The Ţăndăreanu theory of generalized Boolean functions

Sergiu Rudeanu

Abstract

This survey paper is devoted to a class of functions with arguments and values in an arbitrary Boolean algebra, introduced and studied by Nicolae Tुăndăreanu. It includes strictly the class of Boolean functions and it is a proper subclass of the class of all the functions that can be defined over the Boolean algebra.

2010 Mathematics Subject Classification. 06E30. Key words and phrases. Boolean function, Ţăndăreanu function.

In memory of Nicolae Ţăndăreanu (1947-2013)

Introduction

Nowadays the term "Boolean function" has two meanings. One of them is a function with arguments and values in the Boolean algebra $\{0,1\}$; these functions, more properly called truth functions or switching functions, are largely used in numerous applications. The other meaning is much more general: it designates the algebraic functions over an arbitrary Boolean algebra, that is, those functions with arguments and values in an arbitrary Boolean algebra $\left(B, \vee, \cdot{ }^{\prime}, 0,1\right)$ that are obtained from constants and variables by superpositions of the basic operations $\vee, \cdot,{ }^{\prime}$. The works reported in this survey paper refer to the general meaning.

It is well known that Boolean functions are characterized by the fact that they can be represented in the canonical disjunctive form
(CDF) $\quad f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} f\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$,
where V designates iterated disjunction \vee and the notation x^{a} with $a \in\{0,1\}$ is defined by $x^{1}=x, x^{0}=x^{\prime}$. It can be said that the properties of Boolean functions follow from (CDF).

Ţăndăreanu noted that (CDF) is obtained by using the following properties:

$$
1^{1}=1,0^{0}=0^{\prime}=1, x \vee x^{\prime}=1, x x^{\prime}=0 .
$$

This has led him to the idea of defining a class of functions resembling Boolean functions, with the difference that the functions x^{0} and x^{1} are replaced by a family of functions $g(a, x)$, where a runs in $\{0,1\}$ or in a bigger set A, such that

$$
g(0,0)=g(1,1)=1, \bigvee_{a \in A} g(a, x)=1, g(a, x) g(b, x)=0 \text { if } a \neq b
$$

Between 1981-1985, Nicolae Ţăndăreanu elaborated his theory of generalized Boolean functions, which is the subject-matter of the present survey paper. Our presentation differs from the original works in two major respects. First, we have replaced the term "generalized Boolean function" by "Ţăndăreanu function", yielding a corresponding slight change of notation. Besides, with the exception of Theorem 1, we have dropped

Received August 1, 2013.
the condition $B \neq\{0,1\}$, which was not only unnecessary, but prevented Ţăndăreanu functions from being a generalization of Boolean functions, and we have replaced the hypoyheses $A \subset B$ by $A \subseteq B$. Except Theorem 1, we have succeeded in recapturing all of the original results in this slightly modified form.

The first two Sections of this paper, 1 The functions $\mathcal{G}(A, B), 2$ The Ţăndăreanu functions, present the fundamentals of the theory, introduced in [4]. Sections 3 $\operatorname{TFn}\left(A_{1} \cap A_{2}\right)$ and $\operatorname{TFn}\left(A_{1} \cup A_{2}\right), 4 \operatorname{TF1}(A), 5 \operatorname{TF1}(\{0,1\}), 6 \operatorname{TFn}(\{0,1\})$ are devoted to the main classes of Ţăndăreanu functions. Papers [8], [9] and the seemingly unpublished paper [10] are presented in Section 7 Other results. Finally we offer a few Conclusions.

In the present paper $\left(B, \vee, \cdot,^{\prime}, 0,1\right)$ is an arbitrary Boolean algebra. For every n, the functions $f: B^{n} \longrightarrow B$ form a Boolean algebra $\left(B^{B^{n}}, \vee, \cdot,{ }^{\prime}, 0,1\right)$, where the operations are defined pointwise: $(f \vee g)(X)=f(X) \vee g(X),(f g)(X)=f(X) g(X), f^{\prime}(X)=$ $(f(X))^{\prime}, 0(X)=0,1(X)=1$. Let BFn denote the Boolean algebra of all Boolean functions $f: B^{n} \longrightarrow B$, which is a Boolean subalgebra of $B^{B^{n}}$.

1. The functions $\mathcal{G}(A, B)$

The starting point is the following definition [4].
Definition 1. Let A be a finite set satisfying $\{0,1\} \subseteq A \subseteq B .{ }^{1}$ We denote by $\mathcal{G}(A, B)$ the set of those functions $g: A \times B \longrightarrow B$ which satisfy the following conditions:

$$
\begin{gather*}
g(0,0)=g(1,1)=1 \tag{1}\\
\bigvee_{a \in A} g(a, x)=1 \quad(\forall x \in B) \tag{2}\\
g(a, x) g(b, x)=0 \quad(\forall a, b \in A, a \neq b) \quad(\forall x \in B) \tag{3}
\end{gather*}
$$

It is easy to see that conditions (2), (3) are equivalent to

$$
\begin{equation*}
g(a, x)=\prod_{b \in A \backslash\{a\}} g^{\prime}(b, x)(\forall a \in A) \quad(\forall x \in B) \tag{4}
\end{equation*}
$$

Here is an example proving that $\mathcal{G}(A, B) \neq \varnothing$.
Example 1. Define $g: A \times B \longrightarrow B$ by $g(a, x)=x^{a}$ for $a \in\{0,1\}$ and $x \in B$, else $g(a, x)=0$. Then $g \in \mathcal{G}(A, B)$. Indeed, we have already noted that $g(0,0)=0^{0}=$ $1, g(1,1)=1^{1}=1$, then $\bigvee_{a \in A} g(a, x)=g(0, x) \vee g(1, x)=x \vee x^{\prime}=1$ and (3) is satisfied for $a \notin\{0,1\}$ or $b \notin\{0,1\}$, while $g(0, x) g(1, x)=x^{\prime} x=0$.

The following result will be used in the sequel.
Lemma 1. If $\{0,1\} \subseteq A \subset A_{1} \subseteq B$, where A_{1} is a finite set, then $\mathcal{G}\left(A_{1}, B\right) \backslash$ $\mathcal{G}(A, B) \neq \varnothing$.
Proof. Take $a_{0} \in A_{1}$ and define $g: A_{1} \times B \longrightarrow B$ by

$$
g(a, a)=1\left(\forall a \in A_{1}\right), g\left(a_{0}, x\right)=1\left(\forall x \in B \backslash A_{1}\right), \text { else } g(a, x)=0
$$

The first two prescriptions imply $g(0,0)=g(1,1)=1$. Besides, $\bigvee_{a \in A_{1}} g(a, x) \geq$ $g\left(a_{0}, x\right)=1$, no matter whether $x \in A_{1}$ or $x \in B \backslash A_{1}$. If $a, b \in A_{1}$ and $a \neq b$, take $x \in B$. If $x \in A_{1}$, since we cannot have both $x=a$ and $x=b$, it follows that $g(a, x) g(b, x)=0$. If $x \in B \backslash A_{1}$, since we cannot have both $a=a_{0}$ and $b=a_{0}$, it follows that $g(a, x) g(b, x)=0$ again. We have thus proved that $g \in \mathcal{G}\left(A_{1}, B\right)$. On the other hand, if $a_{0} \notin A$ then $\bigvee_{a \in A} g\left(a, a_{0}\right)=0$, therefore $g \notin \mathcal{G}(A, B)$.

[^0]The meaning of the next Proposition is that if $A \subset A_{1}$ then $\mathcal{G}(A, B)$ can be embedded into $\mathcal{G}\left(A_{1}, B\right)$ by sending each $g \in \mathcal{G}(A, B)$ to its unique extension to $\mathcal{G}\left(A_{1}, B\right)$.

Proposition 1. If $\{0,1\} \subseteq A \subset A_{1} \subseteq B$, where A_{1} is a finite set, then every function $g \in \mathcal{G}(A, B)$ has a unique extension to a function $g_{1} \in \mathcal{G}\left(A_{1}, B\right)$.
Proof. Given $g \in \mathcal{G}(A, B)$, we define $g_{1}: A_{1} \times B \longrightarrow B$ by $g_{1}(a, x)=g(a, x)$ if $a \in A$ and $g_{1}(a, x)=0$ if $a \in A_{1} \backslash A$. It is easy to see that $g \in \mathcal{G}\left(A_{1}, B\right)$. For uniqueness we prove that if $h \in \mathcal{G}\left(A_{1}, B\right)$ is an extension of g, then $h(a, x)=0$ for all $a \in A_{1} \backslash A$ and all $x \in B$. Indeed, for every $a \in A_{1} \backslash A$ we have $A \subseteq A_{1} \backslash\{a\}$, hence for all $x \in B$, using (4) and (2) we get

$$
h(a, x)=\prod_{b \in A_{1} \backslash\{a\}} h^{\prime}(b, x) \leq \prod_{b \in A} h^{\prime}(b, x)=\prod_{b \in A} g^{\prime}(b, x)=0 .
$$

An important specialization of $\mathcal{G}(A, B)$ is the case when $A=\{0,1\}$.
Remark 1. $\mathcal{G}(\{0,1\}, B)$ consists of those functions $g:\{0,1\} \times B \longrightarrow B$ that satisfy (1) and
(5)

$$
g(0, x)=g^{\prime}(1, x) \quad(\forall x \in B)
$$

because (5) is obtained from (4) by taking $A=\{0,1\}$.
An alternative description of $\mathcal{G}(\{0,1\})$ is a parametric representation.
Proposition 2. A map $g:\{0,1\} \times B \longrightarrow B$ belongs to $\mathcal{G}(\{0,1\}, B)$ if and only if it is of the form
(6)

$$
g(1, x)=h(x), \quad g(0, x)=h^{\prime}(x) \quad(\forall x \in B),
$$

where $h: B \longrightarrow B$ is a function which satisfies $h(a)=a(\forall a \in\{0,1\})$.
Proof. The representation (6) implies (1) and (5). Conversely, if $g \in \mathcal{G}(\{0,1\}, B)$ then it follows from (1) and (5) that the function h defined by $h(x)=g(1, x)$ for all $x \in B$ satisfies $h(1)=1, g(0, x)=g^{\prime}(1, x)=h^{\prime}(x)$ and $h(0)=g(1,0)=g^{\prime}(0,0)=0$.

An even more particular case yields a singleton.
Proposition 3. ${ }^{2}$ For every finite Boolean algebra $B, \mathcal{G}(B, B)$ contains the Kronecker function $\delta: B \times B \longrightarrow B$, where $\delta(x, x)=1$ and $\delta(x, y)=0$ if $x \neq y$.
Proof. Immediate from the fact that the matrix $\{\delta(x, y)\}_{x, y \in B}$ is the unit matrix of order $\operatorname{card} B$.
Proposition 4. $\mathcal{G}(\{0,1\},\{0,1\})=\{\delta\}$, where $\delta:\{0,1\}^{2} \longrightarrow\{0,1\}$ is the Kroneker delta.
Proof. Immediate from Proposition 3 or from Remark 1.
Exercise 1. There are 4 functions in $\mathcal{G}\left(\{0,1\}^{2},\{0,1\}^{2}\right)$.
Remark 2. The restriction to $\{0,1\}^{2}$ of every $g \in \mathcal{G}(A, B)$ is the Kronecker $\delta \in$ $\mathcal{G}(\{0,1\},\{0,1\})$ because of (1) and (5), which imply $g(0,1)=g^{\prime}(1,1)=0$ and $1=$ $g(0,0)=g^{\prime}(1,0)$.

Liu [1] has counted the cardinality of the set $\mathcal{G}(B)=\bigcup_{\{0,1\} \subseteq A \subset B} \mathcal{G}(A, B)$ for a finite Boolean algebra B.

[^1]
2. Ţăndăreanu functions

Definition 2. $[4]^{3}$ For every $g \in \mathcal{G}(A, B)$ and every natural number n, let $\operatorname{TFn}(g)$ denote the set of those functions $f: B^{n} \longrightarrow B$ which satisfy the identity
(7) $\quad f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in A} f\left(a_{1}, \ldots, a_{n}\right) g\left(a_{1}, x_{1}\right) \ldots g\left(a_{n}, x_{n}\right)$.

The functions belonging to $T F n(A)=\bigcup_{g \in \mathcal{G}(A, B)} T F n(g)$ will be called Tुăndăreanu functions or T-functions for short. In particular if B is finite and $A=B$ (case excluded by Tुăndăreanu), we will refer to the functions $f \in T F n(B)$ as improper T-functions.
Remark 3. Every Boolean function satisfies (7) with the function g from Example 1 , therefore $B F n \subseteq T F n(A) \subseteq B^{B^{n}}$ for every A and every n.
Remark 4. In view of orthonormality, the computations with $g\left(a_{1}, x_{1}\right) \ldots g\left(a_{n}, x_{n}\right)$ obey the same rules as computations with the minterms $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$, where $a_{1}, \ldots, a_{n} \in$ $\{0,1\}$; see e.g. [3], Theorem 1.5.
Remark 5. It follows from Remark 4 that every $f \in T F n(A)$ satisfies

$$
\prod_{a_{1}, \ldots, a_{n} \in A} f\left(a_{1}, \ldots, a_{n}\right) \leq f\left(x_{1}, \ldots, x_{n}\right) \leq \bigvee_{a_{1}, \ldots, a_{n} \in A} f\left(a_{1}, \ldots, a_{n}\right)
$$

because

$$
\prod_{a_{1}, \ldots, a_{n}} f\left(a_{1}, \ldots, a_{n}\right)=\bigvee_{b_{1}, \ldots, b_{n}}\left(\prod_{a_{1}, \ldots, a_{n}} f\left(a_{1}, \ldots, a_{n}\right)\right) g\left(b_{1}, x_{1}\right) \ldots g\left(b_{n}, x_{n}\right) .
$$

Remark 6. It also follows from Remark 4 that the set $T F n(A)$ and each set $T F n(g)$, endowed with the pointwise defined operations (see introduction to this paper) are Boolean algebras which contain all constant functions. The proof is similar to the proof that $B F n$ is a Boolean algebra (see e.g. [3], beginning of $\S 1.4$ and Theorem 1.17). The inclusions in Remark 3 become "is a subalgebra of".

In most cases the inclusions from Remark 3 are in fact strict inclusions.
Theorem 1. If $B \neq\{0,1\}$ and A is a finite set satisfying $\{0,1\} \subseteq A \subset B$ then $B F n \subset T F n(A) \subset B^{B^{n}}$ for every n.
Proof. The function $\varphi: B^{n} \longrightarrow B$ defined by $\varphi(X)=0$ if $X \in A^{n}$, else $\varphi(X)=1$ does not satisfy property (7), which defines T-functions. It remains to provide a T-function which is not Boolean.

Let g be the function from Lemma 1 for $A_{1}:=A$ and define $f: B^{n} \longrightarrow B$ as follows: for every $x_{2}, \ldots, x_{n} \in B$,

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}x_{1}, & \text { if } x_{1} \in A \\ a_{0}, & \text { if } x_{1} \in B \backslash A\end{cases}
$$

and let $h\left(x_{1}, \ldots, x_{n}\right)$ denote the right side of (7). Then

$$
h\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1} \in A} g\left(a_{1}, x_{1}\right) \bigvee_{a_{2}, \ldots a_{n} \in A} f\left(a_{1}, \ldots, a_{n}\right) g\left(a_{2}, x_{2}\right) \ldots g\left(a_{n}, x_{n}\right) .
$$

Note that $g\left(x_{1}, x_{1}\right)=1$ if $x_{1} \in A$, and $g\left(a_{0}, x_{1}\right)=1$ if $x_{1} \in B \backslash A$, while $g(a, x)=0$ in the other cases. Therefore, taking also into account Remark 4, we see that if $x_{1} \in A$ then

$$
h\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{2}, \ldots, a_{n} \in A} f\left(x_{1}, a_{2}, \ldots, a_{n}\right) g\left(a_{2}, x_{2}\right) \ldots g\left(a_{n}, x_{n}\right)=x_{1}
$$

[^2]while if $x_{1} \in B \backslash A$ then
$$
h\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{2}, \ldots, a_{n} \in A} f\left(a_{0}, a_{2}, \ldots, a_{n}\right)=a_{0}=f\left(x_{1}, \ldots, x_{n}\right)
$$

We have thus proved that $f\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{n}\right)$, that is, f satisfies (7). In other words, $f \in \operatorname{TFn}(A)$.

On the other hand, if $x_{1} \in B \backslash A$ then

$$
\begin{aligned}
& \bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} f\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} a_{1} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} \\
& =\bigvee_{a_{2}, \ldots, a_{n} \in\{0,1\}} x_{1} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}=x_{1} \neq a_{0}=f\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

therefore f is not a Boolean function.
Theorem 1 is the single place in this survey in which we have used conditions $B \neq\{0,1\}$ and $A \neq B$; they are essential for this theorem. Indeed, if $B=\{0,1\}$ then $B F n=\operatorname{TFn}(A)=\{0,1\}^{\{0,1\}^{n}}$. Condition $A=B$ makes sense only if B is finite, in which case we obtain the following result.

Proposition 5. In a finite Boolean algebra B every function $f: B^{n} \longrightarrow B$ is an improper T-function.
Proof. It follows from Proposition 3 that $f \in \operatorname{TFn}(B)$, because for every $x_{1}, \ldots, x_{n} \in$ B,

$$
\bigvee_{a_{1}, \ldots, a_{n} \in B} f\left(a_{1}, \ldots, a_{n}\right) \delta\left(a_{1}, x_{1}\right) \ldots \delta\left(a_{n}, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

3. $\operatorname{TFn}\left(A_{1} \cap A_{2}\right)$ and $\operatorname{TFn}\left(A_{1} \cup A_{2}\right)$

First we prove that $\operatorname{TFn}(A)$ is invariant to the introduction of fictitious variables.
Lemma 2. If $f \in T F n(g)$ and $h: B^{n+p} \longrightarrow B$ is defined by $h(X, Y)=f(X)$ for $X \in B^{n}$ and $Y \in B^{p}$ then $h \in T F(n+p)(g)$.
Proof. We have $h\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{p}\right)=$

$$
=\bigvee_{a_{1}, \ldots, a_{n} \in A} f\left(a_{1}, \ldots, a_{n}\right) g\left(a_{1}, x_{1}\right) \ldots g\left(a_{n}, x_{n}\right) \bigvee_{b_{1}, \ldots, b_{p} \in A} g\left(b_{1}, y_{1}\right) \ldots g\left(b_{p}, y_{p}\right)
$$

which is the expansion (7) for h.
Theorem 2. If $\{0,1\} \subseteq A \subset A_{1} \subseteq B$, where A_{1} is a finite set, then $\operatorname{TFn}(A) \subseteq$ $\operatorname{TFn}\left(A_{1}\right)$.

Proof. The function $g \in \mathcal{G}(A, B)$ from (7) has the extension $g_{1} \in \mathcal{G}\left(A_{1}, B\right)$ described in Proposition 1. Since $g_{1}\left(a_{i}, x\right)$ is 0 if $a_{i} \in A_{1} \backslash A$ and is $g\left(a_{i}, x\right)$ if $a_{i} \in A$, for all $i=1, \ldots, n$, it follows that

$$
\begin{gathered}
\bigvee_{a_{1}, \ldots, a_{n} \in A_{1}} f\left(a_{1}, \ldots, a_{n}\right) g_{1}\left(a_{1}, x_{1}\right) \ldots g_{1}\left(a_{n}, x_{n}\right) \\
=\bigvee_{a_{1}, \ldots, a_{n} \in A} f\left(a_{1}, \ldots, a_{n}\right) g\left(a_{1}, x_{1}\right) \ldots g\left(a_{n} . x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right),
\end{gathered}
$$

showing that $f \in \operatorname{TFn}\left(A_{1}\right)$.

It follows from Theorem 2 that for every $\operatorname{TFn}\left(A_{1}\right)$ and $\operatorname{TFn}\left(A_{2}\right)$,
$T F n\left(A_{1} \cap A_{2}\right) \subseteq T F n\left(A_{1}\right) \cap T F n\left(A_{2}\right)$ and $\operatorname{TFn}\left(A_{1}\right) \cup T F n\left(A_{2}\right) \subseteq T F n\left(A_{1} \cup A_{2}\right)$.
Of course, if $A_{1} \subseteq A_{2}$ or $A_{2} \subseteq A_{1}$) then the above inclusions are fulfilled as equalities. The next two theorems show that except this trivial case, the inclusions are strict.

Theorem 3. If A_{1}, A_{2} are finite sets such that $\{0,1\} \subseteq A_{1}, A_{2} \subseteq B, A_{1} \nsubseteq A_{2}$ and $A_{2} \nsubseteq A_{1}$ then $\operatorname{TFn}\left(A_{1} \cap A_{2}\right) \subset \operatorname{TFn}\left(A_{1}\right) \cap \operatorname{TFn}\left(A_{2}\right)$.

Proof. We must show that $\operatorname{TFn}\left(A_{1}\right) \cap \operatorname{TFn}\left(A_{2}\right) \backslash \operatorname{TFn}\left(A_{1} \cap A_{2}\right) \neq \varnothing$.
Note first that the hypotheses imply $A_{1}, A_{2} \subset B$.
Take $y_{1} \in A_{1} \backslash A_{2}$ and $y_{2} \in A_{2} \backslash A_{1}$ and define $g_{j}: A_{j} \times B \longrightarrow B(j=1,2)$ like in Lemma 1, that is,

$$
g_{j}(x, x)=1\left(\forall x \in A_{j}\right), g_{j}\left(y_{j}, x\right)=1\left(\forall x \in B \backslash A_{j}\right) \text {, else } g_{j}(y, x)=0(j=1,2) .
$$

It follows by Lemma 1 that $g_{j} \in \mathcal{G}\left(A_{j}, B\right)(j=1,2)$.
Define $f: B^{n} \longrightarrow B$ by $f\left(x_{1}, \ldots, x_{n}\right)=0$ if $x_{1}, \ldots, x_{n} \in A_{1} \cap A_{2}$, else $f\left(x_{1}, \ldots, x_{n}\right)=$

1. Define also

$$
h_{j}\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in A_{j}} f\left(a_{1}, \ldots, a_{n}\right) g_{j}\left(a_{1}, x_{1}\right) \ldots g_{j}\left(a_{n}, x_{n}\right)(j=1,2) .
$$

We will prove that $f \in T F n\left(A_{1}\right) \cap T F n\left(A_{2}\right)$ by checking that $f=h_{1}=h_{2}$.
If $x_{1}, \ldots, x_{n} \in A_{1} \cap A_{2}$ then $g_{j}\left(a_{1}, x_{1}\right) \ldots g_{j}\left(a_{n}, x_{n}\right)=0$ except the case $a_{i}=$ $x_{i}(i=1, \ldots, n)$, so that $h_{j}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)(j=1,2)$.

If there is some $x_{i} \in A_{1} \backslash A_{2}$ then $g_{1}\left(x_{i}, x_{i}\right)=1$ and $g_{2}\left(y_{2}, x_{i}\right)=1$. Setting $z_{1}=x_{i}$ and $z_{2}=y_{2}$, we have $g_{j}\left(z_{j}, x_{i}\right)=1, g_{j}\left(a_{i}, x_{i}\right)=0$ for $a_{i} \neq z_{j}$ and $z_{j} \notin A_{1} \cap A_{2} \quad(j=$ $1,2)$. Further, for $t \in\{1, \ldots, n\} \backslash\{i\}$ set $b_{t}=x_{t}$ if $x_{t} \in A_{j}$ and $b_{t}=y_{j}$ if $x_{t} \in B \backslash A_{j}$. It follows that

$$
\begin{gathered}
h_{j}\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n} \in A_{j}} f\left(a_{1}, \ldots, a_{i-1}, z_{j}, a_{i+1}, \ldots, a_{n}\right) \prod_{t \neq i} g_{j}\left(a_{t}, x_{t}\right) \\
\quad \bigvee_{a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n} \in A_{j}} \prod_{t \neq i} g_{j}\left(a_{t}, x_{t}\right) \geq \prod_{t \neq i} g_{j}\left(b_{t}, x_{t}\right)=1=f\left(x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

If there is some $x_{i} \in A_{2} \backslash A_{1}$, interchange 1 and 2 in the above proof.
If $x_{1}, \ldots, x_{n} \in B \backslash\left(A_{1} \cup A_{2}\right)$ then $g_{j}\left(y_{j}, x_{i}\right)=1(i=1, \ldots, n)(j=1,2)$, hence $g_{j}\left(a_{i}, x_{i}\right)=0$ for $a_{i} \neq y_{j}$, therefore $h_{j}\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{j}, \ldots, y_{j}\right)=1=$ $f\left(x_{1}, \ldots, x_{n}\right)$.

We have thus proved that $f \in \operatorname{TFn}\left(A_{1}\right) \cap \operatorname{TFn}\left(A_{2}\right)$. Yet $f \notin \operatorname{TFn}\left(A_{1} \cap A_{2}\right)$, otherwise there would exist $\gamma \in \mathcal{G}\left(A_{1} \cap A_{2}, B\right)$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in A_{1} \cap A_{2}} f\left(a_{1}, \ldots, a_{n}\right) \gamma\left(a_{1}, x_{1}\right) \ldots \gamma\left(x_{n}, x_{n}\right)=0
$$

a contradiction.
Theorem 4. If A_{1}, A_{2} are finite sets such that $\{0,1\} \subseteq A_{1}, A_{2} \subseteq B, A_{1} \nsubseteq A_{2}$ and $A_{2} \nsubseteq A_{1}$, then $\operatorname{TFn}\left(A_{1}\right) \cup T F n\left(A_{2}\right) \subset \operatorname{TFn}\left(A_{1} \cup A_{2}\right)$.
Proof. We must show that $\operatorname{TFn}\left(A_{1} \cup A_{2}\right) \backslash\left(\operatorname{TFn}\left(A_{1}\right) \cup T F n\left(A_{2}\right)\right) \neq \varnothing$.
Take $a \in A_{1} \backslash A_{2}$ and $b \in A_{2} \backslash A_{1}$; note that $a \neq b$ and $a, b \notin\{0,1\}$. Define the function with fictitious variables $f: B^{n} \longrightarrow B$ by

$$
f\left(x_{1}, \ldots, x_{n}\right)=a \text { or } a^{\prime} \text { or } 0 \text { according as } x_{1}=a \text { or } x_{1}=b \text { or } x_{1} \notin\{a, b\}
$$

Let $g \in \mathcal{G}\left(A_{1} \cup A_{2}, B\right)$ be the function obtained from Lemma 1 by taking $A_{1}:=$ $A_{1} \cup A_{2}, a_{0}:=0$ and disregarding A, that is,

$$
g(x, x)=1\left(\forall x \in A_{1} \cup A_{2}\right), g(0, x)=1\left(\forall x \in B \backslash\left(A_{1} \cup A_{2}\right)\right) \text { else } g(y, x)=0
$$

It follows that

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =a g\left(a, x_{1}\right) \vee a^{\prime} g\left(b, x_{1}\right) \vee \bigvee_{a_{1} \in\left(A_{1} \cup A_{2}\right) \backslash\{0,1\}} 0 \cdot g\left(a_{1}, x_{1}\right) \\
& =\bigvee_{a_{1} \in A_{1} \cup A_{2}} f\left(a_{1}, \ldots, a_{n}\right) g\left(a_{1}, x_{1}\right) \bigvee_{a_{2}, \ldots, a_{n} \in A_{1} \cup A_{2}} g\left(a_{2}, x_{2}\right) \ldots g\left(a_{n}, x_{n}\right)
\end{aligned}
$$

which is the expansion (7) for f, thus proving that $f \in \operatorname{TFn}\left(A_{1} \cup A_{2}\right)$.
Finally, supposing that $f \in \operatorname{TFn}\left(A_{1}\right)$, Remark 5 would imply that

$$
a^{\prime}=f\left(b, x_{2}, \ldots, x_{n}\right) \leq \bigvee_{a_{1}, \ldots, a_{n} \in A_{1}} f\left(a_{1}, \ldots, a_{n}\right)=a
$$

which is possible only for $a=1$, a contradiction. Thus $f \notin T F n\left(A_{1}\right)$ and $f \notin$ $T F n\left(A_{2}\right)$ by a similar proof, therefore $f \notin T F n\left(A_{1}\right) \cup T F n\left(A_{2}\right)$.

4. The class TF1(A)

As usual, A is a finite set satisfying $\{0,1\} \subseteq A \subseteq B$.
Proposition 6. A function $F: B \longrightarrow B$ belongs to $T F 1(A)$ if and only if it satisfies identically
$\prod_{a \in A} f(a) \leq f(x) \leq \bigvee_{a \in A} f(a)$,
or equivalently, if and only if (8) holds for $x \in B \backslash\{0,1\}$.
Proof. The equivalence of the two variants follows from the fact that every function $f: B \longrightarrow B$ satisfies (8) for $x \in\{0,1\}$.

The condition is necessary by Remark 5 .
Conversely, if condition (8) holds, then we can find a function $g \in \mathcal{G}(A, B)$ such that $f(x)=\bigvee_{a \in A} f(a) g(a, x)$. Indeed, we must take $g(0,0)=g(1,1)=1$. Besides, for an arbitrary but fixed element $x \in B$, set $g(a, x)=y_{a}(\forall a \in A)$. Then $\left(y_{a}\right)_{a \in A}$ must be an orthonormal system satisfying the equation $\bigvee_{a \in A} f(a) y_{a}=f(x)$. In view of Theorem 4.8 from [3], a necessary and sufficient condition for the existence of an orthonormal solution to the above equation is (8).

Theorems 4.7 and 4.8 from [3] provide also an actual construction of the solution.
In [6] it is also proved that the following strengthening of (8) is necessary and sufficient in order that the function $g \in \mathcal{G}(A, B)$ associated with f be unique:

$$
\begin{align*}
& \prod_{a \in A} f(a) \vee \bigvee_{a, b \in A, a \neq b} f^{\prime}(a) f^{\prime}(b) \leq f(x) \leq \\
& \quad \leq\left(\bigvee_{a \in A} f(a)\right) \prod_{a, b \in A, a \neq b}\left(f^{\prime}(a) \vee f^{\prime}(b)\right) \tag{9}
\end{align*}
$$

If B is a finite Boolean algebra then condition (8) is satisfied for $A=B$, therefore every $f: B \longrightarrow B$ belongs to $T F 1(B)$. This is the particular case $n:=1$ of Proposition 5 .
Open question. For a finite Boolean algebra B, is it possible that a function $f: B \longrightarrow B$ not satisfying (9) belong to $T F 1(A)$ for a conveniently chosen set $A \subset B$?

Paper [5] provides an example in which this is not possible: $B=\left\{0,1, b, b^{\prime}\right\}$ and the function f defined by $f(0)=f(1)=1, f(b)=b, f\left(b^{\prime}\right)=b^{\prime}$.

5. The class $T F 1(\{0,1\})$

In this section we work with the set $H=\{f: B \longrightarrow B \mid h(0)=0, h(1)=1\}$.
Remark 7. It follows from Proposition 6 that $H \subseteq T F 1(\{0,1\})$.
It follows from Proposition 2 that we obtain a map $u: H \longrightarrow \mathcal{G}(\{0,1\}, B)$ by setting

$$
u(h)(a, x)=h^{a}(x) \quad(a \in\{0,1\})
$$

In other words, $u(h)=g \Longleftrightarrow g(a, x)=h^{a}(x)(a \in\{0,1\})$ and if $g \in \mathcal{G}(\{0,1\}, B)$ then $u(h)=g \Longleftrightarrow g(1, x)=h(x)$, again by Proposition 2 .

Since $g(1,1)=1$ and $g(1,0)=0$, it follows that u is a surjection. If $u\left(h_{1}\right)=$ $u\left(h_{2}\right)=g$ then $h_{1}(x)=g(1, x)=h_{2}(x)$. We have thus proved:
Proposition 7. The map $u: H \longrightarrow \mathcal{G}(\{0,1\}, B)$ is a bijection and if $g \in \mathcal{G}(\{0,1\}, B)$ then $h=u^{-1}(g) \Longleftrightarrow h(x)=g(1, x)$.

Corollary 1. If $g \in \mathcal{G}(\{0,1\}, B)$ then $u^{-1}(g) \in T F 1(g)$.
Proof. If $u^{-1}(g)=h$ then $h(x)=g(1, x)=h(0) g(0, x) \vee h(1) g(1, x)$.
Proposition 8. For every $g_{1}, g_{2} \in \mathcal{G}(\{0,1\}, B)$ there is a Boolean-algebra isomorphism $\varphi: T F 1\left(g_{1}\right) \longrightarrow T F 1\left(g_{2}\right)$ such that $\varphi\left(u^{-1}\left(g_{1}\right)\right)=u^{-1}\left(g_{2}\right)$ and $\varphi(c)=c$ for every constant function c.
Proof. For $f(x)=f(0) g_{1}(0, x) \vee f(1) g_{1}(1, x)$ set $(\varphi f)(x)=f(0) g_{2}(0, x) \vee f(1) g_{2}(1, x)$. It is easy to check that φ is a bijection, $\varphi\left(f_{1} \vee f_{2}\right)=\varphi\left(f_{1}\right) \vee \varphi\left(f_{2}\right)$ and $\varphi\left(f^{\prime}\right)=\varphi^{\prime}(f)$ by Proposition 2.. If $u^{-1}\left(g_{1}\right)=h_{1}$ then $h_{1}(x)=h_{1}(0) g_{1}(0, x) \vee h_{1}(1) g_{1}(1, x)$, hence $\varphi\left(h_{1}\right)(x)=h_{1}(0) g_{2}(0, x) \vee h_{1}(1) g_{2}(1, x)=g_{2}(1, x)=u^{-1}\left(g_{2}\right)(x)$. The last claim is obvious.

Corollary 2. For every $g \in \mathcal{G}(\{0,1\}, B)$ there is an isomorphism $\varphi: T F 1(g) \longrightarrow$ BF1 such that $\varphi\left(u^{-1}(g)\right)=i$ (the identity function) and $\varphi(c)=c$ for every constant function c.
Proof. Apply Proposition 8 with $g_{1}:=g$ and $g_{2}(a, x):=x^{a}$; we have $u^{-1}\left(g_{2}\right)=i$ by Proposition 7.

The next Proposition generalizes Theorem 2 from [2].
Proposition 9. For every $g \in \mathcal{G}(\{0,1\}, B)$, a function $f: B \longrightarrow B$ is in $T F 1(g)$ if and only if it can be written in the form

$$
\begin{equation*}
f(x)=f_{0} h(0) \vee f_{1} h(x) \vee f_{2} h\left(x^{\prime}\right) \vee f_{3} h(1) \tag{10}
\end{equation*}
$$

where $h=u^{-1}(g)$ and $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ is an orthonormal system in B.
When this is the case, $f_{0}=f^{\prime}(0) f^{\prime}(1), f_{1}=f^{\prime}(0) f(1), f_{2}=f(0) f^{\prime}(1), f_{3}=$ $f(0) f(1)$ and $f(0)=f_{2} \vee f_{3}, f(1)=f_{1} \vee f_{3}$.
Proof. If f satisfies (10) where $h=u^{-1}(g)$ then, since $u^{-1}(g) \in T F 1(g)$ by Corollary 1 , it follows that $f \in T F 1(g)$ by Remark 6 .

To prove the converse we need some preparation. Let $g_{2} \in \mathcal{G}(\{0,1\}, B)$ be defined by $g_{2}(1, x)=x$, hence $g_{2}(0, x)=x^{\prime}$ (cf. Remark 1). It follows that $T F 1\left(g_{2}\right)=B F 1$, so that Proposition 1 implies the existence of an isomorphism $\varphi: T F 1(g) \longrightarrow B F 1$ such that $\varphi\left(u^{-1}(g)\right)=u^{-1}\left(g_{2}\right)$ and φ preserves the constants. Further, the identity i on B belongs to H and $g_{2}(1, x)=i(x)$, hence $u(i)=g_{2}$ by the definition of u. Therefore $\varphi^{-1}(i)=\varphi^{-1}\left(u^{-1}\left(g_{2}\right)\right)=u^{-1}(g)$.

Now suppose $f \in T F 1(g)$ and set $\varphi(f)=\ell$. Since $\ell \in B F 1$, Theorem 2 from [2] implies the existence of an orthonormal quadruple $\left(f_{0}, f_{1}, f_{2}, f_{3}\right) \in B^{4}$ such that $\ell(x)=f_{0} 0 \vee f_{1} x \vee f_{2} x^{\prime} \vee f_{3} 1$. This identity in B yields $\ell=f_{0} 0 \vee f_{1} i \vee f_{2} i^{\prime} \vee f_{3} 1$ in $B F 1$. By applying φ^{-1} it follows that $f=f_{0} 0 \vee f_{1} \varphi^{-1}(i) \vee f_{2} \varphi^{-1}\left(i^{\prime}\right) \vee f_{3} 1$, which is (10) because $\varphi^{-1}(i)=h$.

It follows from (10) that $f(0)=f_{2} \vee f_{3}$ and $f(1)=f_{1} \vee f_{3}$. Finally $f^{\prime}(0) f^{\prime}(1)$ and the other three products are easily computed using orthonormality.

6. The class $\operatorname{TFn}(\{0,1\})$

Recall that $H=\{f: B \longrightarrow B \mid h(0)=0, h(1)=1\}$.
Proposition 10. A function $f: B^{n} \longrightarrow B$ belongs to $\operatorname{TFn}(\{0,1\})$ if and only if it is of the form

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=p\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right) \tag{11}
\end{equation*}
$$

for some $p \in B F n$ and some $h \in H$.
Proof. In view of Proposition 2, the expansion (7) of $f \in \operatorname{TFn}(\{0,1\})$ can be written in the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} f\left(a_{1}, \ldots, a_{n}\right) h^{a_{1}}\left(x_{1}\right) \ldots h^{a_{n}}\left(x_{n}\right)
$$

which is of the form (11) with $p \in B F n$ defined by

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} f\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} \tag{12}
\end{equation*}
$$

Conversely, the expansion (11) can be written in the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} p\left(a_{1}, \ldots, a_{n}\right) h^{a_{1}}\left(x_{1}\right) \ldots h^{a_{n}}\left(x_{n}\right)
$$

which implies that for every $b_{1}, \ldots, b_{n} \in\{0,1\}, f\left(b_{1}, \ldots, b_{n}\right)=p\left(b_{1}, \ldots, b_{n}\right)$, therefore, using again Proposition 2, the latter identity becomes (7), thus proving that $f \in \operatorname{TFn}(\{0,1\})$.

The main result is the following.
Proposition 11. A function $f: B^{n} \longrightarrow B$ belongs to $\left.T F n\{0,1\}\right)$ if and only if it is of the form

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=p\left(k\left(x_{1}\right), \ldots, k\left(x_{n}\right)\right) \tag{13}
\end{equation*}
$$

for some $p \in B F n$ and some $k \in T F 1(\{0,1\})$.
Proof. In view of Proposition 10, every $f \in \operatorname{TFn}(\{0,1\})$ satisfies (13) with p defined by (12) and $k:=h$, which belongs to $T F 1(\{0,1\})$ by Remark 7 .

Conversely, suppose (13) holds. In view of Proposition 10, k is of the form $k(x)=$ $\pi(h(x))$, where $\pi(x)=\pi(0) x^{\prime} \vee \pi(1) x$. Therefore $k(x)=\pi(0) h^{\prime}(x) \vee \pi(1) h(x)$, hence for $a \in\{0,1\}$) we have

$$
k^{a}(x)=\pi^{a}(0) h^{\prime}(x) \vee \pi^{a}(1) h(x)=\bigvee_{b \in\{0.1\}} \pi^{a}(b) h^{b}(x)
$$

In the following the indices of iterated disjunctions run in $\{0,1\}$. We have

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n}} p\left(a_{1}, \ldots, a_{n}\right) k^{a_{1}}\left(x_{1}\right) \ldots k^{a_{n}}\left(x_{n}\right)
$$

$$
\begin{aligned}
& =\bigvee_{a_{1}, \ldots, a_{n}} p\left(a_{1}, \ldots, a_{n}\right)\left(\bigvee_{b_{1}} \pi^{a_{1}}\left(b_{1}\right) h^{b_{1}}\left(x_{1}\right)\right) \ldots\left(\bigvee_{b_{n}} \pi^{a_{n}}\left(b_{n}\right) h^{b_{n}}\left(x_{n}\right)\right) \\
& \left.=\bigvee_{a_{1}, \ldots, a_{n}} p\left(a_{1}, \ldots, a_{n}\right) \bigvee_{b_{1}, \ldots, b_{n}} \pi^{a_{1}}\left(b_{1}\right) \ldots \pi^{a_{n}}\left(b_{n}\right) h^{b_{1}}\left(x_{1}\right) \ldots h^{b_{n}}\left(x_{n}\right)\right) \\
& \left.=\bigvee_{b_{1}, \ldots, b_{n}}\left(\bigvee_{a_{1}, \ldots, a_{n}} p\left(a_{1}, \ldots, a_{n}\right) \pi^{a_{1}}\left(b_{1}\right) \ldots \pi^{a_{n}}\left(b_{n}\right)\right) h^{b_{1}}\left(x_{1}\right) \ldots h^{b_{n}}\left(x_{n}\right)\right) .
\end{aligned}
$$

Thus we have found 2^{n} constants $c_{b_{1} \ldots b_{n}}$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{b_{1}, \ldots, b_{n}} c_{b_{1} \ldots b_{n}} h^{b_{1}}\left(x_{1}\right) \ldots h^{b_{n}}\left(x_{n}\right)=q\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right),
$$

where $q\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{b_{1}, \ldots, b_{n}} x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$, showing that $q \in B F n$. Therefore $f \in$ $T F n(\{0,1\})$ by Proposition 10 .

We have noticed in Remark 3 that $B F n=\operatorname{TFn}(\bar{g})$, where $\bar{g} \in \mathcal{G}(A, B)$ is defined by $\bar{g}(1, x)=x, \bar{g}(0, x)=x^{\prime}$, else $\bar{g}(a, x)=0$. Note that \bar{g} is the unique extension to $\mathcal{G}(A, B)$ of the function $g_{2} \in \mathcal{G}(\{0,1\}, B)$ used in the proof of Proposition 9 (cf. Proposition 1).

Now we prove that if \bar{g} is replaced by g_{2} or, more generally, by an arbitrary function from $\mathcal{G}(\{0,1\}, B)$, the equality is recaptured as an isomorphism.

Theorem 5. For any function $g \in \mathcal{G}(\{0,1\}, B)$, the Boolean algebras BFn and TFn(g) are isomorphic.

Proof. We map every function $f \in B F n$ to the function $p \in T F n(g)$ defined by

$$
p\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} f\left(a_{1}, \ldots, a_{n}\right) g\left(a_{1}, x_{1}\right) \ldots g\left(a_{n}, x_{n}\right)
$$

The map is surjective because every $q \in \operatorname{TFn}(g)$ is of the form

$$
q\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} c_{a_{1} \ldots a_{n}} g\left(a_{1}, x_{1}\right) \ldots g\left(a_{n}, x_{n}\right),
$$

for some 2^{n} constants $c_{a_{1} \ldots a_{n}} \in B$, so that q is the image p of the function $f \in B F n$ defined by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in\{0,1\}} c_{a_{1} \ldots a_{n}} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}
$$

To prove injectivity, suppose that $f_{1}, f_{2} \in B F n$ have the same image p. By equating the above representations of p for $f:=f_{1}$ and $f:=f_{2}$ and then taking $x_{1}:=b_{1}, \ldots, x_{n}:=b_{n}$, where b_{1}, \ldots, b_{n} are arbitrary in $\{0,1\}$, we get $f_{1}\left(b_{1}, \ldots, b_{n}\right)=$ $f_{2}\left(b_{1}, \ldots, b_{n}\right)$, therefore $f_{1}=f_{2}$.

Thus the map is a bijection and it is a homomorphism by Remark 4.

7. Other results

At first glance the isotony of a function with arguments and values in a Boolean algebra is a property which has nothing to do with the property of being a Boolean function or a T-function. Yet in paper [8] Ţăndăreanu remarks that in every Boolean algebra B the isotone functions $f: B \longrightarrow B$ belong to $T F 1(\{0,1\})$ by Proposition 6 because $f(0) f(1) \leq f(0) \leq f(x) \leq f(1) \leq f(0) \vee f(1)$.

A function $f: B \longrightarrow B$ is isotone if and only if it satisfies conditions $f(0) \leq f(1)$ and $f(x)=f(0) h^{\prime}(x) \vee f(1) h(x)$ for some isotone function $h \in H$.

Indeed, these conditions imply easily that if $x \leq y$ then $f(x) f^{\prime}(y)=0$. Conversely, it is also easy to check that an isotone function f satisfies these conditions with the isotone function $h \in H$ defined by $h(0)=0, h(1)=1$, else $h(x)=f(x)$.

The characterizations of isotone functions yield characterizations of antitone functions, because a function f is antitone if and only if f^{\prime} is isotone.

In [9] the partial derivative of a function $f \in \operatorname{TFn}\{0,1\}$ is defined by the very formula used for Boolean functions, that is, $\partial f / \partial x_{i}: B^{n-1} \longrightarrow B$ is given by

$$
\begin{gather*}
\left(\partial f / \partial x_{i}\right)\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)+ \\
+f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right) \tag{14}
\end{gather*}
$$

where $x+y=x y^{\prime} \vee x^{\prime} y$, and it is proved that if $f \in T F n(g)$ then $\partial f / \partial x_{i} \in T F(n-$ $1)(g)$. Besides, f does not depend on the variable x_{i} if and only if $\partial f / \partial x_{i}=0$ identically, and several computation rules are provided, everything like for Boolean functions.

The seemingly unpublished paper [10] deals with the following problem. Given a finite set A such that $\{0,1\} \subseteq A \subset B$ and a positive integer n, characterize the subsets $F \subseteq B^{B^{n}}$ of the form $\operatorname{TFn}(g)$ for some $g \in \mathcal{G}(A, B)$. We present below [10] decomposed into elementary steps.

To solve the problem, Ţăndăreanu uses as parameter a family $\left(f_{a}\right)$ of functions $f_{a}: B \longrightarrow B(\forall a \in A)$. With this family one associates the function $g: A \times B \longrightarrow B$ defined by $g(a, x)=f_{a}(x)$ and the family of functions $h_{a i}: B^{n} \longrightarrow B \quad(a \in A, i \in$ $\{1, \ldots, n\})$ defined by $h_{a i}\left(x_{1}, \ldots, x_{n}\right)=f_{a}\left(x_{i}\right)$. This notation is fixed in the following.

Lemma 3. $\left(f_{a}\right)_{a \in A}$ is orthonormal and satisfies $f_{a}(a)=1(\forall a \in A)$ if and only if $g \in \mathcal{G}(A, B)$ and $g(a, a)=1(\forall a \in A)$.

Proof. Immediate.
Lemma 4. If $\left(f_{a}\right)_{a \in A}$ is an orthonormal system such that $f_{a}(a)=1(\forall a \in A)$ then the following hold:
(i) $g \in \mathcal{G}(A, B)$ and $\left\{f_{a}\right\}_{a \in A} \subseteq T F 1(g)$;
(ii) $\left\{h_{a i}\right\}_{a \in A, i \in\{1, \ldots, n\}} \subseteq \operatorname{TFn}(g)$;
(iii) the sublattice of $\left(B^{B^{n}}, \vee . \cdot\right)$ generated by the functions $h_{a i} \quad(a \in A, i \in$ $\{1, \ldots, n\})$ and the constant functions of n variables is TFn (g).
Proof. (i) $g \in \mathcal{G}(A, B)$ by Lemma 3, and $f_{a}(x)=g(a, x)=\bigvee_{b \in A} \delta(a, b) g(b, x)$.
(ii) By (i) and Lemma 2.
(iii) Let F be the sublattice.

If $f \in F$ then f has an expansion of the form $f=\bigvee u_{i_{1} \ldots i_{t}} h_{a_{1} i_{1}} \ldots h_{a_{t} i_{t}}$, where $u_{i_{1} \ldots i_{t}}$ are constant functions. From this, (ii) and Remark 6 it follows that $f \in$ $T F n(g)$. Therefore $F \subseteq T F n(g)$.

If $f \in \operatorname{TFn}(g)$ then using the fact that $g\left(a, x_{i}\right)=f_{a}\left(x_{i}\right)=h_{a i}\left(x_{1}, \ldots, x_{n}\right)$, we get

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{a_{1}, \ldots, a_{n} \in A} f\left(a_{1}, \ldots, a_{n}\right) h_{a 1}\left(x_{1}, \ldots, x_{n}\right) \ldots h_{a n}\left(x_{1}, \ldots, x_{n}\right)
$$

hence $f \in F$. Therefore $T F n(g) \subseteq F$.
Theorem 6. If A is a finite set such that $\{0,1\} \subseteq A \subset B$ and F is a subset of $B^{B^{n}}$, then the following conditions are equivalent:
(α) there is $g \in \mathcal{G}(A, B)$ such that $g(a, a)=1(\forall a \in A)$ and $F=T F n(g)$;
(β) there is an orthonormal system $\left\{f_{a}\right\}_{a \in A} \subset B^{B}$ satisfying $f_{a}(a)=1(\forall a \in A)$ such that F is the sublattice of $\left(B^{B^{n}}, \vee, \cdot\right)$ generated by the functions $h_{a i}(a, \in A, i \in$ $\{1, \ldots, b\})$ and the constant functions of n variables.
Proof. $\quad(\alpha) \Longrightarrow(\beta)$: It follows from Lemma 3 that the hypotheses of Lemma 4 are satisfied. According to Lemma 4(iii), the subalgebra mentioned in (β) is $\operatorname{TFn}(g)$, therefore $F=\operatorname{TFn}(g)$.
$(\beta) \Longrightarrow(\alpha)$: The function g associated with $\left(f_{a}\right)_{a \in A}$ belongs to $\mathcal{G}(A, B)$ by Lemma 3 and the sublattice mentioned in (β) is $\operatorname{TFn}(g)$ by Lemma 4(iii), therefore $F=T F n(g)$.

Conclusions. The Ţăndăreanu functions are a proper generalization of Boolean functions. There are two kinds of T-functions, $\operatorname{TFn}(g)$ and $T F n(A)$, the latter being set-theoretical unions of the former. The sets $\operatorname{TFn}(g)$ are essentially Boolean algebras, regarded from another points of view. The algebras $\operatorname{TFn}(A)$ are more general than Boolean algebras. It is our conviction that the theory of Ţăndăreanu functions offers numerous prospects of continuation, which should be exploited.

The most natural problem would be the extension of the wide theory of Boolean functions and equations (cf. [3]) to Ţăndăreanu functions. It is likely that this would work well for $\operatorname{TFn}(g)$ algebras, whereas the fact that the functions of a $\operatorname{TFn}(A)$ algebra belong to various TFn (g)'s seems to raise serious difficulties.

Like Boolean functions, Ţăndăreanu functions are defined over Boolean algebras. Another line of research might consist in working with functions defined over a more general algebraic structure. Post algebras might be an appropriate framework for this kind of generalization, because they share many features of Boolean algebras; cf. my monograph Lattice Functions and Equations, Springer Verlag, London 2001.

References

[1] Y. Liu, Costruction and counting of generalized Boolean functions, Discrete Math. 69 (1988), 313-316.
[2] R.A.Melter, S.Rudeanu, Characterizations of Boolean functions, An. Şti. Univ. Al.I. Cuza Iaşi 28 (1982), 161-169.
[3] S. Rudeanu, Boolean Functions and Equations, North-Holland/Amer. Elsevier, Amsterdam, 1974.
[4] N. Ţăndăreanu, On generalized Boolean functions. I, Discrete Math. 34 (1981), 293-299.
[5] N. Ţăndăreanu, On generalized Boolean functions. II, Discrete Math. 40 (1982), 277-284.
[6] N. Ţăndăreanu, Remarks on generalized Boolean functions of one variable, Rev. Roumaine Math. Pures Appl. 29 (1984), 715-718.
[7] N. Ţăndăreanu, On generalized Boolean functions. III, Discrete Math. 52 (1984), 269-277.
[8] N. Ţăndăreanu, Partial derivatives of $\{0,1\}$-generalized Boolean functions, An. Univ. Craiova, Mat.-Fiz.-Chim. 13 (1985), 63-66.
[9] N. Ţăndăreanu, Monotonicity of the functions of one variable defined on Boolean algebras, Rev. Roumaine Math. Pures Appl. 30 (1985), 579-582.
[10] N. Ţăndăreanu, O caracterizare algebrică a mulţimilor de funcţii booleene generalizate. Typescript.
(Sergiu Rudeanu) University of Bucharest, Romania
E-mail address: srudeanu@yahoo.com

[^0]: ${ }^{1}$ The restriction $A \neq B$ required by Ţăndăreanu is not really necessary.

[^1]: ${ }^{2}$ Propositions 3,4 and 5 are due to the present author.

[^2]: ${ }^{3}$ Except the names T-function, improper T-function and the notation TF.

