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On (semi)topological residuated lattices

N. Kouhestani and R.A. Borzooei

Abstract. In this paper, we define the notions of semitopological and topological residuated
lattices and derive here conditions that imply a residuated lattice to be a semitopological or
topological residuated lattice. Also, we study the relationship between separation axioms T0,
T1, T2 and (semi)topological residuated lattices.
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1. Introduction

Algebra and topology, the two fundamental domains of mathematics, play comple-
mentary roles. Topology studies continuity and convergence and provides a general
framework to study the concept of a limit. Algebra studies all kinds of operations
and provides a basis for algorithms and calculations. Because of this difference in
nature, algebra and topology have a strong tendency to develop independency, not
in direct contact with each other. However, in applications, in higher level domains
of mathematics, such as functional analysis, dynamical systems, representation the-
ory, and others, topology and algebra come in contact most naturally. Many of the
most important objects of mathematics represent a blend of algebraic and of topolog-
ical structures. Topological function spaces and linear topological spaces in general,
topological groups and topological fields, transformation groups, topological lattices
are objects of this kind. In the 20th century many topologists and algebraists have
contributed to topological algebra. Some outstanding mathematicians were involved,
among them J. Dieudonné, L. S. Pontryagin, A. Weyl.

Residuated lattices have been introduced by M. Ward and R.P. Dilworth [10] as
generalization of ideal lattices of rings with identity. Residuated lattices are a com-
mon structure among algebras associated with logical systems. The main examples
of residuated lattices related to logic are MV-algebras and BL-algebras. In [4] Bor-
zooei et.al introduced (semi)topological BL-algebras and in [5] and [6] they studied
metrizability and separation axioms on (semi)topological BL-algebras. In section 3 of
this note, we define semitopological and topological residuated lattices, and we state
and prove some theorems that determine the relationships between them. It is quite
clear that a topological residuated lattice is a semitopological residuated lattice, but
the converse is not true. In this paper we find certain conditions under which the
converse is true. In section 4 we deal with relations between Ti spaces and residuated
lattices endowed with a topology. We bring a condition that T1 spaces are equivalent
to Hausdorff spaces on residuated lattices endowed with a topology.
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2. Preliminary

Recall that a set A with a family U of its subsets is called a topological space,
denoted by (A,U), if A, ∅ ∈ U , the intersection of any finite numbers of members of U
is in U and the arbitrary union of members of U is in U . The members of U are called
open sets of A and the complement of U ∈ U , that is A \U , is said to be a closed set.
If B is a subset of A, the smallest closed set containing B is called the closure of B
and denoted by B (or cluB). A subfamily {Uα} of U is said to be a base of U if for
each x ∈ U ∈ U there exists an α ∈ I such that x ∈ Uα ⊆ U , or equivalently, each U
in U is the union of members of {Uα}. A subset P of A is said to be a neighborhood
of x ∈ A, if there exists an open set U such that x ∈ U ⊆ P. Let Ux denote the
totality of all neighborhoods of x in A. Then a subfamily Vx of Ux is said to form a
fundamental system of neighborhoods of x, if for each Ux in Ux, there exists a Vx

in Vx such that Vx ⊆ Ux. A directed set I is a partially ordered set such that, for any
i and j of I, there is a k ∈ I with k ≥ i and k ≥ j. If I is a directed set, then the
subset {xi : i ∈ I} of A is called a net. A net {xi; i ∈ I} converges to x ∈ A if for each
neighborhood U of x there exists a j ∈ I such that for all i ≥ j, xi ∈ U. If B ⊆ A and
x ∈ B, then there is a net in B that is converges to x.[See, [7]]

Definition 2.1. [4] Let (A, ∗) be an algebra of type 2 and U be a topology on A.
Then (A, ∗,U) is called:
(i) left (right) topological algebra if for each a ∈ A, the map la : A ↪→ A (ra : A ↪→ A)
is defined by x → a ∗ x ( x → x ∗ a) is continuous, or equivalently, for any x ∈ A,
and any open neighborhood U of a ∗ x (x ∗ a), there exists an open neighborhood V
of x such that a ∗ V ⊆ U (V ∗ a ⊆ U.) In this case we also call that the operation ∗ is
continuous in the second(first) variable,
(ii) semitopological algebra if it is right and left topological algebra. In this case we
also call that the operation ∗ is continuous in each variable separately,
(iii) topological algebra if the operation ∗ is continuous, or equivalently, if for any x, y
in A and any open neighborhood W of x ∗ y, there exist two open neighborhoods U
and V of x and y, respectively, such that U ∗ V ⊆ W.

Proposition 2.1. [4] Let (A, ∗) be a commutative algebra of type 2 and U be a topology
on A. Then right and left topological algebras are equivalent. Moreover, (A, ∗,U) is a
semitopological algebra iff, it is right or left topological algebra.

Definition 2.2. [4] Let A be a nonempty set, {∗i}i∈I be a family of operations of
type 2 on A and U be a topology on A. Then:
(i) (A, {∗i}i∈I ,U) is a right(left) topological algebra if for any i ∈ I, (A, ∗i,U) is a
right (left) topological algebra,
(ii) (A, {∗i}i∈I ,U) is a (semi)topological algebra if for all i ∈ I, (A, ∗i,U) is a
(semi)topological algebra.

Definition 2.3. [12] A residuated lattice is an algebra (L,∧,∨,⊙,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) such that (L,∧,∨, 0, 1) is a bounded lattice, (L,⊙, 1) is a commutative
monoid and for any a, b, c ∈ A, c ≤ a → b iff, a⊙ c ≤ b.

Let L be a residuated lattice. We set a′ = a → 0 and denote (a′)′ by a′′. We call
the map p : L → L by p(a) = a′, for any a ∈ L, the negation map. Also, for each
a ∈ L, we define a0 = 1 and an = an−1 ⊙ a, for each natural numbers n.
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Example 2.1. [12](i) Let ⊙ and → on the real unit interval I = [0, 1] be defined as
follows:

x⊙ y = min{x, y} & x → y =

{
1 , x ≤ y,
y , otherwise.

Then I = (I,min,max,⊙,→, 0, 1) is a residuated lattice,
(ii) Let ⊙ be the usual multiplication of real numbers on the unit interval I = [0, 1]
and x → y = 1 iff, x ≤ y and y/x otherwise. Then I = (I,min,max,⊙,→, 0, 1) is a
residuated lattice.
(iii) Let L = {0, a, b, c, 1}. Define ⊙ and → as follows :

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Easily we can check that (L,⊙,→, 0, 1) is a residuated lattice, whose lattice (L,∧,∨, 0, 1)
is given by the partial order 0 < a < c < 1, 0 < b < c < 1 and x ∧ y = min{x, y},
x ∨ y = max{x, y}, a ∧ b = 0 and a ∨ b = 1.

Example 2.2. [2] Let ⊙ and → on the real unit interval I = [0, 1] be defined as
follows:

x⊙ y =

{
0 , x+ y ≤ 1/2,
x ∧ y , otherwise,

& x → y =

{
1 , x ≤ y,
max{1/2− x, y} , otherwise.

Then I = (I,min,max,⊙,→, 0, 1) is a residuated lattice.

Proposition 2.2. [3] Let (L,∧,∨,⊙,→, 0, 1) be a residuated lattice. The following
properties hold.
(R1) x → (y → z) = (x⊙ y) → z,
(R2) x ≤ y iff x → y = 1,
(R3) 1 ∗ x = x, where ∗ ∈ {∧,⊙,→},
(R4) x⊙ 0 = 0, 1′ = 0, 0′ = 1,
(R5) x⊙ y ≤ x ∧ y ≤ x, y, and y ≤ (x → y),
(R6) (x → y)⊙ x ≤ y,
(R7) x ≤ y → (x⊙ y),
(R8) x ≤ y implies x ∗ z ≤ y ∗ z, where ∗ ∈ {∧,∨,⊙},
(R9) x ≤ y implies z → x ≤ z → y and x → z ≥ y → z,
(R10) x → y = x → (x ∧ y),
(R11) x ≤ y implies x ≤ z → y,
(R12) z ⊙ (x ∧ y) ≤ (z ⊙ x) ∧ (z ⊙ y),
(R13) x → y ≤ (x⊙ z) → (y ⊙ z),
(R14) (x → y)⊙ (y → z) ≤ x → z,
(R15) x⊙ x′ = 0,
(R16) x → y′ = (x⊙ y)′,
(R17) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z),
(R18) (x ∨ y) → z = (x → y) ∧ (x → z),
(R19) x → (y ∧ z) = (x → y) ∨ (x → z),
(R20) (x ∨ y)′ = x′ ∧ y′, and (x ∧ y)′ ≥ x′ ∨ y′,
(R21) if x ∨ y = 1, then x → y = y and x⊙ y = x ∨ y,
(R22) x

′′′ = x′.
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Definition 2.4. [11] Let (L,∧,∨,⊙,→, 0, 1) be a residuated lattice. A filter is a
nonempty set F ⊆ L such that for each x, y ∈ L :
(a) x, y ∈ F implies x⊙ y ∈ F ,
(b) if x ∈ F and x ≤ y, then y ∈ F.

Lemma 2.3. [11] Let L be a residuated lattice and F ⊆ L. Then:
(i) if 1 ∈ F, then F is a filter if and only if x ∈ F and x → y ∈ F imply y ∈ F,
(ii) if F is a filter in L, then for each x, y ∈ F, x ∧ y, x ∨ y and x → y are in F.

Let (L,∧,∨,⊙,→) be a residuated lattice. Then a ∈ L is called complemented if
there is an element b ∈ L such that a ∨ b = 1 and a ∧ b = 0. If such element b exists
it is called a complement of a. We denote b = ac and the set of all complemented
elements in L by B(L).[See, [12]]

Proposition 2.4. [12] Let (L,∧,∨,⊙,→) be a residuated lattice. Then for each
e, f ∈ B(A), the following properties hold.
(i) e2 = e, ec = e′ and e′′ = e,
(ii) e ∗ f ∈ B(L), where ∗ ∈ {∧,∨,⊙,→},
(iii) (e ∨ f)c = ec ∧ f c and (e ∧ f)c = ec ∨ f c,
(iv) e⊙ f = e ∧ f.

Notation. From now on, in this paper we let L be a residuated lattice and U be a
topology on L, unless otherwise state.

3. (Semi)topological residuated lattices

In this section we define the notions of semitopological and topological residuated
lattices and state and prove some theorems about them. Semitopological residuated
lattice is a notation weaker than of topological residuated lattice. A topological
residuated lattice is always a semitopological residuated lattice, but the converse is not
true as shown by an example. We derive here conditions that imply a semitopological
residuated lattice is a topological residuated lattice.

Definition 3.1. Let (L, {∗i},U), where {∗i} ⊆ {∧,∨,⊙,→}, be a (semi)topological
algebra. Then (L, {∗i},U) is called a (semi)topological residuated lattice.

Example 3.1. Let I be the residuated lattice as Example 2.1(i), and U be a topology
on I with the base S = {[a, b] ∩ I : a, b ∈ R}. We prove that (I,U) is a topological
residuated lattice. For this, we must prove that the operations ∧,∨,⊙ and → are
continuous. First, we show that ∧ is continuous. Let x ∧ y ∈ U ∈ U , where x, y ∈ I.
W.O.L.G, let x ≤ y. Then x ∧ y = x ∈ U. Since x ∈ [0, x] ∩ U ∈ U , y ∈ [x, 1] ∈ U
and ([0, x] ∩ U) ∧ [x, 1] ⊆ U , the operation ∧ is continuous. Now, we prove that
∨ is continuous. Let x ∨ y ∈ U ∈ U , and let x ≤ y. Then x ∨ y = y ∈ U. Now,
[0, y] and [y, 1] ∩ U are two open neighborhoods of x and y, respectively, such that
[0, y] ∨ ([y, 1] ∩ U) ⊆ U. Hence ∨ is continuous. Since ⊙ = ∧, the operation ⊙ is
continuous. Finally to complete the proof, we have to show that → is continuous.
Let x → y ∈ U ∈ U , where x, y ∈ I. If x ≤ y, then [0, y] and [y, 1] are two
open neighborhoods of x and y, respectively, such that [0, y] → [y, 1] = {1} ⊆ U.
If x > y, then x → y = y ∈ U . Hence x ∈ [y, x] ∈ U , y ∈ [0, y] ∩ U ∈ U and
[y, x] → ([0, y] ∩ U) ⊆ U . Thus, we proved that → is continuous. Therefore, (I,U) is
a topological residuated lattice.

In the following Example we introduce a semitopological residuated lattice which
is not a topological residuated lattice.
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Example 3.2. Let I be the residuated lattice as Example 2.2 and U be a topology
on I with the base S = {[a, b] ∩ I : a ̸= b ∈ R}. Clearly, {0} and {1} are in U , and if
x ∈ I, then [a, x] and [x, b] are two open neighborhoods of x. We prove that (I,U) is
a semitopological residuated lattice which is not a topological residuated lattice. For
this, first we prove that the operations ∧,∨,⊙ and → are continuous in each variable
separately. Let x ≤ y and x ∧ y = x ∈ [a, b] ∈ U . If x = y and a ̸= x, then [a, x] is
an open neighborhood of x such that [a, x] ∧ x = [a, x] ⊆ [a, b]. If x = y and b ̸= x,
then [x, b] is an open neighborhood of x such that [x, b] ∧ x = {x} ⊆ [a, b]. Let x ̸= y.
If y ≤ b, then [x, y] is an open neighborhood of x such that [x, y] ∧ y = [x, y] ⊆ [a, b],
and if y > b, then [a, b] is an open neighborhood of x such that [a, b]∧y = [a, b]. Thus,
∧ is continuous in first variable. By Proposition 2.1, ∧ is continuous in each variable
separately. By the same argument as above, we can prove that ∨ is continuous in
each variable separately. Now, we prove that (I,⊙,U) is a semitopological residuated
lattice. For this, we prove that ⊙ is continuous in first variable. We consider the
following cases:
Case1. let x = y ∈ I. Then x⊙x = 0 if x ≤ 1/4 and x otherwise. If x⊙x = 0 ∈ [0, b],
then [0, x] is an open neighborhood of x such that [0, x]⊙ x = {0} ⊆ [0, b]. If x⊙ x =
x ∈ [a, b], then [x, 1] is an open neighborhood of x such that [x, 1]⊙ x = {x} ⊆ [a, b],
Case2. let x and y be in I and x < y. Then x⊙y = 0 if x+y ≤ 1/2 and x if x+y > 1/2
(2-1) if x + y ≤ 1/2, then x ⊙ y = 0. Let x ⊙ y = 0 ∈ [0, b]. Then [0, x] is an open
neighborhood of x such that [0, x]⊙ y = {0} ⊆ [0, b],
(2-2) if x+y > 1/2, then x⊙y = x. Now, [a, x] and [x, b] are two open neighborhoods
of x. First, let x ⊙ y = x ∈ [a, x]. If a ≥ 1/2, then [a, x] is an open neighborhood
of x such that [a, x] ⊙ y = [a, x]. If a < 1/2 and x ̸= 1/2, then [1/2, x] is an open
neighborhood of x such that [1/2, x] ⊙ y = [1/2, x] ⊆ [a, x]. If a < 1/2 and x = 1/2,
then [a, 1/2] is an open neighborhood of x such that [a, 1/2] ⊙ y = [a, 1/2]. Now,
let x ⊙ y = x ∈ [x, b]. If y < b, then [x, y] is an open neighborhood of x such that
[x, y]⊙ y = [x, y] ⊆ [x, b]. If y ≥ b, then [x, b] is an open neighborhood of x such that
[x, b]⊙ y = [x, b].
Thus, in Cases (1) and (2), we can prove that ⊙ is continuous in first variable. By
Proposition 2.1, the operation ⊙ is continuous in each variable separately. In con-
tinue, we prove that (I,→,U) is a semitopological residuated lattice. For this, let
x, y ∈ I. Then [a, x → y] and [x → y, b] are two open neighborhoods of x → y. We
consider the following cases:
Case1. let x → y ∈ [a, x → y]. Then:
(1-1) if x < y, then x → y = 1 ∈ [a, 1]. Now, [0, x] and [x, y] are two open
neighborhoods of x and y, respectively, such that [0, x] → y = {1} ⊆ [a, 1] and
x → [x, y] = {1} ⊆ [a, 1]. Let x = y. Then x → x = 1 ∈ [a, 1]. If x ̸= 0, 1, then
[0, x] and [x, 1] are two open neighborhoods of x such that [0, x] → x = {1} ⊆ [a, 1]
and x → [x, 1] = {1} ⊆ [a, 1]. If x = 0 or x = 1, then {0} and {1} are two open
neighborhoods of 0 and 1, respectively, {0} → {0} ⊆ [a, 1] and {1} → {1} ⊆ [a, 1],
(1-2) let x > y and x + y ≤ 1/2. Then x → y = 1/2 − x ∈ [a, 1/2 − x]. [0, y] is
an open neighborhood of y such that x → [0, y] = {1/2 − x} ⊆ [a, 1/2 − x]. This
shows that → is continuous in second variable. we prove that → is continuous in
first variable. If y < a, then [x, 1/2 − a] is an open neighborhood of x such that
[x, 1/2−a] → y ⊆ [a, 1/2−x], and if y ≥ a, then [x, 1/2− y] is an open neighborhood
of x such that [x, 1/2− y] → y ⊆ [a, 1/2− x]. Hence → is continuous in first variable,
(1-3) let x > y and x+ y > 1/2. Then x → y = y ∈ [a, y]. First, we prove that → is
continuous in first variable. If y < 1/2− y, then [1/2− y, x] is an open neighborhood
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of x such that [1/2 − y, x] → y = {y} ⊆ [a, y], and if 1/2 − y ≤ y, then [x + y/2, x]
is an open neighborhood of x such that [x + y/2, x] → y = {y} ⊆ [a, y]. Thus, the
operation → is continuous in first variable. Now, we prove that → is continuous in
second variable. If 1/2 − x ≤ a, then [a + y/2, y] is an open neighborhood of y such
that x → [a+ y/2, y] = [a+ y/2, y] ⊆ [a, y], and if a < 1/2− x and 1/2− x < c < y,
then [c, y] is an open neighborhood of y such that x → [c, y] ⊆ [c, y] ⊆ [a, y]. There-
fore, → is continuous in second variable,
Case2. let x → y ∈ [x → y, b]. Then:
(2-1) if x ≤ y, then by the same argument from (1-1) of Case1, we can prove that →
is continuous in each variable separately,
(2-2) let x < y and x+ y ≤ 1/2. Then x → y = 1/2− x ∈ [1/2− x, b]. If y < 1/2− b,
then [1/2−b, x] is an open neighborhood of x such that [1/2−b, x] → y ⊆ [1/2−x, b],
and if y ≥ 1/2 − b, then [x + y/2, x] is an open neighborhood of x such that
[x+ y/2, x] → y ⊆ [1/2− x, b]. Hence → is continuous in first variable. On the other
hand, [0, y] is an open neighborhood of y such that x → [0, y] = {1/2−x} ⊆ [1/2−x, b].
This proves that → is continuous in second variable,
(2-3) let x > y and x + y ≥ 1/2. Then x → y = y ∈ [y, b]. Then by the same ar-
gument of (2 − 2) of Case2, we can prove that → is continuous in first variable. If
x ≤ b, then [y, x + y/2] is an open neighborhood of y such that x → [y, y + x/2] ⊆
[y, y + x/2] ⊆ [y, b], and if x > b, then [y, b] is an open neighborhood of y such that
x → [y, b] ⊆ [y, b]. Hence → is continuous in second variable. Thus, we can prove that
(I,U) is a semitopological residuated lattice.
Now, we prove that (I,U) is not a topological residuated lattice. For this, let
1/4 ⊙ 1/4 = 1/2 ∈ [3/8, 1/2]. Let 1/4 ∈ U ∈ U . Then there is a ϵ > 0 such that
[1/4, 1/4 + ϵ] ⊆ U or [1/4 − ϵ, 1/4] ⊆ U. It is easy to prove that [1/4, 1/4 + ϵ] ⊙
[1/4, 1/4 + ϵ] and [1/4− ϵ, 1/4]⊙ [1/4− ϵ, 1/4] and [1/4− ϵ, 1/4]⊙ [1/4, 1/4 + ϵ] are
not subsets of [3/8, 1/2]. Therefore, the operation ⊙ is not continuous in (1/4, 1/4),
and so (I,U) is not a topological residuated lattice.

Example 3.3. Let I be the residuated lattice in Example 2.1(i), and U be the
subspace topology induced from R. Then for each a, b ∈ I, the intervals (a, b), [0, a)
and (b, 1] form a base of U . We prove that the operations ∧,∨,⊙ are continuous in
each variable separately but the operation → is not. First, we prove that (L,∧,U) is
a semitopological residuated lattice. For this, let x, y ∈ I, x ≤ y and x∧y ∈ U ∈ U . If
x = y and x∧y = 0, then U is an open neighborhood of x such that U ∧y = {0} ⊆ U.
If x ̸= y and x∧ y = 0, then there is an a < y such that x∧ y ∈ [0, a) ⊆ U. Now [0, a)
is an open neighborhood of x such that [0, a) ∧ y = [0, a) ⊆ U.
If x ∧ y = 1, then by (R5), x = y = 1. Hence U is an open neighborhood of x such
that U ∧ y = {1} ⊆ U.
Now, let x ∧ y ̸= 0, 1. Then there are a, b ∈ I such that x ∧ y ∈ (a, b) ⊆ U. If x = y,
then (a, b) is an open neighborhood of x such that (a, b)∧ y ⊆ (a, b). Let x ̸= y. Then
if y < b, then (a, y) is an open neighborhood of x such that (a, y) ∧ y ⊆ (a, b), and
if y > b, then (a, b) is an open neighborhood of x such that (a, b) ∧ y ⊆ (a, b). Thus,
we can prove that the operation ∧ is continuous in first variable. By Proposition 2.1,
(L,∧,U) is a semitopological residuated lattice. By the same argument as above, we
can prove that ∨ is continuous in each variable separately. Since ⊙ = ∧, the operation
⊙ is continuous in each variable separately. But → is not continuous in first variable,
because let 0 → 0 = 1 ∈ (1/2, 1], and [0, b) be an open neighborhood of 0. Then for
each x ∈ (0, b), x → 0 = 0 ̸∈ (1/2, 1].

Recall, a function f : X ↪→ Y between topological spaces is homeomorphism if
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f−1 : Y ↪→ X exists and f and f−1 are continuous.[See, [7]]

Proposition 3.1. Let (L,U) be a semitopological residuated lattice. Then:
(i) if 1 ∈ U ∈ U and x ∈ L, then there is an open neighborhood V of 1 such that
x ∗ V ⊆ U, where ∗ ∈ {∨,→},
(ii) if 1 ∈ U ∈ U , then there is an open neighborhood V of 0 such that V ′ ⊆ U,
(iii) if x ∈ U ∈ U , there is an open neighborhood V of 1 such that V ∗ x ⊆ U, where
∗ ∈ {∧,⊙,→},
(iv) if x ∈ U ∈ U , there is an open neighborhood V of x such that V ∗ x ⊆ U, where
∗ ∈ {∧,∨},
(v) the negation map p : L ↪→ L by p(x) = x′ is homeomorphism iff, is one to one iff,
is onto.

Proof. (i) Let ∗ ∈ {∨,→}, x ∈ L and 1 ∈ U ∈ U . By (R2) and (R8), x ∗ 1 = 1 ∈ U.
Since ∗ is continuous in second variable, there is an open neighborhood V of 1 such
that x ∗ V ⊆ U.
(ii) Let 1 ∈ U ∈ U . By (R4), 0 → 0 = 1 ∈ U. Since the operation → is continuous in
first variable, there is an open neighborhood V of 0 such that V ′ = V → 0 ⊆ U.
(iii) Let ∗ ∈ {∧,⊙,→} and x ∈ U ∈ U . By (R3), 1 ∗ x = x. Since ∗ is continuous in
first variable, there is an open neighborhood V of 1 such that V ∗ x ⊆ U.
(iv) The proof is similar to the proof of (iii).
(v) If p is homeomorphism, it is clear that P is an one to one map. Let p be one to
one. We prove that p is onto. For this, let y ∈ L. By (R21), y

′ = y′′′. Since p is one
to one, y = y′′ = p(y′). Hence p is onto. Now, let p be onto and let y be an arbitrary
element of L. Since p is onto, there is a x ∈ L such that y = p(x). Now, by (R21),
y′′ = x′′′ = x′ = y. Hence for each x ∈ L, p(p(x)) = x′′ = x, which implies that
p−1 = p. Since p is continuous, p is homeomorphism. �
Proposition 3.2. Let (L,U) be a topological residuated lattice. Then,
(i) if 1 ∈ U ∈ U , then there is an open neighborhood V of 1 such that V ∗ V ⊆ U,
where ∗ ∈ {∧,∨,⊙,→},
(ii) if 1 ∈ U ∈ U and x ∈ L, then there is an open neighborhood V of x such that
V → V ⊆ U,
(iii) if 1 ∈ U ∈ U , then there is an open neighborhood V of 0 such that V ′ ⊆ U,
(iv) if x ∈ U ∈ U , there are two open neighborhoods V and W of 1 and x, respectively,
such that V ∗W ⊆ U, where ∗ ∈ {∧,⊙,→},
(v) if x ∈ U ∈ U , there is an open neighborhood V of x such that V ∗ V ⊆ U, where
∗ ∈ {∧,∨}.
Proof. The proof is similar to the proof of Proposition 3.1. �
Proposition 3.3. Let F be a Filter in a topological residuated lattice (L,⊙,→,U).
If F is an open neighborhood of 1, then F, closure F in L, is a filter in L. Moreover,
if {1} is an open set in L, then for each filter F in L, F is a filter.

Proof. Since ⊙ is continuous, we get that F ⊙ F ⊆ F ⊙ F. Let x ≤ y and x ∈ F.
There is a net {xi : i ∈ I} in F such that is converges to x. Since → is continuous,
the net {xi → y : i ∈ I} is converges to x → y = 1. Since F is an open neighborhood
of 1, there is a j ∈ I such that xj → y is in F. Hence y ∈ F ⊆ F . Therefore, F is a
filter. The proof of other case is clear. �
Theorem 3.4. Let L be a residuated lattice. Then there is a topology U on L such
that (L,∧,∨,⊙,U) is a topological residuated lattice and (L,→,U) is a left topological
residuated lattice.
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Proof. Let a ∈ L, La = {x ∈ L : a ≤ x} and B = {La : a ∈ L}. It is easy to prove
that L ⊆

∪
a∈L La, and for each a, b, c ∈ L if c ∈ La ∩ Lb, then Lc ⊆ La ∩ Lb. Hence

B is a base for a topology U on L. Let a, b ∈ L and ∗ ∈ {∧,∨,⊙}. Then by (R8)
and (R9), we can prove that La ∗ Lb ⊆ La∗b and a → Lb ⊆ La→b. These relations
prove that (L,∧,∨,⊙,U) is a topological residuated lattice and (L,→,U) is a left
topological residuated lattice. �

Example 3.4. In Example 2.1(i), for each a ∈ I, La = [a, 1]. By Theorem 3.4,
(L,∧,∨,⊙,U) is a topological residuated lattice and (L,→,U) is a left topological
residuated lattice. We show that (L,→,U) is not a right topological residuated lattice.
For this, let 1 ̸= y ∈ L and x → y ∈ [x → y, 1]. Then it is easy to prove that
[x, 1] → y " [x → y, 1]. This proves that → is not continuous in first variable.

Proposition 3.5. Let (L,∧,U) be a topological residuated lattice, and the negation
map p : L ↪→ L by p(x) = x′ be continuous. Then if UB is the induced topology from
L on B(L), then the operations ∧,∨,⊙,→ are continuous on (B(L),UB).

Proof. By Proposition 2.4, ∧,∨,⊙,→ are operations on B(L), and the negation map
p is also a continuous map of B(L) onto B(L). Since ∧ is continuous on L, by [[4],
Proposition 3.9], the operation ∧ is continuous on B(L). On the other hand, since
∧ = ⊙ on B(L), we conclude that ⊙ is continuous on B(L). Now, we prove that
∨ is continuous in B(L). Let x, y ∈ B(L), and U be an open set in L such that
x∨y ∈ B(L)∩U. By Proposition 2.4(i), (x∨y)′′ = x∨y ∈ B(L)∩U. By (R20), (x

′∧y′)′ ∈
U. Since the negation map p is continuous in L, there is an open neighborhood V
of x′ ∧ y′ in L such that V ′ ⊆ U. Since ∧ is continuous in L, there are two open
neighborhoods W1 and W2 of x′ and y′,respectively, in L such that W1 ∧ W2 ⊆ V.
Since the negation map p is continuous in L, there are two open neighborhoods U1 and
U2 of x and y, respectively, in L such that U ′

1 ⊆ W1 and U ′
2 ⊆ W2. Now, B(L)∩U1 and

B(L) ∩ U2 are two open neighborhoods of x and y, respectively, in B(L). We prove
that (B(L)∩U1)∨ ((B(L)∩U2) ⊆ B(L))∩U. Let z1 ∈ B(L)∩U1 and z2 ∈ B(L)∩U2.
Then z′1 ∈ W1 and z′2 ∈ W2. Hence z′1 ∧ Z ′

2 ∈ W1 ∧ W2 ⊆ V. Thus, (z′1 ∧ z′2)
′ ∈ U.

Since z1 ∨ z2 = (z1 ∨ z2)
′′ = (z′1 ∧ z′2)

′, it follows that z1 ∨ z2 ∈ B(L) ∩ U. Therefore,
∨ is continuous in B(L). Finally, to complete the proof, we have to show that →
is continuous in B(L). Let x, y ∈ B(L) and U ∈ U and x → y ∈ B(L) ∩ U. By
Proposition 2.4(i), x → y′′ ∈ B(L) ∩ U and by (R16), (x⊙ y′)′ ∈ B(L) ∩ U. Since the
negation map p is continuous on B(L), there is an open neighborhood B(L) ∩ V in
(B(L), of x ⊙ y′ such that (B(L) ∩ V )′ ⊆ B(L) ∩ U. Since ⊙ is continuous in B(L),
there are two open neighborhoods B(L)∩W1 and B(L)∩W2 of x and y′, respectively,
such that (B(L) ∩ W1) ⊙ (B(L) ∩ W2) ⊆ B(L) ∩ V. Since the negation map p on
B(L) is continuous, there is an open neighborhood B(L)∩U1 of y in B(L) such that
(B(L)∩U1)

′ ⊆ B(L)∩W2. We show that (B(L)∩W1) → (B(L)∩U1) ⊆ B(L)∩U. For
this, let z1 ∈ B(L)∩W1 and z2 ∈ B(L)∩U1. Hence z

′
2 ∈ B(L)∩W2, and so (z1⊙ z′2)

′

is in ((B(L)∩W1)⊙B(L)∩W2)
′ ⊆ B(L)∩U. Since z1 → z2 = z1 → z′′2 = (z1 ⊙ z′2)

′,
we conclude that z1 → z2 ∈ B(L) ∩ U. �

In Proposition 3.5, if (L,∧,U) is a semitopological residuated lattice, then by the
same argument,we can prove that ∧,∨,⊙,→ are continuous in each variable separately
in B(L).

Example 3.5. Let L be the residuated lattice in Example 2.1(iii). Then:
(i) it is easy to prove that the set {{0}, {a}, {b}, {c, 1}} is a base for a nontrivial topol-
ogy U on L such that (L,∧,U) is a topological residuated lattice and the negation
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map p is continuous. By Proposition 3.5, the operations ∧,∨,⊙,→ are continuous on
B(L) = {0, a, b, 1},
(ii) the set U = {{a}, {a, b}, L, ϕ} is a topology on L such that (L,∧,U) is a semitopo-
logical residuated lattice and the negation map p is continuous. Hence the operations
∧,∨,⊙,→ are continuous in each variable separately in B(L) = {0, a, b, 1}.

Theorem 3.6. Let (L,∧,⊙,U) be a (semi)topological residuated lattice, and the nega-
tion map p : L ↪→ L by p(x) = x′ be continuous. If for each a ∈ L, a′′ = a, then
(L,U) is a (semi)topological residuated lattice.

Proof. Suppose (L,∧,⊙,U) is a topological residuated lattice. We prove that (L,U)
is a topological residuated lattice. The proof of other case is similar. First, we show
that ∨ is continuous. For this, let x, y ∈ L, U ∈ U and x ∨ y ∈ U. Then by (R20),
(x′ ∧ y′)′ = (x ∨ y)′′ ∈ U. Since the negation map p is continuous, there is an open
neighborhood V of x′∧y′ such that V ′ ⊆ U. Since ∧ is continuous, there are two open
neighborhoods V1 and V2 of x′ and y′, respectively, such that V1 ∧ V2 ⊆ V. Since the
negation map p is continuous, there are two open neighborhoods W1 and W2 of x and
y such that W ′

1 ⊆ V1 and W ′
2 ⊆ V2. Now, W1 and W2 are two open neighborhoods of

x and y, respectively, such that W1 ∨W2 ⊆ U because if z1 ∈ W1 and z2 ∈ W2, then
by (R20),

z1 ∨ z2 = (z1 ∨ z2)
′′ = (z′1 ∧ z′2)

′ ∈ (W ′
1 ∧W ′

2)
′ ⊆ (V1 ∧ V2)

′ ⊆ V ′ ⊆ U.

Now, we prove that → is continuous. For this, let x, y ∈ L and x → y ∈ U ∈ U . Then
by (R16), (x ⊙ y′)′ = x → y′′ = x → y ∈ U. Since the negation map p is continuous,
there is an open neighborhood V of x ⊙ y′ such that V ′ ⊆ U. Since ⊙ is continuous,
there are two open neighborhoods W1 and W2 of x and y′, respectively, such that
W1⊙W2 ⊆ V. Since the negation map p is continuous, there is an open neighborhood
W3 of y such that W ′

3 ⊆ W2. Now, W1 and W3 are two open neighborhoods of x and
y, respectively, such that W1 → W3 ⊆ U because if z1 ∈ W1 and z2 ∈ W3, then by
(R16),

z1 → z2 = z1 → z′′2 = (z1 ⊙ z′2)
′ ∈ (W1 ⊙W ′

3)
′ ⊆ (W1 ⊙W2)

′ ⊆ V ′ ⊆ U.

�

Theorem 3.7. Let L be a residuated lattice. Then there is a nontrivial topology U on
L such that the negation map p : L ↪→ L by p(x) = x′ is continuous in L. Moreover,
if the negation map p is an open map in (L,U) and (L,∧,→,U) is a semitopological
residuated lattice, then (L,U) is a topological residuated lattice.

Proof. Let U = {U ⊆ L : x ∈ U ⇔ x′ ∈ U ′} ∪ {ϕ}. It is clear that L and the empty
set ϕ are in U . Let {Ui : i ∈ I} be a family of members of U . If x′ ∈ (∪i∈IUi)

′, then
there is a i ∈ I and z ∈ Ui such that x′ = z′. Since z′ ∈ U ′

i , we get that x
′ ∈ U ′

i . Hence
x ∈ Ui ⊆ ∪i∈IUi. Thus, we can prove that ∪i∈IUi is in U . Now, if x′ ∈ (∩i∈IUi)

′, then
there is a z ∈ ∩i∈IUi such that x′ = z′. Since for each i ∈ I, z′ ∈ U ′

i , and Ui ∈ U ,
we get that x ∈ Ui. Hence x ∈ ∩i∈IUi. Thus, ∩i∈IUi is in U . This proves that U is a
topology on L. Since ϕ ̸= {x ∈ L : x′ = 0} ∈ U and 0 ̸∈ {x ∈ L : x′ = 0}, we get that
U is a nontrivial topology on L. Now, we prove that the negation map p is continuous.
For this, let U ∈ U and x′ ∈ (p−1(U))′. Then there is a z ∈ p−1(U) such that x′ = z′.
Since z′ ∈ U, we get that x ∈ p−1(U). Hence p−1(U) ∈ U and so p is continuous.
Let the negation map p be an open map and (L,∧,→,U) be a semitopological resid-
uated lattice. First, we prove that (L,U) is a semitopological residuated lattice. For
this, we have to show that ∨ and ⊙ are continuous in each variable separately. Let
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x, y ∈ L and x∨y ∈ U ∈ U . Then by (R20) and hypothesis x′∧y′ ∈ U ′ ∈ U . Since ∧ is
continuous in first variable, there is an open neighborhood V of x′ such that V ∧y′ ⊆ U.
Since the negation map p is continuous, there is an open neighborhood W of x such
that W ′ ⊆ V. Now, W is an open neighborhood of x such that W ∨ y ⊆ U. Hence ∨
is continuous in first variable. By Proposition 2.1, ∨ is continuous in each variable
separately. In continue we will prove that ⊙ is continuous in each variable separately.
Let x, y ∈ L and x ⊙ y ∈ U ∈ U . Then by (R16) and hypothesis, x → y′ ∈ U ′ ∈ U .
Since → is continuous in first variable, there is an open neighborhood V of x such
that V → y′ ⊆ U. Thus, V is an open neighborhood of x such that V ⊙ y ⊆ U.
Hence ⊙ is continuous in first variable. By Proposition 2.1, ⊙ is continuous in each
variable separately. Finally, to complete the proof, we have to show that (L,U) is a
topological residuated lattice. Let ∗ ∈ {∧,∨,⊙,→} and x, y ∈ L and x ∗ y ∈ U ∈ U .
Since ∗ is continuous in first variable, there is an open neighborhood V of x such
that V ∗ y ⊆ U. Since ∗ is continuous in second variable, for each z ∈ V, there is an
open neighborhood Wz of y such that z ∗Wz ⊆ U. Let W = ∩z∈V Wz. Since arbitrary
intersection of members of U is in U , we get that W ∈ U . Thus, V and W are two
open neighborhoods of x and y, respectively, such that V ∗ W ⊆ U. Therefore, ∗ is
continuous and so (L,U) is a topological residuated lattice. �

If F is a filter in a (semi)topological residuated lattice L, then by [[4], Proposition
3.9] F, endowed with the topology induced from L, is a (semi)topological algebra.
In this case we say that F is a (semi)topological filter in (semi)toplogical residuated
lattice L.

Theorem 3.8. Let L∗ = L\{0}, be a filter in a residuated lattice L. Let U be a topology
on L such that {0} is an open and closed set in L. Then (L,U) is a semitopological
residuated lattice iff, there is a chain F of proper open semitopological filters in L
such that L∗ = ∪F .

Proof. Let p be the negation map. Since L∗ is a filter in L, we get that for each
x ∈ L∗, p(x) = 0 and p(0) = 1. We prove that p is continuous. Let U be an open set
in L. If 0 ∈ U, then p−1(U) = L∗ which is an open set in L. If 1 ∈ U and 0 ̸∈ U, then
p−1(U) = {0} which is an open set in L. If 0, 1, both are not in U, then p−1(U) = ϕ
which is an open set in L. Thus, the negation map p is continuous. Now, let (L,U)
be a semitopological residuated lattice. Then F = {L∗} is a chain of proper open
semitopological filters in L such that L∗ = ∪F .
Conversely, Let F be a chain of proper open semitopological filters in L such that
L∗ = ∪F . We prove that (L,U) is a semitopological residuated lattice. First, we show
that ∧ is continuous in each variable separately. Let x, y ∈ L and x ∧ y ∈ U ∈ U .
If x = 0, then {0} is an open neighborhood of x such that {0} ∧ y ⊆ U. If y = 0,
then L is an open neighborhood of x such that L ∧ y ⊆ U. Let x and y are nonzero.
Then there is a F ∈ F such that x, y ∈ F. Since x ∧ y ∈ F ∩ U and ∧ is continuous
in F, there is an open neighborhood V of x in L such that (F ∩ V ) ∧ y ⊆ U. Now,
since F is an open set in L, we get that F ∩ V is an open neighborhood of x such
that (F ∩ V ) ∧ y ⊆ U. Hence ∧ is continuous in first variable. By Proposition 2.1, ∧
is continuous in each variable separately. By the same argument we can prove that ∨
and ⊙ are continuous in each variable separately. Finally, to complete the proof, we
have to show that → is continuous in each variable separately. For this, let x, y ∈ L
and x → y ∈ U ∈ U . If x = 0, then {0} and L are two open neighborhoods of x and
y, respectively, such that {0} → y ⊆ U and x → L ⊆ U. If y = 0, then x → y = x′.
Since the negation map p is continuous, there is an open neighborhood of x such that
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V ′ ⊆ U. Now, V and {0} are two open neighborhoods of x and y, respectively, such
that V → y ⊆ U and x → {0} ⊆ U. Let x and y both are nonzero. Then there is a
F ∈ F such that x, y ∈ F. Since x → y ∈ F ∩U and → is continuous in each variable
in F, there are two open neighborhoods V and W in L of x and y, respectively, such
that (F ∩ V ) → y ⊆ U and x → (F ∩ W ) ⊆ U. Now, since F is an open set in L,
F ∩V and F ∩W are two open neighborhoods of x and y in L, respectively, such that
(F ∩V ) → y ⊆ U and x → (F ∩W ) ⊆ U. Therefore, → is continuous in each variable
separately in L. �

4. Hausdorff (semi)topological residuated lattice

In this section we study the relationship between separation axioms T0, T1 and T2

and (semi)topological residuated lattice. We bring some conditions under which a
(semi)topological residuated lattice becomes a T0 or T1 or Hausdorff space.

Definition 4.1. Let L be a residuated lattice, U be a topology on L, and f be a
function from L into L. We call that L is a f -open if f is an open map.

Notation. Let L be a residuated lattice. From now on in this paper, for each
a ∈ L, we let ma, ja, ta, la and ra be the functions from L into L by ma(x) = a ∧ x,
ja(x) = a ∨ x, ta(x) = a⊙ x, la(x) = a → x and ra(x) = x → a.
It is easy to see that (L,U) is a semitopological residuated lattice iff, for each a ∈ L,
the mappings ma, ja, ta, la and ra are continuous.

Proposition 4.1. Let L be a residuated lattice, and p : L ↪→ L be the negation map.
Then:
(i) there is a nontrivial topology U on L such that L is a p-open,
(ii) if f ∈ {m, j, t, l}, then there is a nontrivial topology U on L such that for each
a ∈ L, fa : L ↪→ L is continuous and L is fa-open.

Proof. (i) Let U = {U ⊆ L : U ′ ⊆ U}. It ie easy to prove that U is a topology on L.
Since {0} ̸∈ U and {0, 1} ∈ U , it follows that topology is nontrivial. Since for each
U ∈ U , U ′ ⊆ U, we get that U ′′ ⊆ U ′. Hence U ′ is an open set in L.
(ii) Let F ̸= {1} be a proper filter in L, ∗ ∈ {∧,∨,⊙,→} and U∗ = {U ⊆ L : ∀x ∈
U, F ∗x ⊆ U}. It is easy to prove that U∗ is a topology on L. If ∗ ∈ {∧,∨,⊙}, since ∗
is associative, it is easy to see that for each a ∈ L, F ∗ a ∈ U∗. If ∗ =→, then by (R1),
for each a ∈ L and y ∈ F → a, F → y ⊆ F → (F → a) = (F ⊙ F ) → a ⊆ F → a
which implies that F → a ∈ U∗. Therefore, U∗ is a nontrivial topology on L. Let
∗ ∈ {∧,∨,⊙} and f ∈ {m, j, t}. If x, y ∈ L and x ∗ y ∈ U ∈ U∗, then F ∗ x is an open
neighborhood of x such that (F ∗ x) ∗ y ⊆ U. Hence (L, ∗,U∗) is a semitopological
residuated lattice and so for each a ∈ L, fa is continuous. Now, we prove that L is
f -open. For this, let a ∈ L and U ∈ U∗. If y ∈ a ∗ U, then there is a x ∈ U such that
y = a ∗ x. Since F ∗ x ⊆ U, it follows that F ∗ y = F ∗ a ∗ x ⊆ a ∗U. Hence a ∗U is an
open set in L. This proves that L is fa-open.

Let ∗ =→ . We show that for each a ∈ L, la is continuous and L is la-open. Let
a ∈ L and U ∈ U∗. First, we prove that la is continuous. Let a → x ∈ U. Then F → x
is an open neighborhood of x such that by (R1), a → (F → x) = F → (a → x) ⊆ U.
Hence la is continuous. Now, we prove that L is la-open. For this, we have to prove
that a → U is an open set in L. Let y ∈ a → U. Then there is a x ∈ U such
that y = a → x. Now, F → x is an open neighborhood of x such that by (R1),
F → y = F → (a → x) = a → (F → x) ⊆ a → U. Therefore, L is la-open. �
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Proposition 4.2. Let U be a topology on a residuated lattice, and let p : L ↪→ L by
p(x) = x′ be the negation map. If L is p-open and for each A ∈ L, a′′ = a, then:
(i) L is t-open iff, L is r-open,
(ii) if L is j-open, then L is m-open.

Proof. (i) Let L is t-open, U ∈ U and a ∈ L. Since p and ta are open and by (R16),
U → a = U → a′′ = (U ⊙ a′)′, we get that U → a is an open set in L which implies
that L is r-open. Conversely, Let L be r-open, U ∈ U and a ∈ L. Since p and ra are
open and by (R16), U ⊙ a = (U ⊙ a)′′ = (U → a′)′, we get that U ⊙ a is an open set
in L which implies that L is t-open.
(ii) By (R20), the proof is similar (i). �

Let A be a topological space. Recall that A is a
(i) T0-space if for each x ̸= y ∈ A, there is at least one in an open neighborhood
excluding the other,
(ii) T1-space if for each x ̸= y ∈ A, each has an open neighborhood not containing
the other,
(iii) T2-space if for each x ̸= y ∈ A, there two disjoint open neighborhoods U, V of x
and y, respectively.
A T2-space is also known as a Hausdorff space.[See, [7]]

Proposition 4.3. Let U be a topology on a residuated lattice L. If L is t-open or
r-open, then L is a T0-space.

Proof. First, let for each a ∈ L, the mapping ta is open, and x ̸= y ∈ L. If U is an
open neighborhood of 1, then U ⊙ x and U ⊙ y are two open neighborhoods of x and
y, respectively. But x ̸∈ U ⊙ y or y ̸∈ U ⊙ x because if x ∈ U ⊙ y and y ∈ U ⊙ x, then
by (R5), x = y which is a contradiction. Hence L is a T0-space. Let for each a ∈ L,
the mapping ra be open and let x ̸= y ∈ L. Then U → x and U → y are two open
neighborhoods of x and y, respectively. We show that x ̸∈ U → y or y ̸∈ U → x. Let
x ∈ U → y and y ∈ U → x. Then by (R5), x = y which is a contradiction. Hence L
is a T0-space. �

Theorem 4.4. Let L be a residuated lattice. Then there is a nontrivial topology U
on L such that L is a T0-space.

Proof. Let F ̸= {1} be a proper filter in L. By Proposition 4.1(ii), U = {U ⊆ L :
∀x ∈ U,F ⊙ x ⊆ U} is a nontrivial topology on L such that L is t-open. Now, by
Proposition 4.3, L is a T0-space. �

Proposition 4.5. Let (L,→,U) be a left topological residuated lattice. If for each
x ∈ L \ {1}, there is an open neighborhood U of 1 such that x ̸∈ U, then L is a
T0-space.

Proof. Let x ̸= y ∈ L. Then x → y ̸= 1 or y → x ̸= 1. W.O.L.G, let x → y ̸= 1. Then
there exists an open neighborhood U of x → y such that 1 ̸∈ U . Since (L,→,U) is
a left topological residuated lattice, there exists an open neighborhood V of x such
that V → y ⊆ U. We prove that y ̸∈ V. If y ∈ V, then by (R2), 1 = y → y ∈ U, which
is a contradiction. Hence (L,U) is a T0-space. �

Theorem 4.6. Let L be a residuated lattice such that for each a ̸= 1, there is a b ∈ L
such that a < b < 1. Then there is a nontrivial topology U on L such that L is a
T0-space.
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Proof. Let for each a ∈ L, La = {x : a ≤ x}. Then by Theorem 3.4, B = {La : a ∈ L}
is a base of a nontrivial topology U on L such that (L,→,U) is a left topological
residuated lattice. Let 1 ̸= a ∈ L. Then there is a b ∈ L such that a < b < 1.
Now, Lb is an open neighborhood of 1 such that a ̸∈ Lb. By Proposition 4.5, L is a
T0-space. �

Theorem 4.7. Let L be a residuated lattice. Then, there is a nontrivial topology U
on L such that L is a T1-space.

Proof. Let F ̸= {1} be a proper filter in L. By Proposition 4.1(ii), U = {U ⊆ L :
∀x ∈ U,F → x ⊆ U} is a nontrivial topology on L. For each x ∈ L, F → x is an
open set because if y ∈ F → x, then there is a z ∈ F such that y = z → x and by
(R1), F → y = F → (z → x) = (F ⊙ z) → x ⊆ F → x. Now, if x ̸= y ∈ L, then
F → x and F → y are two open neighborhoods of x and y, respectively, which by
(R5), x ̸∈ F → y and y ̸∈ F → x. �

Proposition 4.8. Let (L,⊙,U) be a semitopological residuated lattice. If L is t-open
and r-open, then L is T1-space iff, for each 1 ̸= x ∈ L, there is an open neighborhood
U of 1 such that x ̸∈ U.

Proof. If L is a T1-space, then the proof is clear. Conversely, Let for each x ̸= 1 there
exists an open neighborhood U of 1 such that x ̸∈ U. We prove that L is a T1-space.
Let x, y ∈ L and x ̸= y. We consider the following cases:
Case 1. Let x = 1. Then y ̸= 1. Hence there is an open neighborhood U of x = 1 such
that y ̸∈ U . Since L is t-open, y ⊙ U is an open neighborhood of y. But 1 ̸∈ y ⊙ U
because if 1 ∈ y⊙U , then there is a z ∈ U such that 1 = y⊙ z. By (R5), 1 = y which
is a contradiction.
Case 2. Let x, y ̸= 1 and x < y. Then there is an open neighborhood U of 1 such that
y ̸∈ U. Since L is t-open and r-open, U ⊙ x and U → y are two open neighborhoods
of x and y, respectively. But y ̸∈ U ⊙ x and x ̸∈ U → y because if y ∈ U ⊙ x or
x ∈ U → y, then by (R5), x ≤ y which is a contradiction. If y < x, then the proof is
similar.
Case 3. Let x, y ̸= 1 and x ≮ y and y ≮ x. Then there is an open neighborhood U of
1 such that y ̸∈ U . Since L is t-open, x ⊙ U and y ⊙ U are two open neighborhoods
of x and y, respectively. Now, by (R5), we get that x ̸∈ y ⊙ U and y ̸∈ x⊙ U. �

Proposition 4.9. Let (L,→,U) be a semitopological residuated lattice. Then (L,U)
is a T1-space if and only if for any x ̸= 1 there are neighborhoods U and V of x and
1, respectively, such that 1 ̸∈ U and x ̸∈ V .

Proof. If L is a T1-space, then the proof is clear. Conversely, let for any x ̸= 1 there
are two open neighborhoods U and V of x and 1, respectively, such that 1 ̸∈ U and
x ̸∈ V. We prove that L is a T1-space. Let x, y ∈ L and x ̸= y. Then x → y ̸= 1
or y → x ̸= 1. W.O.L.G, let x → y ̸= 1. Let U be an open neighborhood of x → y
such that 1 ̸∈ U . Since → is continuous in each variable separately, there are two
open neighborhoods V and W of x and y, respectively, such that V → y ⊆ U and
x → W ⊆ U. But x ̸∈ W and y ̸∈ V because if y ∈ V or x ∈ W , then 1 = y → y ∈ U
or 1 = x → x ∈ U which both are contradictions. Hence (L,U) is a T1-space. �

Proposition 4.10. Let (L,→,U) be a topological residuated lattice. Then (L,U) is
a Hausdorff space iff, for each x ̸= 1 there exist two open neighborhoods U and V of
x and 1, respectively, such that U ∩ V = ϕ.
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Proof. If L is a T2-space, then the proof is clear. Conversely, let for each x ̸= 1, there
exist two open neighborhoods U and V of x and 1, respectively, such that U ∩V = ϕ.
Let x, y ∈ L and x ̸= y. Then x → y ̸= 1 or y → x ̸= 1. W.O.L.G, let x → y ̸= 1
and U and V be two disjoint open neighborhoods of x → y and 1. Since (L,→,U)
is a topological residuated lattice, there are two open neighborhoods W1 and W2 of
x and y, respectively, such that W1 → W2 ⊆ U. W1 and W2 are disjoint because if
z ∈ W1 ∩W2, then 1 = z → z ∈ U, which implies that 1 ∈ U ∩V , a contradiction. �

Proposition 4.11. Let L be an ordered residuated lattice i.e, for each x, y ∈ L, x ≤ y
or y ≤ x. Then there is a nontrivial topology U on L such that (L,U) is a Hausdorff
space.

Proof. Let for each a, b ∈ L, [a, b] = {x ∈ L : a ≤ x ≤ b}. Then it is easy to prove
that B = {[a, b] : a, b ∈ L} is a base of a nontrivial topology U on L. Let x, y ∈ L
and x < y. Then [0, x] and [y, 1] are two disjoint open neighborhoods of x and y,
respectively. Hence (L,U) is a Hausdorff space. �

Recall that a topological space (A,U) is regular if for each x ∈ U ∈ U , there is an
open set V in A such that x ∈ V ⊆ V ⊆ U, where V is closure of V in A.[See, [7]]

Theorem 4.12. Let (L,→,U) be a regular topological residuated lattice. Then the
following statements are equivalent:
(i) (L,U) is a Hausdorff space,
(ii) (L,U) is a T1 space,
(iii)

∩
U∈U U = 1, where U is a fundamental system of neighborhoods of 1.

Proof. (i ⇒ ii) The proof is clear.
(ii ⇒ iii) The proof is clear by Proposition 4.9.
(iii ⇒ i) Let

∩
U∈U U = 1, x ̸= y ∈ L. Then x → y ̸= 1 or y → x ̸= 1. W.O.L.G, let

x → y ̸= 1. Then there exists an open neighborhood U of 1 such that x → y ̸∈ U .
Since (A,U) is a regular space, there is a V ∈ U such that 1 ∈ V ⊆ V ⊆ U . Since
L \ V is an open neighborhood of x → y, and (L,→,U) is a topological residuated
lattice, there exist two open neighborhoods W1 and W2 of x and y, respectively, such
that W1 → W2 ⊆ A \ V . W1 and W2 are disjoint because if z ∈ W1 ∩ W2, then
1 = z → z ∈ W1 → W2 ⊆ L \ V , which is a contradiction. �

Proposition 4.13. Let (L,⊙,U) be a Hausdorff semitopological residuated lattice.
Then for each a ∈ L, Ja = {x ∈ L : a⊙ x = a} is a closed filter in L.

Proof. Let a ∈ L and x, y ∈ Ja. Then a ⊙ (x ⊙ y) = (a ⊙ x) ⊙ y = a ⊙ y = a. If
x ≤ y and x ∈ L, then by (R5) and (R8), a = a⊙ x ≤ a⊙ y ≤ a, which implies that
a⊙ y = a. Hence Ja is a filter in L. Since L is Hausdorff and ta is continuous, we get
that Ja = t−1

a (a) is closed in L. �

Proposition 4.14. Let (L,⊙,U) be a Hausdorff compact semitopological residuated
lattice. If {1} ∈ U and for each 1 ̸= a ∈ L, there is a z ∈ L \ {1} such that a⊙ z = a,
then there is a filter J ̸= {1} in L such that for each a ∈ J \ {1}, a is a maximal
idempotent.

Proof. Let F = {F ⊆ L : 1 ̸= F is a closed filter} and A = {F ∗ : F ∈ F}, where
F ∗ = F \ {1}. Since for each 1 ̸= a ∈ L, by hypothesis and by Proposition 4.8,
Ja = {x ∈ L : a ⊙ x = a} is in F , we get thate F and A are nonempty. Since for
each F ∈ F , F ∗ = F ∩L \ {1}, we get that each of members of A are closed in L. Let
S = {F ∗

i : i ∈ I} be a chain in partial order set (A,⊆). Since L is compact, and finite
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intersection of members S is nonempty, we get that ∩i∈IF
∗
i is a nonempty closed set

in L. On the other hand, since ∩i∈IF
∗
i = (∩i∈IFi)

∗, we conclude that ∩i∈IFi ̸= {1}.
Hence ∩i∈IF

∗
i is a lower bound of S in A. By zorn’s Lemma, A has a minimal, say

J∗. Thus, J ̸= {1} is a filter in L. We prove that all of members of J are idempotent.
Let a ∈ J. It is easy to prove that Ja = {x ∈ L : a ⊙ x = a} is a closed filter in L
which is contained in J. Hence J∗

a is a member of A which is contained in J∗. Since
J∗ is minimal, Ja = J. This follows that a ⊙ a = a. To complete the proof, we have
to prove that all of members of J are maximal idempotent. Let 1 ̸= a ∈ J and b be
an idempotent in L such that a ≤ b. Since J is filter, b is in J. Since b is idempotent
and J∗ is minimal in A, it is easy to prove that < b >= J. Thus, b = b⊙ a ≤ a which
implies that a = b. �

5. Conclusion

In this paper we introduced (semi)topological residuated lattices and studied sepa-
ration axioms T0, T1 and T2 on them. Next researches can study normality, regularity,
metrizability and uniformity on (semi)topological residuated lattices.
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[10] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, 1988.
[11] H. Ono, Substructual Logics and Residuated Lattices-an introuduction, 50 Years of Studia Log-

ica, Kluwer Academic Publishers, 21 (2003), 193–228.

[12] M. Ward, R.P. Dilworth Residuated Lattices, Transactions of the American Society 45 (1939),

335–354.

(N. Kouhestani) Department of Mathematics, University of Sistan and Baluchestan,

Zahedan, Iran.
E-mail address: Kouhestani@math.usb.ac.ir

(R.A. Borzooei) Department of Mathematics, University of Shahid Beheshti, Tehran, Iran.
E-mail address: borzooei@sbu.ac.ir


