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Existence and uniqueness of solutions of a nonlocal problem
involving the p(x)-Laplacian

M. Avci and R. Ayazoglu (Mashiyev)

Abstract. The object of this paper is to study a nonlocal problem involving the p(x)-
Laplacian where nonlinearities f do not necessarily satisfy the classical conditions, such as
Ambrosetti-Rabinowitz condition, but are limited by functions that do satisfy some specific

conditions. By using the direct variational approach and the theory of the variable exponent
Sobolev spaces, the existence and uniqueness of solutions is obtained.
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1. Introduction

We study the existence and uniqueness of solutions of the following nonlocal prob-
lem {

−M
(∫

Ω
|∇u|p(x)

p(x) dx
)
∆p(x)u = f (x, u) + h (x) in Ω,

u = 0 on ∂Ω,
(P)

where Ω is a bounded smooth domain of RN , N ≥ 3, p ∈ C
(
Ω
)
such that 2 ≤

p (x) < N for any x ∈ Ω , M and f are continuous functions which obey some specific
conditions, and h ∈ Lp(x)/p(x)−1 (Ω).

Problem (P) is related to the stationary version of a model, the so-called Kirchhoff
equation, introduced by Kirchhoff [15]. To be more precise, Kirchhoff established a
model given by the equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

where ρ, P0, h, E, L are constants, which extends the classical D’Alambert’s wave
equation, by considering the effects of the changes in the length of the strings during
the vibrations. For p (x)-Kirchhoff-type equations see, for example, [3, 7, 8, 10].

The importance of problem (P) arises mainly from the existence of the p (x)-

Laplacian △p(x)u = div
(
|∇u|p(x)−2 ∇u

)
. Obviously, when p (x) = 2, △2 = △ is

the usual Laplace operator. However, in case p (x) ̸= 2 the situation is very cru-
cial, as for example, one encounters the lack of the homogenity, and a result of
this, some classical theories, such as the theory of Sobolev spaces, is not applica-
ble. For the papers involving the p(x)-Laplacian operator we refer the readers to
[4, 13, 17, 19] and references therein. Moreover, the nonlinear problems involving the
p (x)-Laplacian extremely attractive because they can be used to model dynamical
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phenomena which arise from the study of electrorheological fluids or elastic mechanics.
Problems with variable exponent growth conditions also appear in the modelling of
stationary thermo-rheological viscous flows of non-Newtonian fluids and in the math-
ematical description of the processes filtration of an ideal barotropic gas through a
porous medium. The detailed application backgrounds of the p(x)-Laplacian can be
found in [2, 5, 18, 21] and references therein.

One of the most widely used results for solving problem (P) is the mountain pass
theorem [23]. In order to apply this theorem, it is necessary that the Euler-Lagrange
functional associated to the problem has the Palais-Smale property. One way to
ensure this is to assume that f satisfies some Ambrosetti-Rabinowitz-type condition
[1]. In order to use any of the techniques above, it is necessary that the nonlinearity
f has subcritical growth.

The object of this paper is to study problem (P) for nonlinearities f which do not
necessarily satisfy the classical conditions, such as Ambrosetti-Rabinowitz condition,
but are limited by functions that do satisfy some specific conditions.

2. Abstract framework and preliminaries

We state some basic properties of the variable exponent Lebesgue-Sobolev spaces
Lp(x) (Ω) and W 1,p(x) (Ω), where Ω ⊂ RN is a bounded domain (for details, see
[9, 11, 12, 16]).

Set

C+

(
Ω
)
=
{
p; p ∈ C

(
Ω
)
, inf p (x) > 1, ∀x ∈ Ω

}
.

Let p ∈ C+

(
Ω
)
and denote

p− := inf
x∈Ω

p (x) ≤ p (x) ≤ p+ := sup
x∈Ω

p (x) < ∞.

For any p ∈ C+

(
Ω
)
, we define the variable exponent Lebesgue space by

Lp(x) (Ω) =

{
u | the map u : Ω → R is measurable;

∫
Ω

|u (x)|p(x) dx < ∞
}
,

then Lp(x) (Ω) endowed with the norm

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u (x)µ

∣∣∣∣p(x) dx ≤ 1

}
,

becomes a Banach space.
The modular of the Lp(x) (Ω) space, which is the mapping ρ : Lp(x) (Ω) → R defined

by

ρ (u) =

∫
Ω

|u (x)| p(x)
dx, ∀u ∈ Lp(x) (Ω) .

Proposition 2.1. [11, 16] If u, un ∈ Lp(x) (Ω) (n = 1, 2, ...), we have
(i) |u|p(x) < 1 (= 1;> 1) ⇔ ρ (u) < 1 (= 1;> 1) ;

(ii) |u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ρ (u) ≤ |u|p
+

p(x),

|u|p(x) < 1 =⇒ |u|p
+

p(x) ≤ ρ (u) ≤ |u|p
−

p(x);

(iii) lim
n→∞

|un|p(x) = 0 ⇔ lim
n→∞

ρ(un) = 0; lim
n→∞

|un|p(x) = ∞ ⇔ lim
n→∞

ρ(un) = ∞.
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Proposition 2.2. [11, 16] If u, un ∈ Lp(x) (Ω) (n = 1, 2, ...), then the following
statements are equivalent:
(i) lim

n→∞
|un − u|p(x) = 0;

(ii) lim
n→∞

ρ(un − u) = 0;

(iii) un → u in measure in Ω and lim
n→∞

ρ(un) = ρ (u) .

The variable exponent Sobolev space W 1,p(x) (Ω) is defined by

W 1,p(x) (Ω) = {u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)},

with the norm

∥u∥1,p(x) = |u|p(x) + |∇u|p(x),

for all u ∈ W 1,p(x) (Ω). The space W
1,p(x)
0 (Ω) is defined as the closure of C∞

0 (Ω) in

W 1,p(x) (Ω) with respect to the norm ∥u∥1,p(x). For u ∈ W
1,p(x)
0 (Ω), we can define an

equivalent norm

∥u∥ = |∇u|p(x),
since Poincaré inequality holds, i.e., there exists a positive constant c > 0 such that

|u|p(x) ≤ c|∇u|p(x),

for all u ∈ W
1,p(x)
0 (Ω).

Proposition 2.3. [16] The conjugate space of Lp(x) (Ω) is Lp′(x) (Ω), where 1
p′(x) +

1
p(x) = 1. For any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω), we have∫

Ω

|uv| dx ≤ (
1

p−
+

1

(p−)
′ ) |u|p(x) |v|p′(x) .

Proposition 2.4. [11, 16] Let r ∈ C+(Ω). If r (x) < p∗ (x) for all x ∈ Ω, then the

embedding W
1,p(x)
0 (Ω) ↪→ Lr(x) (Ω)is compact and continuous, where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

3. Main results

Definition 3.1. We say that u ∈ W
1,p(x)
0 (Ω) is a weak solution of (P) if any φ ∈

W
1,p(x)
0 (Ω),

M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

|∇u|p(x)−2 ∇u∇φdx−
∫
Ω

f (x, u)φdx−
∫
Ω

hφdx = 0.

The energy functional corresponding to problem (P) is defined as J : W
1,p(x)
0 (Ω) → R,

J (u) = M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
−
∫
Ω

F (x, u) dx−
∫
Ω

hudx,

where F (x, t) =
∫ t

0
f (x, s) ds and M̂ (t) =

∫ t

0
M (s) ds for x ∈ Ω and t ∈ R. It is well

known that weak solutions of (P) correspond to critical points of the functional J .

The main result of the present paper is:
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Theorem 3.1. Assume that the following conditions hold:
(M0) M : R+ → R+ is a continuous function and satisfies the condition

m1t
α−1 ≤ M (t) ≤ m2t

α−1,

for all t > 0, where m1,m2 and α real numbers such that 0 < m1 ≤ m2 and α ≥ 1;
(f0) f : Ω× R → R is a Carathéodory function, and assume that there exist a, b > 0
such that

|f(x, t)| ≤ a+ b |t|q(x)−1

for all x ∈ Ω and all t ∈ R, where q ∈ C+

(
Ω
)
such that q (x) < p∗ (x);

(f1) f (x, t) t ≤ 0 and (f (x, t)− f (x, s)) (t− s) ≤ 0 for all x ∈ Ω and for all t, s ∈ R.
Then problem (P) has exactly one solution.

Remark 3.1. As an example of function f satisfying the assumptions of Theorem
3.1, one can take f(x, t) = −|t|β(x)−2t with β (x) ∈ [1, p∗ (x)).

First, we give the following well-known Propositions which are necessary through
the present paper (see, e.g., [6, 14, 23]).

Proposition 3.2. Let X be a Banach space and let I : X → R be a differentiable
functional. Assume that for all u, v ∈ X,

⟨I ′ (u)− I ′ (v) , u− v⟩ ≥ 0.

Then I is convex. If the strict inequality holds when u ̸= v, then I is strictly convex.

Proposition 3.3. Let X be a Banach space and let I : X → R be strictly convex and
differentiable functional. Then I has at most one critical point in X.

To obtain the result of Theorem 3.1, we need to show that the following two lemmas
hold.

Lemma 3.4. (i) The functional J is well-defined on W
1,p(x)
0 (Ω).

(ii) J is a continuously Gâteaux differentiable functional, i.e. J is of class

C1(W
1,p(x)
0 (Ω),R), whose derivative is

⟨J ′ (u) , φ⟩ = M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

|∇u|p(x)−2 ∇u∇φdx−
∫
Ω

f (x, u)φdx−
∫
Ω

hφdx,

for all u, φ ∈ W
1,p(x)
0 (Ω) .

Proof. (i) From (f0), (f1), (M0), continuous embeddings and Proposition 2.3, we have

J (u) ≤ m2

∫ 1

p−
ρ(∇u)

0

sα−1ds+ a

∫
Ω

|u| dx+
b

q−

∫
Ω

|u|q(x) dx− |h|p′(x) |u|p(x)

≤ m2

α (p−)
α

(∫
Ω

|∇u|p(x) dx
)α

+ a

∫
Ω

|u| dx+
b

q−

∫
Ω

|u|q(x) dx− |h|p′(x) |u|p(x)

≤ m2

α (p−)
α ∥u∥αp

+

+ c1 ∥u∥q
+

+ c2 ∥u∥ ,

this implies that J is well-defined on W
1,p(x)
0 (Ω).

(ii) For simplicity, we denote by K : W
1,p(x)
0 → R,

K (u) := M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
,
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and

G (u) :=

∫
Ω

F (x, u) dx+

∫
Ω

hudx.

Then, we write

J (u) = K (u)−G (u) .

First of all, since M is a continuous function and satisfies growth condition (M0), it is

easy to see that the composition functional K (u) = M̂
(∫

Ω
|∇u|p(x)

p(x) dx
)
is well-defined

and of class C1(W
1,p(x)
0 ,R) and its derivative K ′ : W

1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is

⟨K ′ (u) , v⟩ = M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

|∇u|p(x)−2 ∇u∇vdx.

Therefore, showing that G is continuously Gâteaux differentiable is equivalent to
saying that J is continuously Gâteaux differentiable. First, we will show that G is

Gâteaux differentiable. Therefore we have to prove that for fixed u, v ∈ W
1,p(x)
0 (Ω),

lim
t→0

G (u+ tv)−G (u)

t
=

∫
Ω

f (x, u) vdx+

∫
Ω

hvdx.

After elementary calculations, one can easily show that, for almost every x ∈ Ω,

lim
t→0

F (x, u (x) + tv (x)) + h (u (x) + tv (x))− F (x, u (x))− hu (x)

t
= (f (x, u (x)) + h (x)) v (x) .

Then, by the Lagrange theorem, there exists a real number θ such that |θ| ≤ |t| and∣∣∣∣F (x, u (x) + tv (x)) + h (u (x) + tv (x))− F (x, u (x))− hu (x)

t

∣∣∣∣
= |(f (x, u (x) + θv (x)) + h (x)) v (x)|

≤
(
a+ b |u (x) + θv (x)|q(x)−1

)
|v (x)|+ |h (x) v (x)|

≤ |u (x)|q(x)−1 |v (x)|+ |v (x)|q(x) + |v (x)|+ |h (x) v (x)| . (1)

By Proposition 2.3, we get∫
Ω

|u|q(x)−1 |v| dx ≤
∣∣∣|u|q(x)−1

∣∣∣
q′(x)

|v|q(x) ,

and ∫
Ω

|hv| dx ≤ |h|p′(x) |v|p(x) .

From the above inequalities, one concludes that the expression (1) is in L1 (Ω). There-
fore by the dominated convergence theorem we have

lim
t→0

G (u+ tv)−G (u)

t
=

∫
Ω

f (x, u) vdx+

∫
Ω

hvdx.

Since the right-hand side, as a function of v, is a continuous linear functional on

W
1,p(x)
0 (Ω), it is the Gâteaux differential of G.

Now, we will prove that G′ : W
1,p(x)
0 (Ω) →

(
W

1,p(x)
0 (Ω)

)∗
is continuous. Assume

uk → u in W
1,p(x)
0 (Ω). Up to a subsequence, we may assume that uk → u in Lq(x) (Ω)
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and uk (x) → u (x) a.e. in Ω as k → ∞. Then, using Proposition 2.3 and (f0) we
have

|⟨G′ (uk)−G′ (u) , v⟩| ≤
∫
Ω

|f (x, uk)− f (x, u)| |v| dx

≤
∫
Ω

∣∣∣|uk|q(x)−1 − |u|q(x)−1
∣∣∣ |v| dx

≤
∫
Ω

|uk|q(x)−1 |v| dx+

∫
Ω

|u|q(x)−1 |v| dx.

Since uk → u in Lq(x) (Ω), there exists φ ∈ Lq(x) (Ω) such that |uk (x)| ≤ φ (x) a.e.
in Ω and for all k ∈ N. Therefore

|⟨G′ (uk)−G′ (u) , v⟩| ≤
∫
Ω

|φ|q(x)−1 |v| dx+

∫
Ω

|u|q(x)−1 |v| dx

≤
(∣∣∣|φ|q(x)−1

∣∣∣
q′(x)

+
∣∣∣|u|q(x)−1

∣∣∣
q′(x)

)
|v|q(x) ∈ L1 (Ω) .

On the other hand, taking into account that uk (x) → u (x) a.e. in Ω as k → ∞, we
also get

lim
k→∞

|f (x, uk (x))− f (x, u (x))| = 0.

If we consider the above inequalities and apply the dominated convergence theorem,
we obtain

lim
k→∞

∫
Ω

|f (x, uk)− f (x, u)| dx = 0,

which implies
lim
k→∞

sup ∥G′ (uk)−G′ (u)∥ = 0.

So we deduce that Gâteaux differential of G is continuous, i.e., G is of class

C1
(
W

1,p(x)
0 (Ω) ,R

)
. �

Lemma 3.5. (i) The functional J is coercive.
(ii) The functional J is strictly convex.

Proof. (i) From (f1), it is clear that F (x, t) ≤ 0 for all t ∈ R. Moreover considering
(M0), it follows

J (u) = M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
−
∫
Ω

F (x, u) dx−
∫
Ω

hudx

≥ m1

α (p+)
α ∥u∥αp

−
− c ∥u∥ ,

this implies that J is coercive.

(ii) For all u, v ∈ W
1,p(x)
0 (Ω) for u ̸= v, from (f1) and (M0) we have

⟨I ′ (u)− I ′ (v) , u− v⟩ = M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

(
|∇u|p(x)−2 ∇u− |∇v|p(x)−2 ∇v

)
× (∇u−∇v) dx−

∫
Ω

(f (x, u)− f (x, v)) (u− v) dx

≥ m1

(p+)
α−1 min

{
∥u∥p

−(α−1)
, ∥u∥p

+(α−1)
}

×
∫
Ω

(
|∇u|p(x)−2 ∇u− |∇v|p(x)−2 ∇v

)
(∇u−∇v) dx.
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Next, we apply the following well-known inequality (see, e.g., [20, 22]), for any ξ, η ∈
RN (

|ξ|r(x)−2
ξ − |η|r(x)−2

η
)
(ξ − η) ≥ 22−r+ |ξ − η|r(x) , r (x) ≥ 2.

Therefore, one easily concludes that

⟨I ′ (u)− I ′ (v) , u− v⟩ ≥ c12
2−p+

∫
Ω

|∇ (u− v)|p(x) dx

≥ c22
2−p+

min
{
∥u− v∥p

−
, ∥u− v∥p

+
}
> 0.

By Proposition 3.1, we conclude that J is strictly convex. �
Proof. [Proof of Theorem 3.1] The functional J is continuous and convex, and thus
(sequentially) weakly lower semi-continuous. Further, since it is coercive, it has a
global minimum point, which is a critical point. Moreover, since J is strictly convex
and differentiable, by Proposition 3.2, J must have only one critical point. �
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