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Semi-slant warped product submanifolds of a trans-Sasakian
manifold
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Abstract. In this paper we study semi-slant warped product submanifolds of a trans-Sasakian
manifold. A characterization for warped product submanifolds in terms of warping function

and shape operator is obtained and finally we proved an inequality for squared norm of second
fundamental form.
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1. Introduction

In the Gray Hervella classification of almost Hermitian manifolds [1], there appears
a class W4, of Hermitian manifolds which are closely related to a locally conformal
Kaehler manifolds. An almost contact metric structure on a manifold M̄ is called a
trans-Sasakian structure if the product manifold M̄ ×R belongs to W4 [9]. The class
C6⊕C5 [6] coincides with the class of trans-Sasakian structure of type (α, β) . We note
that the trans-Sasakian structure of type (0, 0) are cosymplectic [5], trans-Sasakian
structure of type (0, β) are β−Kenmotsu and trans-Sasakian structure of type (α, 0)
are α−Sasakian [6].

The notion of semi-slant submanifolds of almost Hermitian manifolds were intro-
duced by N. Papaghuic [17], after that J. L. Cabrerizo et al. [12] defined and study
semi-slant submanifolds in the setting of Sasakian manifolds.

R. L. Bishop and B. O. Neil [18] introduced the notion of warped product mani-
folds. These manifolds are generalization of Riemannian product manifolds and occur
naturally. Many important physical applications of warped product manifolds have
been discovered (c.f., [9], [17]). Due to wide applications of warped product submani-
folds, this becomes a fascinating and interesting topic for research, and many articles
are available in literature. CR-warped prod- uct was introduced by Chen [3], they
studied warped products CR-submanifolds in the setting of Kaehler manifolds. In
the available literature, many geometers have studied warped products in the setting
of almost contact metric manifolds (c.f., [7], [15], [22]). Hesigawa and Mihai [8] ob-
tained the inequality for squared norm of the second fundamental form in term of the
warping function for contact CR-warped product in Sasakian manifolds. Recently,
Falleh R. Al-Solamy and Meraj Ali Khan [7] study the semi-slant warped product
submanifolds in the setting of Kenmotsu manifolds.

In this paper we study nontrivial warped product submanifolds of the type
NT ×f Nθ where NT and Nθ are the invariant and proper slant submanifolds of trans-
Sasakian manifolds one can also study the warped product of the type Nθ×fNT . From
here there emerges the natural problem of finding the geometric behavior of shape
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operator and warping function. We also obtain some interesting results exploring
geometric properties of second fundamental form and finally we calculate an estimate
for squared norm of second fundamental form.

2. Preliminaries

A 2n+1 dimensional C∞ manifold M̄ is said to have an almost contact structure if
there exist on M a tensor field ϕ of type (1, 1), a vector field ξ and 1-form η satisfying
the following properties

ϕ2 = −I + η ⊗ ξ, ϕ(ξ) = 0, η ◦ ϕ = 0, η(ξ) = 1. (2.1)

There always exists a Riemannian metric g on an almost contact manifold M̄ satisfying
the following conditions

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ), (2.2)

where X,Y are vector fields on M̄.

An almost contact metric structure (ϕ, ξ, η, g) is said to be normal if the almost
complex structure J on the product manifold M̄ ×R given by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

has no torsion i.e., J is integrable where f is a C∞− function on M̄×R, or alternately
we can say the tensor [ϕ, ϕ] + 2dη ⊗ ξ vanishes identically on M̄ , where [ϕ, ϕ] is the
Nijenhuis tensor of.

An almost contact metric manifold is said to be trans-Sasakian manifold [10] if

(∇̄Xϕ)Y = α{g(X,Y )ξ − η(Y )X}+ β{g(ϕX, Y )ξ − η(Y )ϕX}. (2.3)

for all X,Y ∈ TM̄, where α, β are smooth functions on M̄ and ∇̄ is the Levi-Civita
connection of g and in this case we say that the trans-Sasakian structure is of the
type (α, β).

If α = 0 then M̄ is β−Kenmotsu manifold and if β = 0 then M̄ is α−Sasakian
manifold. Moreover, if α = 1 and β = 0 then M̄ is a Sasakian manifold and if α = 0
and β = 1 then M̄ is a Kenmotsu manifold. From (2.3), it follows that

∇̄Xξ = −αϕX + β(X − η(X)ξ). (2.4)

Let M be a submanifold of an almost contact metric manifold M̄ with induced
metric g and if ∇ and ∇⊥ are the induced connection on the tangent bundle TM and
the normal bundle T⊥M of M , respectively then Gauss and Weingarten formulae are
given by

∇̄XY = ∇XY + h(X,Y ), (2.5)

∇̄XN = −ANX +∇⊥
XN, (2.6)

for each X,Y ∈ TM and N ∈ T⊥M, where h and AN are the second fundamental
form and the shape operator respectively for the immersion of M into M̄ and they
are related as

g(h(X,Y ), N) = g(ANX,Y ), (2.7)

where g denotes the Riemannian metric on M̄ as well as on M .
For any X ∈ TM, we write

ϕX = PX + FX, (2.8)

where PX is the tangential component and FX is the normal component of ϕX.
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Similarly, for any N ∈ T⊥M , we write

ϕN = tN + fN, (2.9)

where tN is the tangential component and fN is the normal component of ϕN. The
covariant derivatives of the tensor field P and F are defined as

(∇̄XP )Y = ∇XPY − P∇XY, (2.10)

(∇̄XF )Y = ∇⊥
XFY − F∇XY. (2.11)

From equations (2.3), (2.5), (2.6), (2.8) and (2.9) we have

(∇̄XP )Y = AFY X + th(X,Y ) + α{g(X,Y )ξ − η(Y )X}+ β{g(PX, Y )ξ − η(Y )PX}
(2.12)

(∇̄XF )Y = fh(X,Y )− h(X,PY )− η(Y )FX. (2.13)

Definition 2.1. [2] A submanifold M of an almost contact metric manifold M̄ is
said to be slant submanifold if for any x ∈ M and X ∈ TxM − ⟨ξ⟩ the angle between
X and ϕX is constant. The constant angle θ ∈ [0, π/2] is then called slant angle of
M in M̄. If θ = 0 the submanifold is invariant submanifold, if θ = π/2 then it is
anti-invariant submanifold, if θ ̸= 0, π/2 then it is proper slant submanifold.

For slant submanifolds of contact manifolds J. L. Cabrerizo et al. [13] proved the
following Lemma

Lemma 2.1. Let M be a submanifold of an almost contact metric manifold M̄, such
that ξ ∈ TM then M is slant submanifold if and only if there exist a constant λ ∈ [0, 1]
such that

P 2 = λ(I − η ⊗ ξ), (2.14)

where λ = − cos2 θ.

Thus, one has the following consequences of above formulae

g(PX,PY ) = cos2 θ[g(X,Y )− η(X)η(Y )], (2.15)

g(FX,FY ) = sin2 θ[g(X,Y )− η(X)η(Y )]. (2.16)

A submanifold M of M̄ is said to be semi-slant submanifold of an almost contact
manifold M̄ if there exist two orthogonal complementary distributions DT and Dθ on
M such that
(i) TM = DT ⊕Dθ ⊕ ⟨ξ⟩,
(ii) The distribution DT is invariant i.e., ϕDT ⊆ DT ,
(iii) The distribution Dθ is slant with slant angle θ ̸= 0.

It is straight forward to see that semi-invariant submanifolds and slant submani-
folds are semi-slant submanifolds with θ = π/2 and DT = {0} respectively.

If µ is invariant subspace under ϕ of the normal bundle T⊥M , then in the case of
semi-slant submanifold, the normal bundle T⊥M can be decomposed as

T⊥M = µ⊕ FDθ. (2.17)

A semi-slant submanifold M is called a semi-slant product if the distributions DT

andDθ are parallel onM . In this caseM is foliated by the leaves of these distributions.
As a generalization of the product manifolds and in particular of a semi-slant

product submanifold, one can consider warped product of manifolds which are defined
as
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Definition 2.2. Let (B, gB) and (F, gF ) be two Riemannian manifolds with Rie-
mannian metric gB and gF respectively and f be a positive differentiable function on
B. The warped product of B and F is the Riemannian manifold (B × F, g), where

g = gB + f2gF .

For a warped product manifoldN1×fN2, we denote byD1 andD2 the distributions
defined by the vectors tangent to the leaves and fibers respectively. In other words,
D1 is obtained by the tangent vectors of N1 via the horizontal lift and D2 is obtained
by the tangent vectors of N2 via vertical lift. In the case of semi-slant warped product
submanifolds D1 and D2 are replaced by DT and Dθ respectively.

The warped product manifold (B×F, g) is denoted by B×f F. If X is the tangent
vector field to M = B ×f F at (p, q) then

∥X∥2 = ∥dπ1X∥2 + f2(p)∥dπ2X∥2.
R. L. Bishop and B. O’Neill [13] proved the following

Theorem 2.2. Let M = B ×f F be warped product manifolds. If X,Y ∈ TB and
V,W ∈ TF then
(i) ∇XY ∈ TB,

(ii) ∇XV = ∇V X = (Xf
f )V,

(iii) ∇V W = −g(V,W )
f ∇f.

∇f is the gradient of f and is defined as

g(∇f,X) = Xf, (2.18)

for all X ∈ TM.

Corollary 2.3. On a warped product manifold M = N1 ×f N2, the following state-
ments hold
(i) N1 is totally geodesic in M,
(ii) N2 is totally umbilical in M.

Throughout, we denote by NT and Nθ an invariant and a slant submanifold re-
spectively of an almost contact metric manifold M̄.

Siraj Uddin et al. [21] proved the following Corollary

Corollary 2.4. Let M̄ be a trans-Sasakian manifold and N1 and N2 be any Rie-
mannian submanifolds of M̄, then there do not exist a warped product submanifold
M = N1 ×f N2 of M̄ such that ξ is tangential to N2.

Thus, we assume that the structure vector field ξ is tangential to N1 of a warped
product submanifold N1 ×f N2 of M̄.

In this paper we will consider the warped product of the type NT ×f Nθ and is
called semi-slant warped product submanifolds.

3. Semi-slant warped product submanifolds

Throughout this section we will study the warped product of the type NT ×f Nθ,
for these submanifolds by Theorem 2.2 we have

∇XZ = ∇ZX = XlnfZ, (3.1)

for any X ∈ TNT and Z ∈ TNθ.
We start the section exploring some important relation of second fundamental form
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Lemma 3.1. On a semi-slant warped product submanifold M = NT ×f Nθ of a
trans-Sasakian manifold M̄, we have
(i) g(h(X,Y ), FZ) = 0,
(ii) g(h(X,Z), FZ) = −αη(X)∥Z∥2 − PXlnf∥Z∥2,
(iii) g(h(X,Z), FPZ) = cos2 θ(Xlnf − βη(X)),
(iv) g(h(X,PZ), FZ) = βη(X)−Xlnf,
(v) ξlnf = β,
for any X,Y ∈ TNT and Z ∈ TNθ.

Proof. For any X,Y ∈ TNT and by equation (2.12) we get

∇XPY − P∇XY = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )PX) + th(X,Y ),

taking inner product with Z ∈ TNθ in above equation and using equation (3.1), we
get part (i) of Lemma.
From equations (2.3) and (3.1) we have

PXlnZ −XlnfPZ = −αη(X)Z − βη(X)PZ + th(X,Z)

taking inner product with Z ∈ TNθ, we get

g(h(X,Z), FZ) = −αη(X)∥Z∥2 − PXlnf∥Z∥2. (3.2)

(3.2) is the part (ii) of Lemma.
Taking inner product with PZ ∈ TNθ in (3.2), we find

g(h(X,Z), FPZ) = cos2 θ(Xlnf − βη(X)), (3.3)

replacing Z by PZ, and using equation (2.14), the above equation gives

g(h(X,PZ), FZ) = βη(X)−Xlnf. (3.4)

(3.3) and (3.4) prove the (iii) and (iv) parts of Lemma respectively.
Part (v) of Lemma follows from equations (2.4) and (3.1). �

Note 3.1. From part (v) of Lemma 3.1 and equation (2.18), it is easy to see that

∇lnf = βξ,

where ∇lnf denotes the gradient of lnf and above equation can also be written as

p∑
i=0

∂lnf

∂xi
= βξ, (3.5)

where (p + 1) is the dimension of Nθ, the equation (3.5) is the first order partial
differential equation and has a unique solution, it confirms the existence of warped
product of the type Nθ ×f NT .

Corollary 3.2. Let M = NT ×f Nθ be a semi-slant warped product submanifolds of
a trans-Sasakian manifold, then

g(h(PX,Z), FZ) = Xlnf∥Z∥2, (3.6)

for any X ∈ TNT and Z ∈ TNθ.

The Corollary follows immediately from equation (3.3). Now we have the following
characterization for semi-slant warped product
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Theorem 3.3. Let us consider a semi-slant submanifold M with involutive distri-
butions DT ⊕ ⟨ξ⟩ and Dθ of a trans-Sasakian manifold M̄. Then M is a semi-slant
warped product submanifold of M̄ if and only if

AFZX = (Xµ− βη(X))PZ − (PXµ+ αη(X))Z,

for any X ∈ DT ⊕⟨ξ⟩ and Z ∈ TNθ and µ is a C∞−function on M satisfying Zµ = 0
for each Z ∈ Dθ.

Proof. Let M be a semi-slant warped product of type NT ×f Nθ, then for any X ∈
TNT and Z ∈ TNθ, from equations (2.10), (2.12) and (3.1) we have
from equations (3.6) and (3.7), we get

AFZX = −αη(X)Z − βη(X)PZ − PXlnfZ +XlnfPZ, (3.7)

taking inner product with W ∈ TNθ

g(AFZX,W ) = (Xlnf − β(X))g(PZ,W )− (PXlnf + αη(X))g(Z,W ). (3.8)

Also from part (i) of Lemma 3.1

g(AFZX,Y ) = 0. (3.9)

It is easy to observe from equations (3.8) and (3.9), that

AFZX = (Xµ− βη(X))PZ − (PXµ+ αη(X))Z.

Conversely, let M be a semi-slant submanifold of M̄ satisfying the hypothesis of
theorem, then for any X,Y ∈ DT ⊕ ⟨ξ⟩ and Z ∈ Dθ, then

g(h(X,Y ), FZ) = 0,

this mean h(X,Y ) ∈ µ, then from equation (2.13),

−F∇XY = −h(X,PY ) + fh(X,Y ).

Since h(X,Y ) ∈ µ, F∇XY = 0, i.e., ∇XY ∈ DT ⊕ ⟨ξ⟩, hence each leaf of DT ⊕ ⟨ξ⟩ is
totally geodesic in M̄.

Further, suppose Nθ be a leaf of Dθ and hθ be second fundamental form of the
immersion of Nθ in M, then for any X ∈ DT and Z ∈ Dθ. For any X ∈ DT and
Z ∈ Dθ we have

g(hθ(Z,Z), ϕX) = g(∇ZZ, ϕX),

using equations (2.8), (2.5) and (2.6) the above equation yields

g(hθ(Z,Z), ϕX) = g(∇ZPZ,X) + g(AFZZ,X),

applying the hypothesis, we get

g(hθ(Z,Z), ϕX) = −PXlnfg(Z,Z).

Replacing X by PX, the above equation gives

hθ(Z,Z) = ∇µg(Z,Z).

From above equation it is easy to derive

hθ(Z,W ) = ∇µg(Z,W ),

i.e., Nθ is totally umbilical and as Zµ = 0, for all Z ∈ Dθ, ∇µ is defined on NT , this
mean that mean curvature vector of Nθ is parallel i.e., the leaves of Dθ are extrinsic
spheres in M. Hence by virtue of result of [20] which says that if the tangent bundle of
a Riemannian manifold M splits into an orthogonal sum TM = E0⊕E1 of nontrivial
vector subbundles such that E1 is spherical and its orthogonal complement E0 is auto
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parallel, then the, manifold M is locally isometric to a warped product M0 ×f M1,
we can say M is locally semi-slant warped product submanifold NT ×f Nθ, where the
warping function f = eµ.

Let us denote by DT ⊕⟨ξ⟩ and Dθ the tangent bundles on NT and Nθ respectively
and let {X0 = ξ,X1, . . . Xp, Xp+1 = ϕX1, . . . X2p = ϕXp} and {Z1, . . . Zq, Zq+1 =
PZ1, . . . Z2q = PZq} be local orthonormal frames of vector fields on NT and Nθ

respectively with 2p+ 1 and 2q being real dimension. Then the second fundamental
form can be written as

∥h∥2 =

2p+1∑
i,j=1

g(h(Xi, Xj), h(Xi, Xj)) +

2p+1∑
i=1

2q∑
r=1

(g(h(Xi, Zr), h(Xi, Zr))

+

2q∑
r,s=1

g(h(Zr, Zs), h(Zr, Zs)). (3.10)

�

Now, on a semi-slant warped product submanifold of a trans-Sasakian manifold, we
prove

Theorem 3.4. Let M = NT ×f Nθ be a semi-slant warped product submanifold
of a trans-Sasakian manifold M̄ with NT and Nθ invariant and slant submanifolds
respectively of M̄. If βη(X) ≥ 2Xlnf for all X ∈ TNT , then the squared norm of the
second fundamental form h satisfies

∥h∥2 ≥ q csc2 θ(β2 + 2∥∇lnf∥2)(cos4 θ + 3), (3.11)

where ∇lnf is the gradient of lnf and 2q is the dimension Nθ.

Proof. In view of the decomposition (2.17), we may write

h(U, V ) = hFDθ
(U, V ) + hµ(U, V ), (3.12)

for each U, V ∈ TM, where hFDθ
(U, V ) ∈ FDθ and hµ(U, V ) ∈ µ with

hFDθ
(U, V ) =

2q∑
r=1

hr(U, V )FZr (3.13)

hr(U, V ) = csc2 θg(h(U, V ), FZr) (3.14)

for each U, V ∈ TM. In view of above formulae we have

g(hFDθ
(PXi, Zr), hFDθ

(PXi, Zr)) = hr(PXi, Zr)Xilnf + sin2 θ
∑
s̸=r

(hs(PXi, Zr))
2.

In view of equations (3.14) and (3.5), we get

g(hFDθ
(PXi, Zr), hFDθ

(PXi, Zr)) = csc2 θ(Xilnf)
2 + sin2 θ

∑
s̸=r

(hs(PXi, Zr))
2.

(3.15)
Summing over i = 1, . . . 2p and r = 1, . . . 2q and using part (v) of Lemma 3.1, we have

2p∑
i=1

2q∑
r=1

g(hFDθ
(PXi, Zr), hFDθ

(PXi, Zr)) = 2q csc2 θβ2 + 4q csc2 θ∥∇lnf∥2

+sin2 θ

2p∑
i=1

2q∑
r,s=1,r ̸=s

(hs(PXi, Zr))
2. (3.16)
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Since we have choose the orthonormal frame of vector fields on Dθ as {Z1, . . . Zq,
Zq+1 = PZ1, . . . Z2q = PZq}, then the third term in the right hand side of equation
(3.16) is written as

csc2 θ

2p∑
i=1

[

q∑
r=1

{(g(h(PXi, Zr), FPZr))
2 + (g(h(PXi, PZr), FZr))

2}

+

q∑
r=1

q∑
s=1,s ̸=r

{(g(h(PXi, Zr), FPZs))
2 + (g(h(PXi, PZr), FZs))

2}].

From equations (3.4) and (3.5), the first two terms of above equation can be written
as

csc2 θ

2p+1∑
i=1

[q cos4 θ(Xilnf − βη(Xi))
2 + q(βη(Xi)−Xilnf))

2].

In account of to hypothesis βη(Xi) ≥ 2Xilnf and the fact that β = ξlnf the above
expression is greater than equal to the following term

q csc2 θ[(cos4 θ + 1)(β2 + 2∥∇lnf∥2)]. (3.17)

Using above inequality into (3.16), we have

g(hFDθ
(PXi, Zr), hFDθ

(PXi, Zr)) ≥ q csc2 θ(β2 + 2∥∇lnf∥2)(cos4 θ + 3). (3.18)

By Similar calculation and using part (i) of Lemma 3.1, it is easy to see that

g(hFDθ
(XI , Yj), hFDθ

(Xi, Yj)) = 0 (3.19)

The inequality (3.11) follows from (3.10),(3.17), (3.18) and (3.19). �
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