|u1|pM (x)−2u1(u1 − u2) dx

− λ

∫
Ω

f(x, u1)(u1 − u2) dx = 0. (8)

Now, we replace in (1) the solution u with u2 and v with u2 − u1 and we obtain∫
Ω

N∑
i=1

ai(x, ∂xi
u2)∂xi

(u2 − u1) dx +

∫
Ω

b(x)|u2|pM (x)−2u2(u2 − u1) dx

− λ

∫
Ω

f(x, u2)(u2 − u1) dx = 0. (9)

Combining relations (8) and (9) we infer∫
Ω

N∑
i=1

[ai(x, ∂xiu1)− ai(x, ∂xiu2)] (∂xi(u1 − u2)) dx

+

∫
Ω

b(x)
[
|u1|pM (x)−2u1 − |u2|pM (x)−2u2

]
(u1 − u2) dx

− λ

∫
Ω

[f(x, u1)− f(x, u2)] (u1 − u2) dx = 0.

The hypotheses (A3) and (F4) give us that all terms are positive unless u1 = u2.
So, u1 = u2 and this shows that the solution of problem (1) is unique. �

Theorem 2.2 and Lemma 2.3 are sufficient to conclude that Theorem 2.1 takes
place.

2.2. The multiplicity result. Adding to the hypotheses of Theorem 2.2 the sym-
metry conditions (A5) and (F5), we will present a multiplicity theorem based on the
following symmetric mountain pass theorem.

Theorem 2.4. ([13, Theorem 11.5]) Let X be a real infinite dimensional Banach
space and Φ ∈ C1(X;R) a functional satisfying the Palais-Smale condition. Assume
that Φ satisfies:
(i) Φ(0) = 0 and there are constants ρ, τ > 0 such that

Φ|∂Bρ
≥ τ,
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(ii) Φ is even, and

(iii) for all finite dimensional subspaces X̃ ⊂ X there exists R = R(X̃) > 0 such that

Φ(u) ≤ 0 for u ∈ X̃ \BR(X̃).

Then Φ possesses an unbounded sequence of critical values characterized by a minimax
argument.

We present our multiplicity result.

Theorem 2.5. Let pi ∈C+(Ω) for all i ∈ {1, . . . , N} with p+M < p∗(x) for all x ∈ Ω.

Assume that b : Ω → R, f : Ω × R → R and ai : Ω × R → R, i ∈ {1, . . . , N}, satisfy
conditions (B), (F0)-(F3), (F5) and (A0)-(A5). Then, problem (1) has infinitely
many weak solutions in V for every λ > 0.

The idea of the proof is to use Theorem 2.4 to obtain multiple weak solutions for
problem (1). We recall here the following results concerning the functional I under
hypotheses (A1)-(A4), (F1)-(F3).

Lemma 2.6. ([6, Lemma 1]) The energy functional I introduced by (7) satisfies the
Palais-Smale condition.

Lemma 2.7. ([6, Lemma 2]) There exist τ , ρ > 0 such that I(u) ≥ τ for all u ∈
W 1,

→
p (·)(Ω) with ∥u∥

W 1,
→
p (·)(Ω)

= ρ.

Moreover, by means of Lemma 2.6 it has been shown that I satisfies the Palais-
smale condition, so it can be seen that I(0) = 0. In addition, the fact that Ai and
F are even in the second variable implies that I is even. Hence, in order to get the
multiplicity of solutions, we only need to prove the following.

Lemma 2.8. For any finite dimensional V ⊂ V there exists R = R(Ṽ ) > 0 such that

I(u) ≤ 0 for all u ∈ V \BR(V ).

Proof. We adapt the techniques from [2] to our case. By (A1) and (A5), we have

0 ≤ Ai(x, s) ≤ ci

∣∣∣∣∣
∫ |s|

0

(
di(x) + |t|pi(x)−1

)
dt

∣∣∣∣∣ ≤ ci

(
|di(x)||s|+

|s|pi(x)

pi(x)

)
,

for all x ∈ Ω, s ∈ R. From the above we obtain

0 ≤ I(v) ≤ C

∫
Ω

N∑
i=1

|di(x)||∂xiv| dx+
C

p−m

∫
Ω

N∑
i=1

|∂xiv|pi(x) dx+

+
∥b∥L∞(Ω)

p−m

∫
Ω

|v|pM (x) dx− λ

∫
Ω

F (x, v) dx for all v ∈ V, (10)

where C = max{ci : i ∈ {1, . . . , N}}.
Let V ⊂ V be a finite dimensional subspace, u ∈ V \ {0} and t > 1. So, by (10)

I(tu) ≤ C

∫
Ω

N∑
i=1

|di(x)||∂xi(tu)| dx+
C

p−m

∫
Ω

N∑
i=1

|∂xi(tu)|pi(x) dx

+
∥b∥L∞(Ω)

p−m

∫
Ω

|tu|pM (x) dx−−λ

∫
Ω

F (x, tu) dx. (11)

By (F2), there exists k̃ = k̃(x) > 0 such that

F (x, s) ≥ k̃(x)|s|γ for all x ∈ Ω and all s ∈ R with |s| > s0.



118 D. N. UDREA

By combining the previous two inequalities and by using the Hölder type inequality
(4), we infer that, for all t > 1 and u ∈ V \ {0},

I(tu) ≤ Ct
N∑
i=1

∥di∥Lp′
i
(·)(Ω)

∥∂xiu∥Lpi(·)(Ω) +
Ctp

+
M

p−m

∫
Ω

N∑
i=1

|∂xiu|pi(x) dx

+
∥b∥L∞(Ω)

p−m

∫
Ω

|u|pM (x) dx− λtγ
∫
{x∈Ω:|u(x)|>s0}

k̃(x)|u|γ dx

− λ|Ω|inf{F (x, s) : x ∈ Ω, |s| ≤ s0}. (12)

For all R > 0,

sup
∥u∥→

p (·)
=R,u∈V

I(u) = sup
∥tu∥→

p (·)
=R,tu∈V

I(tu) = sup
∥tu∥→

p (·)
=R,u∈V

I(tu). (13)

Putting together (12) and (13) we get

sup
∥u∥→

p (·)
=R,u∈V

I(u) → −∞ as R → ∞.

Thus we can choose R0 > 0 sufficiently large such that for all R > R0 and for all
u ∈ V with ∥u∥→

p (·) = R we find that I(u) ≤ 0. So,

I(u) ≤ 0 for all u ∈ V \BR0 .

�
It is clear now that we can use the symmetric mountain-pass theorem of Ambrosetti

and Rabinowitz to deduce the existence of an unbounded sequence of weak solutions
in V for problem (1).
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[12] I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasi-
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