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The Ţăndăreanu theory of generalized Boolean functions

Sergiu Rudeanu

Abstract. This survey paper is devoted to a class of functions with arguments and values
in an arbitrary Boolean algebra, introduced and studied by Nicolae Ţăndăreanu. It includes

strictly the class of Boolean functions and it is a proper subclass of the class of all the functions
that can be defined over the Boolean algebra.
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Introduction

Nowadays the term “Boolean function” has two meanings. One of them is a func-
tion with arguments and values in the Boolean algebra {0, 1}; these functions, more
properly called truth functions or switching functions, are largely used in numerous
applications. The other meaning is much more general: it designates the algebraic
functions over an arbitrary Boolean algebra, that is, those functions with arguments
and values in an arbitrary Boolean algebra (B,∨, · ,′ , 0, 1) that are obtained from
constants and variables by superpositions of the basic operations ∨, · ,′. The works
reported in this survey paper refer to the general meaning.

It is well known that Boolean functions are characterized by the fact that they can
be represented in the canonical disjunctive form

(CDF) f(x1, . . . , xn) =
∨

a1,...,an∈{0,1} f(a1, . . . , an)x
a1
1 . . . xan

n ,

where
∨

designates iterated disjunction ∨ and the notation xa with a ∈ {0, 1} is
defined by x1 = x, x0 = x′. It can be said that the properties of Boolean functions
follow from (CDF).

Ţăndăreanu noted that (CDF) is obtained by using the following properties:

11 = 1, 00 = 0′ = 1 , x ∨ x′ = 1 , xx′ = 0 .

This has led him to the idea of defining a class of functions resembling Boolean
functions, with the difference that the functions x0 and x1 are replaced by a family
of functions g(a, x), where a runs in {0, 1} or in a bigger set A, such that

g(0, 0) = g(1, 1) = 1 ,
∨
a∈A

g(a, x) = 1 , g(a, x)g(b, x) = 0 if a ̸= b .

Between 1981–1985, Nicolae Ţăndăreanu elaborated his theory of generalized Boolean
functions, which is the subject-matter of the present survey paper. Our presentation
differs from the original works in two major respects. First, we have replaced the term
“generalized Boolean function” by “Ţăndăreanu function”, yielding a corresponding
slight change of notation. Besides, with the exception of Theorem 1, we have dropped
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the condition B ̸= {0, 1}, which was not only unnecessary, but prevented Ţăndăreanu
functions from being a generalization of Boolean functions, and we have replaced the
hypoyheses A ⊂ B by A ⊆ B. Except Theorem 1, we have succeeded in recapturing
all of the original results in this slightly modified form.

The first two Sections of this paper, 1 The functions G(A,B) , 2 The Ţăndăreanu
functions, present the fundamentals of the theory, introduced in [4]. Sections 3
TFn(A1 ∩ A2) and TFn(A1 ∪ A2), 4 TF1(A), 5 TF1({0, 1}), 6 TFn({0, 1}) are
devoted to the main classes of Ţăndăreanu functions. Papers [8], [9] and the seem-
ingly unpublished paper [10] are presented in Section 7 Other results. Finally we offer
a few Conclusions.

In the present paper (B,∨, ·, ′, 0, 1) is an arbitrary Boolean algebra. For every n,
the functions f : Bn −→ B form a Boolean algebra (BBn

,∨, ·, ′, 0, 1), where the opera-
tions are defined pointwise: (f∨g)(X) = f(X)∨g(X), (fg)(X) = f(X)g(X), f ′(X) =
(f(X))′, 0(X) = 0, 1(X) = 1. Let BFn denote the Boolean algebra of all Boolean
functions f : Bn −→ B, which is a Boolean subalgebra of BBn

.

1. The functions G(A,B)

The starting point is the following definition [4].

Definition 1. Let A be a finite set satisfying {0, 1} ⊆ A ⊆ B.1 We denote by G(A,B)
the set of those functions g : A×B −→ B which satisfy the following conditions:

(1) g(0, 0) = g(1, 1) = 1 ,

(2)
∨

a∈A g(a, x) = 1 (∀x ∈ B) ,

(3) g(a, x)g(b, x) = 0 (∀ a, b ∈ A, a ̸= b) (∀x ∈ B) .

It is easy to see that conditions (2), (3) are equivalent to

(4) g(a, x) =
∏

b∈A\{a} g
′(b, x) (∀ a ∈ A) (∀x ∈ B) .

Here is an example proving that G(A,B) ̸= ∅.

Example 1. Define g : A × B −→ B by g(a, x) = xa for a ∈ {0, 1} and x ∈ B, else
g(a, x) = 0. Then g ∈ G(A,B). Indeed, we have already noted that g(0, 0) = 00 =
1, g(1, 1) = 11 = 1, then

∨
a∈A g(a, x) = g(0, x) ∨ g(1, x) = x ∨ x′ = 1 and (3) is

satisfied for a /∈ {0, 1} or b /∈ {0, 1}, while g(0, x)g(1, x) = x′x = 0.

The following result will be used in the sequel.

Lemma 1. If {0, 1} ⊆ A ⊂ A1 ⊆ B, where A1 is a finite set, then G(A1, B) \
G(A,B) ̸= ∅.

Proof. Take a0 ∈ A1 and define g : A1 ×B −→ B by

g(a, a) = 1 (∀ a ∈ A1), g(a0, x) = 1 (∀x ∈ B \A1), else g(a, x) = 0 .

The first two prescriptions imply g(0, 0) = g(1, 1) = 1. Besides,
∨

a∈A1
g(a, x) ≥

g(a0, x) = 1, no matter whether x ∈ A1 or x ∈ B \ A1. If a, b ∈ A1 and a ̸= b,
take x ∈ B. If x ∈ A1, since we cannot have both x = a and x = b, it follows that
g(a, x)g(b, x) = 0. If x ∈ B \ A1, since we cannot have both a = a0 and b = a0, it
follows that g(a, x)g(b, x) = 0 again. We have thus proved that g ∈ G(A1, B). On the
other hand, if a0 /∈ A then

∨
a∈A g(a, a0) = 0, therefore g /∈ G(A,B). �

1The restriction A ̸= B required by Ţăndăreanu is not really necessary.
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The meaning of the next Proposition is that if A ⊂ A1 then G(A,B) can be
embedded into G(A1, B) by sending each g ∈ G(A,B) to its unique extension to
G(A1, B).

Proposition 1. If {0, 1} ⊆ A ⊂ A1 ⊆ B, where A1 is a finite set, then every function
g ∈ G(A,B) has a unique extension to a function g1 ∈ G(A1, B).

Proof. Given g ∈ G(A,B), we define g1 : A1×B −→ B by g1(a, x) = g(a, x) if a ∈ A
and g1(a, x) = 0 if a ∈ A1 \A. It is easy to see that g ∈ G(A1, B). For uniqueness we
prove that if h ∈ G(A1, B) is an extension of g, then h(a, x) = 0 for all a ∈ A1 \A and
all x ∈ B. Indeed, for every a ∈ A1 \ A we have A ⊆ A1 \ {a}, hence for all x ∈ B,
using (4) and (2) we get

h(a, x) =
∏

b∈A1\{a}

h′(b, x) ≤
∏
b∈A

h′(b, x) =
∏
b∈A

g′(b, x) = 0 .

�
An important specialization of G(A,B) is the case when A = {0, 1}.

Remark 1. G({0, 1}, B) consists of those functions g : {0, 1} ×B −→ B that satisfy
(1) and

(5) g(0, x) = g′(1, x) (∀x ∈ B) ,

because (5) is obtained from (4) by taking A = {0, 1}.

An alternative description of G({0, 1}) is a parametric representation.

Proposition 2. A map g : {0, 1} ×B −→ B belongs to G({0, 1}, B) if and only if it
is of the form

(6) g(1, x) = h(x), g(0, x) = h′(x) (∀x ∈ B) ,

where h : B −→ B is a function which satisfies h(a) = a (∀ a ∈ {0, 1}).

Proof. The representation (6) implies (1) and (5). Conversely, if g ∈ G({0, 1}, B)
then it follows from (1) and (5) that the function h defined by h(x) = g(1, x) for all
x ∈ B satisfies h(1) = 1, g(0, x) = g′(1, x) = h′(x) and h(0) = g(1, 0) = g′(0, 0) = 0.

�
An even more particular case yields a singleton.

Proposition 3. 2 For every finite Boolean algebra B, G(B,B) contains the Kronecker
function δ : B ×B −→ B, where δ(x, x) = 1 and δ(x, y) = 0 if x ̸= y.

Proof. Immediate from the fact that the matrix {δ(x, y)}x,y∈B is the unit matrix of
order cardB. �
Proposition 4. G({0, 1}, {0, 1}) = {δ}, where δ : {0, 1}2 −→ {0, 1} is the Kroneker
delta.

Proof. Immediate from Proposition 3 or from Remark 1. �
Exercise 1. There are 4 functions in G({0, 1}2, {0, 1}2).

Remark 2. The restriction to {0, 1}2 of every g ∈ G(A,B) is the Kronecker δ ∈
G({0, 1}, {0, 1}) because of (1) and (5), which imply g(0, 1) = g′(1, 1) = 0 and 1 =
g(0, 0) = g′(1, 0).

Liu [1] has counted the cardinality of the set G(B) =
∪

{0,1}⊆A⊂B G(A,B) for a

finite Boolean algebra B.

2Propositions 3, 4 and 5 are due to the present author.
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2. Ţăndăreanu functions

Definition 2. [4]3 For every g ∈ G(A,B) and every natural number n, let TFn(g)
denote the set of those functions f : Bn −→ B which satisfy the identity

(7) f(x1, . . . , xn) =
∨

a1,...,an∈A f(a1, . . . , an)g(a1, x1) . . . g(an, xn) .

The functions belonging to TFn(A) =
∪

g∈G(A,B) TFn(g) will be called Ţăndăreanu

functions or T-functions for short. In particular if B is finite and A = B (case
excluded by Ţăndăreanu), we will refer to the functions f ∈ TFn(B) as improper
T-functions.

Remark 3. Every Boolean function satisfies (7) with the function g from Example
1, therefore BFn ⊆ TFn(A) ⊆ BBn

for every A and every n.

Remark 4. In view of orthonormality, the computations with g(a1, x1) . . . g(an, xn)
obey the same rules as computations with the minterms xa1

1 . . . xan
n , where a1, . . . , an ∈

{0, 1}; see e.g. [3], Theorem 1.5.

Remark 5. It follows from Remark 4 that every f ∈ TFn(A) satisfies∏
a1,...,an∈A

f(a1, . . . , an) ≤ f(x1, . . . , xn) ≤
∨

a1,...,an∈A

f(a1, . . . , an) ,

because∏
a1,...,an

f(a1, . . . , an) =
∨

b1,...,bn

(
∏

a1,...,an

f(a1, . . . , an))g(b1, x1) . . . g(bn, xn).

Remark 6. It also follows from Remark 4 that the set TFn(A) and each set TFn(g),
endowed with the pointwise defined operations (see introduction to this paper) are
Boolean algebras which contain all constant functions. The proof is similar to the
proof that BFn is a Boolean algebra (see e.g. [3], beginning of §1.4 and Theorem
1.17). The inclusions in Remark 3 become “is a subalgebra of”.

In most cases the inclusions from Remark 3 are in fact strict inclusions.

Theorem 1. If B ̸= {0, 1} and A is a finite set satisfying {0, 1} ⊆ A ⊂ B then
BFn ⊂ TFn(A) ⊂ BBn

for every n.

Proof. The function φ : Bn −→ B defined by φ(X) = 0 if X ∈ An, else φ(X) = 1
does not satisfy property (7), which defines T-functions. It remains to provide a
T-function which is not Boolean.

Let g be the function from Lemma 1 for A1 := A and define f : Bn −→ B as
follows: for every x2, . . . , xn ∈ B,

f(x1, . . . , xn) =

{
x1, if x1 ∈ A,
a0, if x1 ∈ B \A,

and let h(x1, . . . , xn) denote the right side of (7). Then

h(x1, . . . , xn) =
∨

a1∈A

g(a1, x1)
∨

a2,...an∈A

f(a1, . . . , an)g(a2, x2) . . . g(an, xn) .

Note that g(x1, x1) = 1 if x1 ∈ A, and g(a0, x1) = 1 if x1 ∈ B \A, while g(a, x) = 0 in
the other cases. Therefore, taking also into account Remark 4, we see that if x1 ∈ A
then

h(x1, . . . , xn) =
∨

a2,...,an∈A

f(x1, a2, . . . , an)g(a2, x2) . . . g(an, xn) = x1 ,

3Except the names T-function, improper T-function and the notation TF.
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while if x1 ∈ B \A then

h(x1, . . . , xn) =
∨

a2,...,an∈A

f(a0, a2, . . . , an) = a0 = f(x1, . . . , xn) .

We have thus proved that f(x1, . . . , xn) = h(x1, . . . , xn), that is, f satisfies (7). In
other words, f ∈ TFn(A).

On the other hand, if x1 ∈ B \A then∨
a1,...,an∈{0,1}

f(a1, . . . , an)x
a1
1 . . . xan

n =
∨

a1,...,an∈{0,1}

a1x
a1
1 . . . xan

n

=
∨

a2,...,an∈{0,1}

x1x
a2
2 . . . xan

n = x1 ̸= a0 = f(x1, . . . , xn) ,

therefore f is not a Boolean function. �
Theorem 1 is the single place in this survey in which we have used conditions

B ̸= {0, 1} and A ̸= B; they are essential for this theorem. Indeed, if B = {0, 1} then
BFn = TFn(A) = {0, 1}{0,1}n

. Condition A = B makes sense only if B is finite, in
which case we obtain the following result.

Proposition 5. In a finite Boolean algebra B every function f : Bn −→ B is an
improper T-function.

Proof. It follows from Proposition 3 that f ∈ TFn(B), because for every x1, . . . , xn ∈
B, ∨

a1,...,an∈B

f(a1, . . . , an)δ(a1, x1) . . . δ(an, xn) = f(x1, . . . , xn) .

�

3. TFn(A1 ∩A2) and TFn(A1 ∪A2)

First we prove that TFn(A) is invariant to the introduction of fictitious variables.

Lemma 2. If f ∈ TFn(g) and h : Bn+p −→ B is defined by h(X,Y ) = f(X) for
X ∈ Bn and Y ∈ Bp then h ∈ TF (n+ p)(g).

Proof. We have h(x1, . . . , xn, y1, . . . , yp) =

=
∨

a1,...,an∈A

f(a1, . . . , an)g(a1, x1) . . . g(an, xn)
∨

b1,...,bp∈A

g(b1, y1) . . . g(bp, yp),

which is the expansion (7) for h. �
Theorem 2. If {0, 1} ⊆ A ⊂ A1 ⊆ B, where A1 is a finite set, then TFn(A) ⊆
TFn(A1).

Proof. The function g ∈ G(A,B) from (7) has the extension g1 ∈ G(A1, B) described
in Proposition 1. Since g1(ai, x) is 0 if ai ∈ A1 \ A and is g(ai, x) if ai ∈ A, for all
i = 1, . . . , n, it follows that∨

a1,...,an∈A1

f(a1, . . . , an)g1(a1, x1) . . . g1(an, xn)

=
∨

a1,...,an∈A

f(a1, . . . , an)g(a1, x1) . . . g(an.xn) = f(x1, . . . , xn),

showing that f ∈ TFn(A1). �
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It follows from Theorem 2 that for every TFn(A1) and TFn(A2),

TFn(A1 ∩A2) ⊆ TFn(A1) ∩ TFn(A2) and TFn(A1) ∪ TFn(A2) ⊆ TFn(A1 ∪A2) .

Of course, if A1 ⊆ A2 or A2,⊆ A1) then the above inclusions are fulfilled as
equalities. The next two theorems show that except this trivial case, the inclusions
are strict.

Theorem 3. If A1, A2 are finite sets such that {0, 1} ⊆ A1, A2 ⊆ B, A1 ̸⊆ A2 and
A2 ̸⊆ A1 then TFn(A1 ∩A2) ⊂ TFn(A1) ∩ TFn(A2).

Proof. We must show that TFn(A1) ∩ TFn(A2) \ TFn(A1 ∩A2) ̸= ∅.
Note first that the hypotheses imply A1, A2 ⊂ B.
Take y1 ∈ A1 \A2 and y2 ∈ A2 \A1 and define gj : Aj ×B −→ B (j = 1, 2) like in

Lemma 1, that is,

gj(x, x) = 1 (∀x ∈ Aj), gj(yj , x) = 1 (∀x ∈ B \Aj), else gj(y, x) = 0 (j = 1, 2) .

It follows by Lemma 1 that gj ∈ G(Aj , B) (j = 1, 2).
Define f : Bn −→ B by f(x1, . . . , xn) = 0 if x1, . . . , xn ∈ A1∩A2, else f(x1, . . . , xn) =

1. Define also

hj(x1, . . . , xn) =
∨

a1,...,an∈Aj

f(a1, . . . , an)gj(a1, x1) . . . gj(an, xn) (j = 1, 2) .

We will prove that f ∈ TFn(A1) ∩ TFn(A2) by checking that f = h1 = h2.
If x1, . . . , xn ∈ A1 ∩ A2 then gj(a1, x1) . . . gj(an, xn) = 0 except the case ai =

xi (i = 1, . . . , n), so that hj(x1, . . . , xn) = f(x1, . . . , xn) (j = 1, 2).
If there is some xi ∈ A1 \A2 then g1(xi, xi) = 1 and g2(y2, xi) = 1. Setting z1 = xi

and z2 = y2, we have gj(zj , xi) = 1, gj(ai, xi) = 0 for ai ̸= zj and zj ̸∈ A1 ∩A2 (j =
1, 2). Further, for t ∈ {1, . . . , n} \ {i} set bt = xt if xt ∈ Aj and bt = yj if xt ∈ B \Aj .
It follows that

hj(x1, . . . , xn) =
∨

a1,...,ai−1,ai+1,...,an∈Aj

f(a1, . . . , ai−1, zj , ai+1, . . . , an)
∏
t̸=i

gj(at, xt)

=
∨

a1,...,ai−1,ai+1,...,an∈Aj

∏
t̸=i

gj(at, xt) ≥
∏
t ̸=i

gj(bt, xt) = 1 = f(x1, . . . , xn) .

If there is some xi ∈ A2 \A1, interchange 1 and 2 in the above proof.
If x1, . . . , xn ∈ B \ (A1 ∪ A2) then gj(yj , xi) = 1 (i = 1, . . . , n) (j = 1, 2),

hence gj(ai, xi) = 0 for ai ̸= yj , therefore hj(x1, . . . , xn) = f(yj , . . . , yj) = 1 =
f(x1, . . . , xn).

We have thus proved that f ∈ TFn(A1) ∩ TFn(A2). Yet f ̸∈ TFn(A1 ∩ A2),
otherwise there would exist γ ∈ G(A1 ∩A2, B) such that

f(x1, . . . , xn) =
∨

a1,...,an∈A1∩A2

f(a1, . . . , an)γ(a1, x1) . . . γ(xn, xn) = 0,

a contradiction. �

Theorem 4. If A1, A2 are finite sets such that {0, 1} ⊆ A1, A2 ⊆ B, A1 ̸⊆ A2 and
A2 ̸⊆ A1, then TFn(A1) ∪ TFn(A2) ⊂ TFn(A1 ∪A2).

Proof. We must show that TFn(A1 ∪A2) \ (TFn(A1) ∪ TFn(A2)) ̸= ∅.
Take a ∈ A1 \ A2 and b ∈ A2 \ A1; note that a ̸= b and a, b ̸∈ {0, 1}. Define the

function with fictitious variables f : Bn −→ B by

f(x1, . . . , xn) = a or a′ or 0 according as x1 = a or x1 = b or x1 /∈ {a, b} .
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Let g ∈ G(A1 ∪ A2, B) be the function obtained from Lemma 1 by taking A1 :=
A1 ∪A2, a0 := 0 and disregarding A, that is,

g(x, x) = 1 (∀x ∈ A1 ∪A2), g(0, x) = 1 (∀x ∈ B \ (A1 ∪A2)) else g(y, x) = 0 .

It follows that

f(x1, . . . , xn) = ag(a, x1) ∨ a′g(b, x1) ∨
∨

a1∈(A1∪A2)\{0,1}

0 · g(a1, x1)

=
∨

a1∈A1∪A2

f(a1, . . . , an)g(a1, x1)
∨

a2,...,an∈A1∪A2

g(a2, x2) . . . g(an, xn) ,

which is the expansion (7) for f , thus proving that f ∈ TFn(A1 ∪A2).
Finally, supposing that f ∈ TFn(A1), Remark 5 would imply that

a′ = f(b, x2, . . . , xn) ≤
∨

a1,...,an∈A1

f(a1, . . . , an) = a,

which is possible only for a = 1, a contradiction. Thus f /∈ TFn(A1) and f /∈
TFn(A2) by a similar proof, therefore f /∈ TFn(A1) ∪ TFn(A2) . �

4. The class TF1(A)

As usual, A is a finite set satisfying {0, 1} ⊆ A ⊆ B.

Proposition 6. A function F : B −→ B belongs to TF1(A) if and only if it satisfies
identically

(8)
∏

a∈A f(a) ≤ f(x) ≤
∨

a∈A f(a) ,

or equivalently, if and only if (8) holds for x ∈ B \ {0, 1}.

Proof. The equivalence of the two variants follows from the fact that every function
f : B −→ B satisfies (8) for x ∈ {0, 1}.

The condition is necessary by Remark 5.
Conversely, if condition (8) holds, then we can find a function g ∈ G(A,B) such

that f(x) =
∨

a∈A f(a)g(a, x). Indeed, we must take g(0, 0) = g(1, 1) = 1. Besides,
for an arbitrary but fixed element x ∈ B, set g(a, x) = ya (∀ a ∈ A). Then (ya)a∈A

must be an orthonormal system satisfying the equation
∨

a∈A f(a)ya = f(x). In view
of Theorem 4.8 from [3], a necessary and sufficient condition for the existence of an
orthonormal solution to the above equation is (8). �

Theorems 4.7 and 4.8 from [3] provide also an actual construction of the solution.
In [6] it is also proved that the following strengthening of (8) is necessary and

sufficient in order that the function g ∈ G(A,B) associated with f be unique:

(9)

∏
a∈A f(a) ∨

∨
a,b∈A,a ̸=b f

′(a)f ′(b) ≤ f(x) ≤

≤ (
∨

a∈A f(a))
∏

a,b∈A,a ̸=b(f
′(a) ∨ f ′(b)) .

If B is a finite Boolean algebra then condition (8) is satisfied for A = B, therefore
every f : B −→ B belongs to TF1(B). This is the particular case n := 1 of Proposi-
tion 5.

Open question. For a finite Boolean algebra B, is it possible that a function
f : B −→ B not satisfying (9) belong to TF1(A) for a conveniently chosen set
A ⊂ B?

Paper [5] provides an example in which this is not possible: B = {0, 1, b, b′} and
the function f defined by f(0) = f(1) = 1, f(b) = b, f(b′) = b′.
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5. The class TF1({0, 1})

In this section we work with the set H = {f : B −→ B | h(0) = 0, h(1) = 1}.

Remark 7. It follows from Proposition 6 that H ⊆ TF1({0, 1}).

It follows from Proposition 2 that we obtain a map u : H −→ G({0, 1}, B) by
setting

u(h)(a, x) = ha(x) (a ∈ {0, 1}) .
In other words, u(h) = g ⇐⇒ g(a, x) = ha(x) (a ∈ {0, 1}) and if g ∈ G({0, 1}, B) then
u(h) = g ⇐⇒ g(1, x) = h(x), again by Proposition 2.

Since g(1, 1) = 1 and g(1, 0) = 0, it follows that u is a surjection. If u(h1) =
u(h2) = g then h1(x) = g(1, x) = h2(x). We have thus proved:

Proposition 7. The map u : H −→ G({0, 1}, B) is a bijection and if g ∈ G({0, 1}, B)
then h = u−1(g) ⇐⇒ h(x) = g(1, x).

Corollary 1. If g ∈ G({0, 1}, B) then u−1(g) ∈ TF1(g).

Proof. If u−1(g) = h then h(x) = g(1, x) = h(0)g(0, x) ∨ h(1)g(1, x). �

Proposition 8. For every g1, g2 ∈ G({0, 1}, B) there is a Boolean-algebra isomor-
phism φ : TF1(g1) −→ TF1(g2) such that φ(u−1(g1)) = u−1(g2) and φ(c) = c for
every constant function c.

Proof. For f(x) = f(0)g1(0, x)∨f(1)g1(1, x) set (φf)(x) = f(0)g2(0, x)∨f(1)g2(1, x).
It is easy to check that φ is a bijection, φ(f1 ∨ f2) = φ(f1)∨φ(f2) and φ(f ′) = φ′(f)
by Proposition 2.. If u−1(g1) = h1 then h1(x) = h1(0)g1(0, x) ∨ h1(1)g1(1, x), hence
φ(h1)(x) = h1(0)g2(0, x) ∨ h1(1)g2(1, x) = g2(1, x) = u−1(g2)(x). The last claim is
obvious. �

Corollary 2. For every g ∈ G({0, 1}, B) there is an isomorphism φ : TF1(g) −→
BF1 such that φ(u−1(g)) = i (the identity function) and φ(c) = c for every constant
function c.

Proof. Apply Proposition 8 with g1 := g and g2(a, x) := xa; we have u−1(g2) = i by
Proposition 7. �

The next Proposition generalizes Theorem 2 from [2].

Proposition 9. For every g ∈ G({0, 1}, B), a function f : B −→ B is in TF1(g) if
and only if it can be written in the form

(10) f(x) = f0h(0) ∨ f1h(x) ∨ f2h(x
′) ∨ f3h(1) ,

where h = u−1(g) and (f0, f1, f2, f3) is an orthonormal system in B.
When this is the case, f0 = f ′(0)f ′(1), f1 = f ′(0)f(1), f2 = f(0)f ′(1), f3 =

f(0)f(1) and f(0) = f2 ∨ f3, f(1) = f1 ∨ f3.

Proof. If f satisfies (10) where h = u−1(g) then, since u−1(g) ∈ TF1(g) by Corollary
1, it follows that f ∈ TF1(g) by Remark 6.

To prove the converse we need some preparation. Let g2 ∈ G({0, 1}, B) be defined
by g2(1, x) = x, hence g2(0, x) = x′ (cf. Remark 1). It follows that TF1(g2) = BF1,
so that Proposition 1 implies the existence of an isomorphism φ : TF1(g) −→ BF1
such that φ(u−1(g)) = u−1(g2) and φ preserves the constants. Further, the identity
i on B belongs to H and g2(1, x) = i(x), hence u(i) = g2 by the definition of u.
Therefore φ−1(i) = φ−1(u−1(g2)) = u−1(g).
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Now suppose f ∈ TF1(g) and set φ(f) = ℓ. Since ℓ ∈ BF1, Theorem 2 from
[2] implies the existence of an orthonormal quadruple (f0, f1, f2, f3) ∈ B4 such that
ℓ(x) = f00 ∨ f1x ∨ f2x

′ ∨ f31. This identity in B yields ℓ = f00 ∨ f1i ∨ f2i
′ ∨ f31 in

BF1. By applying φ−1 it follows that f = f00 ∨ f1φ
−1(i) ∨ f2φ

−1(i′) ∨ f31, which is
(10) because φ−1(i) = h.

It follows from (10) that f(0) = f2 ∨ f3 and f(1) = f1 ∨ f3. Finally f ′(0)f ′(1) and
the other three products are easily computed using orthonormality. �

6. The class TFn({0, 1})

Recall that H = {f : B −→ B | h(0) = 0, h(1) = 1}.

Proposition 10. A function f : Bn −→ B belongs to TFn({0, 1}) if and only if it
is of the form

(11) f(x1, . . . , xn) = p(h(x1), . . . , h(xn))

for some p ∈ BFn and some h ∈ H.

Proof. In view of Proposition 2, the expansion (7) of f ∈ TFn({0, 1}) can be written
in the form

f(x1, . . . , xn) =
∨

a1,...,an∈{0,1}

f(a1, . . . , an)h
a1(x1) . . . h

an(xn) ,

which is of the form (11) with p ∈ BFn defined by

(12) p(x1, . . . , xn) =
∨

a1,...,an∈{0,1} f(a1, . . . , an)x
a1
1 . . . xan

n .

Conversely, the expansion (11) can be written in the form

f(x1, . . . , xn) =
∨

a1,...,an∈{0,1}

p(a1, . . . , an)h
a1(x1) . . . h

an(xn) ,

which implies that for every b1, . . . , bn ∈ {0, 1}, f(b1, . . . , bn) = p(b1, . . . , bn), there-
fore, using again Proposition 2, the latter identity becomes (7), thus proving that
f ∈ TFn({0, 1}).

�
The main result is the following.

Proposition 11. A function f : Bn −→ B belongs to TFn{0, 1}) if and only if it is
of the form

(13) f(x1, . . . , xn) = p(k(x1), . . . , k(xn))

for some p ∈ BFn and some k ∈ TF1({0, 1}).

Proof. In view of Proposition 10, every f ∈ TFn({0, 1}) satisfies (13) with p defined
by (12) and k := h, which belongs to TF1({0, 1}) by Remark 7.

Conversely, suppose (13) holds. In view of Proposition 10, k is of the form k(x) =
π(h(x)), where π(x) = π(0)x′ ∨ π(1)x. Therefore k(x) = π(0)h′(x) ∨ π(1)h(x), hence
for a ∈ {0, 1}) we have

ka(x) = πa(0)h′(x) ∨ πa(1)h(x) =
∨

b∈{0.1}

πa(b)hb(x) .

In the following the indices of iterated disjunctions run in {0, 1}. We have

f(x1, . . . , xn) =
∨

a1,...,an

p(a1, . . . , an)k
a1(x1) . . . k

an(xn)
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=
∨

a1,...,an

p(a1, . . . , an)(
∨
b1

πa1(b1)h
b1(x1)) . . . (

∨
bn

πan(bn)h
bn(xn))

=
∨

a1,...,an

p(a1, . . . , an)
∨

b1,...,bn

πa1(b1) . . . π
an(bn)h

b1(x1) . . . h
bn(xn))

=
∨

b1,...,bn

(
∨

a1,...,an

p(a1, . . . , an)π
a1(b1) . . . π

an(bn))h
b1(x1) . . . h

bn(xn)) .

Thus we have found 2n constants cb1...bn such that

f(x1, . . . , xn) =
∨

b1,...,bn

cb1...bnh
b1(x1) . . . h

bn(xn) = q(h(x1), . . . , h(xn)) ,

where q(x1, . . . , xn) =
∨

b1,...,bn
xb1
1 . . . xbn

n , showing that q ∈ BFn. Therefore f ∈
TFn({0, 1}) by Proposition 10. �

We have noticed in Remark 3 that BFn = TFn(ḡ), where ḡ ∈ G(A,B) is defined
by ḡ(1, x) = x, ḡ(0, x) = x′, else ḡ(a, x) = 0. Note that ḡ is the unique extension
to G(A,B) of the function g2 ∈ G({0, 1}, B) used in the proof of Proposition 9 (cf.
Proposition 1).

Now we prove that if ḡ is replaced by g2 or, more generally, by an arbitrary function
from G({0, 1}, B), the equality is recaptured as an isomorphism.

Theorem 5. For any function g ∈ G({0, 1}, B), the Boolean algebras BFn and
TFn(g) are isomorphic.

Proof. We map every function f ∈ BFn to the function p ∈ TFn(g) defined by

p(x1, . . . , xn) =
∨

a1,...,an∈{0,1}

f(a1, . . . , an)g(a1, x1) . . . g(an, xn) .

The map is surjective because every q ∈ TFn(g) is of the form

q(x1, . . . , xn) =
∨

a1,...,an∈{0,1}

ca1...ang(a1, x1) . . . g(an, xn) ,

for some 2n constants ca1...an ∈ B, so that q is the image p of the function f ∈ BFn
defined by

f(x1, . . . , xn) =
∨

a1,...,an∈{0,1}

ca1...anx
a1
1 . . . xan

n .

To prove injectivity, suppose that f1, f2 ∈ BFn have the same image p. By
equating the above representations of p for f := f1 and f := f2 and then taking
x1 := b1, . . . , xn := bn, where b1, . . . , bn are arbitrary in {0, 1}, we get f1(b1, . . . , bn) =
f2(b1, . . . , bn), therefore f1 = f2.

Thus the map is a bijection and it is a homomorphism by Remark 4. �

7. Other results

At first glance the isotony of a function with arguments and values in a Boolean
algebra is a property which has nothing to do with the property of being a Boolean
function or a T-function. Yet in paper [8] Ţăndăreanu remarks that in every Boolean
algebra B the isotone functions f : B −→ B belong to TF1({0, 1}) by Proposition 6
because f(0)f(1) ≤ f(0) ≤ f(x) ≤ f(1) ≤ f(0) ∨ f(1).

A function f : B −→ B is isotone if and only if it satisfies conditions f(0) ≤ f(1)
and f(x) = f(0)h′(x) ∨ f(1)h(x) for some isotone function h ∈ H.
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Indeed, these conditions imply easily that if x ≤ y then f(x)f ′(y) = 0. Conversely,
it is also easy to check that an isotone function f satisfies these conditions with the
isotone function h ∈ H defined by h(0) = 0, h(1) = 1, else h(x) = f(x).

The characterizations of isotone functions yield characterizations of antitone func-
tions, because a function f is antitone if and only if f ′ is isotone.

In [9] the partial derivative of a function f ∈ TFn{0, 1} is defined by the very
formula used for Boolean functions, that is, ∂f/∂xi : B

n−1 −→ B is given by

(14)
(∂f/∂xi)(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn)+

+f(x1, . . . , xi−1, 1, xi+1, . . . , xn) ,

where x+ y = xy′ ∨ x′y, and it is proved that if f ∈ TFn(g) then ∂f/∂xi ∈ TF (n−
1)(g). Besides, f does not depend on the variable xi if and only if ∂f/∂xi = 0
identically, and several computation rules are provided, everything like for Boolean
functions.

The seemingly unpublished paper [10] deals with the following problem. Given
a finite set A such that {0, 1} ⊆ A ⊂ B and a positive integer n, characterize the
subsets F ⊆ BBn

of the form TFn(g) for some g ∈ G(A,B). We present below [10]
decomposed into elementary steps.

To solve the problem, Ţăndăreanu uses as parameter a family (fa) of functions
fa : B −→ B (∀ a ∈ A). With this family one associates the function g : A×B −→ B
defined by g(a, x) = fa(x) and the family of functions hai : B

n −→ B (a ∈ A, i ∈
{1, . . . , n}) defined by hai(x1, . . . , xn) = fa(xi). This notation is fixed in the following.

Lemma 3. (fa)a∈A is orthonormal and satisfies fa(a) = 1 (∀ a ∈ A) if and only if
g ∈ G(A,B) and g(a, a) = 1 (∀ a ∈ A).

Proof. Immediate. �
Lemma 4. If (fa)a∈A is an orthonormal system such that fa(a) = 1 (∀ a ∈ A) then
the following hold:

(i) g ∈ G(A,B) and {fa}a∈A ⊆ TF1(g);

(ii) {hai}a∈A,i∈{1,...,n} ⊆ TFn(g);

(iii) the sublattice of (BBn

,∨.·) generated by the functions hai (a ∈ A, i ∈
{1, . . . , n}) and the constant functions of n variables is TFn(g).

Proof. (i) g ∈ G(A,B) by Lemma 3, and fa(x) = g(a, x) =
∨

b∈A δ(a, b)g(b, x) .
(ii) By (i) and Lemma 2.
(iii) Let F be the sublattice.
If f ∈ F then f has an expansion of the form f =

∨
ui1...itha1i1 . . . hatit , where

ui1...it are constant functions. From this, (ii) and Remark 6 it follows that f ∈
TFn(g). Therefore F ⊆ TFn(g).

If f ∈ TFn(g) then using the fact that g(a, xi) = fa(xi) = hai(x1, . . . , xn), we get

f(x1, . . . , xn) =
∨

a1,...,an∈A

f(a1, . . . , an)ha1(x1, . . . , xn) . . . han(x1, . . . , xn) ,

hence f ∈ F . Therefore TFn(g) ⊆ F . �

Theorem 6. If A is a finite set such that {0, 1} ⊆ A ⊂ B and F is a subset of BBn

,
then the following conditions are equivalent:

(α) there is g ∈ G(A,B) such that g(a, a) = 1 (∀ a ∈ A) and F = TFn(g);
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(β) there is an orthonormal system {fa}a∈A ⊂ BB satisfying fa(a) = 1 (∀ a ∈ A)
such that F is the sublattice of (BBn

,∨, ·) generated by the functions hai (a,∈ A, i ∈
{1, . . . , b}) and the constant functions of n variables.

Proof. (α) =⇒ (β) : It follows from Lemma 3 that the hypotheses of Lemma 4 are
satisfied. According to Lemma 4(iii), the subalgebra mentioned in (β) is TFn(g),
therefore F = TFn(g).

(β) =⇒ (α) : The function g associated with (fa)a∈A belongs to G(A,B) by
Lemma 3 and the sublattice mentioned in (β) is TFn(g) by Lemma 4(iii), therefore
F = TFn(g). �

Conclusions. The Ţăndăreanu functions are a proper generalization of Boolean
functions. There are two kinds of T-functions, TFn(g) and TFn(A), the latter being
set-theoretical unions of the former. The sets TFn(g) are essentially Boolean algebras,
regarded from another points of view. The algebras TFn(A) are more general than
Boolean algebras. It is our conviction that the theory of Ţăndăreanu functions offers
numerous prospects of continuation, which should be exploited.

The most natural problem would be the extension of the wide theory of Boolean
functions and equations (cf. [3]) to Ţăndăreanu functions. It is likely that this would
work well for TFn(g) algebras, whereas the fact that the functions of a TFn(A)
algebra belong to various TFn(g)’s seems to raise serious difficulties.

Like Boolean functions, Ţăndăreanu functions are defined over Boolean algebras.
Another line of research might consist in working with functions defined over a more
general algebraic structure. Post algebras might be an appropriate framework for this
kind of generalization, because they share many features of Boolean algebras; cf. my
monograph Lattice Functions and Equations, Springer Verlag, London 2001.
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[5] N. Ţăndăreanu, On generalized Boolean functions. II, Discrete Math. 40 (1982), 277–284.
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