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Entropy solution for strongly nonlinear elliptic problems with
lower order terms and L1-data

Mostafa El Moumni

Abstract. We give an existence result for strongly nonlinear elliptic equations of the type

−div
(
a(x, u,∇u) + Φ(u)

)
+ g(x, u,∇u) +H(x,∇u) = f in Ω,

where the right hand side f belongs to L1(Ω), −div(a(x, u,∇u)) is a Leray–Lions type operator

with growth |∇u|p−1 in ∇u and Φ ∈ C0(R,RN ). The critical growth condition on g is with
respect to ∇u and no growth condition with respect to u, while the function H(x,∇u) grows
as |∇u|p−1.
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1. Introduction

In the present paper, we show the existence of an entropy solution for strongly
nonlinear elliptic problem of the type

−div
(
a(x, u,∇u) + Φ(u)

)
+ g(x, u,∇u) +H(x,∇u) = f in Ω, (1.1)

where Ω is a bounded open subset of RN , N ≥ 1. The operator −div(a(x, u,∇u)) is a
Leray-Lions operator acting from W 1,p

0 (Ω) into its dual W−1,p′
(Ω), which is coercive

and grows like |∇u|p−1 with respect to ∇u, p′ := p
p−1 . Furthermore, the functions g

andH are two the Carathéodory functions with suitable assumptions (see Assumption
H(2)). The function Φ is just assumed to be continuous on R. Main difficulties in
this work arise from the fact that we consider data f which only belong to L1(Ω).

Many physicals models lead to elliptic and parabolic problems. For instance, in
[14] the authors study the modeling of an electronically device. The derived elliptic
system coupled the temperature (denoted u) and the electronically potential (denoted
φ). The temperature equation is considered as an elliptic equation where the second
member f = |∇φ|2 belongs to L1(Ω). In [15] a Fokker-Planck equation arising in
populations dynamics is studied. Models of turbulent flows in oceanography and
climatology also lead to such kind of problems (see [16] and the references therein).

In [17] the author studies the Navier-Stokes equations completed by an equation
for the temperature (u = T ). Note that for compressible flows the divergence of
the velocity does not vanish, and the temperature equation can be considered with
linear terms having the form b(x)∇u. These linear terms introduce new difficulties
in the sense that the compactness results, do not apply directly which needs further
technical investigations.
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We are interested in existence results for entropy solutions to (1.1). For instance,

in the variational case (i.e. when f ∈ W−1,p′
(Ω)), existence result can be found in

[6] while if f ∈ L1(Ω) initiated basic works were given in [12, 9, 23], also an existence
result for (1.1) was proved in [8] (see the references therein). Related topics can be
found in [21, 22].

When H is not necessarily the null function and Φ ≡ 0, existence result for problem
(1.1) was proved first in [13] in the case where g does not depend on the gradient
and then in [20] using, in both works, the rearrangement techniques. For different
approach used in the setting of Orlicz Sobolev space the reader can refer to [3, 4]. See
also [5] for related topics.

The main features of (1.1) are both the fact that the operator has two lower order
terms, which produce a lack of coercivity and the right-hand side which is a measure.
The operator has no lower order terms (i.e. H ≡ g ≡ 0), in this case the difficulties
in studying problem (1.1) are due only to the right-hand side belongs to L1(Ω) and
the functions a(x, u,∇u) and Φ(u) do not belong to (L1

loc(Ω))
N in general. In the

present paper we consider operators where both the two lower order terms Φ(u)
and H(x,∇u) appear without any coerciveness assumption on the operator. Simple
examples (the Laplace operator in a ball, i.e. p = 2, Φ ≡ H ≡ g ≡ 0, and second
member the Dirac mass in the center) show that, in general, the solution of (1.1)

does not belong to the space W 1,1
loc (Ω). Thus it is necessary to change the classical

framework of Sobolev spaces in order to prove existence results. In the present paper
we consider operators where both the lower order terms H(x,∇u) appear without
any coerciveness assumption on the operator.

Our aim in this paper is to investigate the existence of entropy solutions to strongly
nonlinear elliptic equations (1.1), in the case where the right-hand side belongs to
L1(Ω), Φ ̸≡ 0. The function g(x, s, ξ) is assumed to have exactly the natural growth
(i.e. of order p), but no growth assumption is imposed with respect to s to the function
g which only satisfies the sign condition and the coercivity condition. The function
H(x, ξ), which induces a convection term, is assumed only to grow at most as |ξ|p−1.

Now we state a slight modification of Gronwall’s Lemma (see [2]).

Lemma 1.1. Given the function λ, γ, φ, ρ defined on [a,+∞[, suppose that a ≥ 0,
λ ≥ 0, γ ≥ 0 and that λγ, λφ and λρ belong to L1(a,+∞). If for a.e. t ≥ 0, we have

φ(t) ≤ ρ(t) + γ(t)

∫ +∞

t

λ(τ)φ(τ)dτ.

Then, for a.e. t ≥ 0,

φ(t) ≤ ρ(t) + γ(t)

∫ +∞

t

ρ(τ)λ(τ)

(∫ τ

t

λ(r)γ(r)dr

)
dτ.

We recall that, for k > 1 and s in R, the truncation is defined as

Tk(s) =

{
s if |s| ≤ k,

k s
|s| if |s| > k.

2. Main results

Let us now give the precise hypotheses on the problem (1.1), we assume that the
following assumptions:
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Assumption H(1). Ω is a bounded open set of RN (N ≥ 1 ), let a : Ω×R×RN → RN

be a Carathéodory function, such that

|a(x, s, ξ)| ≤ β[k(x) + |s|p−1 + |ξ|p−1], (2.1)

for a.e. (x) ∈ Ω, all (s, ξ) ∈ R×RN , some positive function k(x) ∈ Lp′
(Ω) and β > 0.[

a(x, s, ξ)− a(x, s, η)
]
· (ξ − η) > 0 for all (ξ, η) ∈ RN × RN , with ξ ̸= η, (2.2)

a(x, s, ξ) · ξ ≥ α|ξ|p, (2.3)

where α is a strictly positive constant.

Assumption H(2). Furthermore, let g(x, s, ξ) : Ω × R × RN → R and H(x, ξ) :
Ω × RN → R be two Carathéodory functions which satisfy, for almost every x ∈ Ω
and for all s ∈ R, ξ ∈ RN , the following conditions

|g(x, s, ξ)| ≤ L1(|s|)(L2(x) + |ξ|p), (2.4)

g(x, s, ξ)s ≥ 0, (2.5)

where L1 : R+ → R+ is a continuous increasing function, while L2(x) is positive and
belongs to L1(Ω).

∃ δ > 0, ν′ > 0 : for |s| ≥ δ, |g(x, s, ξ)| ≥ ν′|ξ|p, (2.6)

|H(x, ξ)| ≤ b(x)|ξ|p−1, (2.7)

where b(x) is positive and belongs to Lr(Ω) with r > max(N, p).

Φ ∈ C0(R,RN ), (2.8)

we point out that no growth hypothesis is assumed on the function Φ. This implies
that for a function u ∈ W 1,p

0 (Ω), the term div Φ(u) may be meaningless, even as a
distribution.

Assumption H(3). As far as the right-hand side of (1.1) is concerned, we assume
that

f ∈ L1(Ω). (2.9)

We shall use the following definitions of entropy solutions solutions for problem (1.1)
in the following sense:

Definition 2.1. An entropy solution of (1.1) is a function u : Ω → R such that

Tk(u) ∈W 1,p
0 (Ω), and ∀φ ∈W 1,p

0 (Ω) ∩ L∞(Ω)∫
Ω

a(x, u,∇u) · ∇Tk(u− φ) dx+

∫
Ω

Φ(u) · ∇Tk(u− φ) dx

+

∫
Ω

g(x, u,∇u)Tk(u− φ) dx+

∫
Ω

H(x,∇u)Tk(u− φ) dx =

∫
Ω

fTk(u− φ) dx.

(2.10)

Existence result. Our main results are collected in the following theorems:

Theorem 2.2. Assume that (2.1)–(2.9) hold true. Then the problem (1.1) has at
least one solution u in the sense of definition 2.1.

Proof. The proof of Theorem 2.2 is done in five steps.
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Step 1: Approximate problem and a priori estimates. For n > 0, let us define the
following approximation of Φ, g, H, and f . First, let Φn be a Lipschitz continuous
bounded function from R into RN , such that Φn uniformly converges to Φ on any
compact subset of RN as n tends to +∞. Set

gn(x, s, ξ) =
g(x, s, ξ)

1 + 1
n |g(x, s, ξ)|

and Hn(x, ξ) =
H(x, ξ)

1 + 1
n |H(x, ξ)|

. (2.11)

Note that gn(x, s, ξ) and Hn(x, ξ) are satisfying the following conditions

|gn(x, s, ξ)| ≤ n and |Hn(x, ξ)| ≤ n.

Let fn is a regular functions such that fn strongly converges to f in L1(Ω) and
||fn||L1 ≤ c1 for some constant c1.

Let us now consider the approximate problem

−div
(
a(x, un,∇un) + Φn(un)

)
+ gn(x, un,∇un) +Hn(x,∇un) = fn in Ω. (2.12)

From the Leray-Lions existence theorem (cf. Theorem 2.1 and Remark 2.1 in chapter

2 of [19]), there exists at least one weak solution un ∈ W 1, p
0 (Ω) of the approximate

problem (2.12).

Now, we prove the solution un of problem (2.12) is bounded in W 1, p
0 (Ω), we prove

the following

Lemma 2.3. Let un ∈ W 1, p
0 (Ω) be a weak solution of (2.12). Then, the following

estimate holds,

||un||W 1, p
0 (Ω) ≤ D, (2.13)

where D depends only on Ω, N , p, p′, f and ||b||Lr(Ω).

Proof. To get (2.13), we divide the integral

∫
Ω

|∇un|p dx in two parts and we prove

the following estimates: for all k ≥ 0∫
{|un|≤k}

|∇un|p dx ≤M1k, (2.14)

and ∫
{|un|>k}

|∇un|p dx ≤ M2, (2.15)

where M1 and M2 are positive constants. In what follows we will denote by Mi,
i = 3, 4, ..., some generic positive constants. For ε > 0 and s ≥ 0, we define

φε(r) =



sign(r) if |r| > s+ ε

sign(r)(|r| − s)

ε
if s < |r| ≤ s+ ε

0 otherwise.

Define Φ̃ ∈ (C1(R))N as Φ̃(s) =

∫ s

0

Φn(t)φ
′
h(t) dt.

Then, formally, div (Φ̃(un)) = Φn(un) · φ′
h(un)∇un, and by the Divergence Theorem

(see also [7]), we get∫
Ω

Φn(un).∇φh(un) dx =

∫
Ω

div (Φ̃(un)) dx = 0. (2.16)
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We choose v = φε(un) as test function in (2.12), we have∫
Ω

a(x, un,∇un) · ∇(φε(un)) dx+

∫
Ω

Φ(un) · ∇(φε(un)) dx

+

∫
Ω

gn(x, un,∇un)φε(un) dx+

∫
Ω

Hn(x,∇un)φε(un) dx =

∫
Ω

fnφε(un) dx.

Using gn(x, un,∇un)φε(un) ≥ 0, (2.7) and (2.16), we obtain

1

ε

∫
{s<|un|≤s+ε}

a(x, un,∇un) · ∇un dx ≤
∫
{s<|un|}

b(x)|∇un|p−1dx+

∫
{s<|un|}

|fn| dx.

Observe that,∫
{s<|un|}

b(x)|∇un|p−1dx

≤
∫ +∞

s

(
−d
dσ

∫
{σ<|un|}

bp dx

) 1
p
(
−d
dσ

∫
{σ<|un|}

|∇un|p dx

) 1
p′

dσ.

(2.17)

Because,∫
{s<|un|}

b(x)|∇un|p−1dx =

∫ +∞

s

−d
dσ

(∫
{σ<|un|}

b(x)|∇un|p−1 dx

)
dσ

=

∫ +∞

s

lim
δ→0

1

δ

(∫
{σ<|un|≤σ+δ}

b(x)|∇un|p−1 dx

)
dσ

≤
∫ +∞

s

lim
δ→0

1

δ

(∫
{σ<|un|≤σ+δ}

bp dx

) 1
p
(∫

{σ<|un|≤σ+δ}
|∇un|p dx

) 1
p′

dσ

=

∫ +∞

s

(
lim
δ→0

1

δ

∫
{σ<|un|≤σ+δ}

bp dx dt

) 1
p
(
lim
δ→0

1

δ

∫
{σ<|un|≤σ+δ}

|∇un|p dx

) 1
p′

dσ

=

∫ +∞

s

(
−d
dσ

∫
{σ<|un|}

bp dx

) 1
p
(
−d
dσ

∫
{σ<|un|}

|∇un|p dx

) 1
p′

dσ.

By (2.3) and (2.17), we deduce that

1

ε

∫
{s<|un|≤s+ε}

α|∇un|p dx ≤
∫
{s<|un|}

|fn| dx

+

∫ +∞

s

(
−d
dσ

∫
{σ<|un|}

bp dx

) 1
p
(
−d
dσ

∫
{σ<|un|}

|∇un|p dx

) 1
p′

dσ.

Letting ε go to zero, we obtain

−d
ds

∫
{s<|un|}

α|∇un|p dx ≤
∫
{s<|un|}

|fn| dx

+

∫ +∞

s

(
−d
dσ

∫
{σ<|un|}

bp dx

) 1
p
(
−d
dσ

∫
{σ<|un|}

|∇un|p dx

) 1
p′

dσ,

(2.18)

where {s < |un|} denotes the set {(x) ∈ Ω, s < |un(x)|} and µ(s) stands for the
distribution function of un, that is µ(s) = |{(x) ∈ Ω, |un(x)| < s}| for all s ≥ 0.
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Now, we recall the following inequality (see for example [18]), we have for almost
every s > 0

1 ≤
(
NC

1
N

N

)−1

(µ(s))
1
N −1(−µ′(s))

1
p′

(
− d

ds

∫
{s<|un|}

|∇un|pdx

) 1
p

. (2.19)

Using (2.19), we have

−d
ds

∫
{s<|un|}

α|∇un|p dx = α

(
−d
ds

∫
{s<|un|}

|∇un|p dx

) 1
p′
(
−d
ds

∫
{s<|un|}

|∇un|p dx

) 1
p

≤

(∫
{s<|un|}

|fn| dx

)(
NC

1
N

N

)−1

(µ(s))
1
N −1(−µ′(s))

1
p′

(
− d

ds

∫
{s<|un|}

|∇un|pdx

) 1
p

+
(
NC

1
N

N

)−1

(µ(s))
1
N −1(−µ′(s))

1
p′

(
−d
ds

∫
{s<|un|}

|∇un|p dx

) 1
p

×
∫ +∞

s

(
−d
dσ

∫
{σ<|un|}

bp dx

) 1
p
(
−d
dσ

∫
{σ<|un|}

|∇un|p dx

) 1
p′

dσ.

(2.20)
Which implies that,

α

(
−d
ds

∫
{s<|un|}

|∇un|p dx

) 1
p′

≤
(
NC

1
N

N

)−1

(µ(s))
1
N −1(−µ′(s))

1
p′

(∫
{s<|un|}

|fn| dx

)
+
(
NC

1
N

N

)−1

(µ(s))
1
N −1

×(−µ′(s))
1
p′

∫ +∞

s

(
−d
dσ

∫
{σ<|un|}

bp dx

) 1
p
(
−d
dσ

∫
{σ<|un|}

|∇un|p dx

) 1
p′

dσ.

(2.21)
Now, we consider B and ψ (see Lemma 2.2 of [1]) defined by

∫
{s<|un|}

bp(x) dx =

∫ µ(s)

0

Bp(σ)dσ, and ψ(s) =

∫
{s<|un|}

|fn| dx. (2.22)

We have

||B||Lp(Ω) ≤ ||h||Lp(Ω) and |ψ(s)| ≤ ||fn||L1(Ω). (2.23)

From (2.21) and (2.22)

α

(
−d
ds

∫
{s<|un|}

|∇un|pdx

) 1
p′

≤ (NC
1
N

N )−1(µ(s))
1
N −1(−µ′(s))

1
p′ ψ(s)

+(NC
1
N

N )−1(µ(s))
1
N −1(−µ′(s))

1
p′

∫ +∞

s

B(µ(ν))(−µ′(ν))
1
p

(
− d

dν

∫
{ν<|un|}

|∇un|pdx

) 1
p′

dν.
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From Lemma 1.1, we obtain

α

(
−d
ds

∫
{s<|un|}

|∇un|p dx

) 1
p′

≤ (NC
1
N

N )−1(µ(s))
1
N −1(−µ′(s))

1
p′ ψ(s)

+(NC
1
N

N )−1(µ(s))
1
N −1(−µ′(s))

1
p′

∫ +∞

s

[
(NC

1
N

N )−1(µ(σ))
1
N −1ψ(σ)

]
×B(µ(σ))(−µ′(σ)) exp

(∫ σ

s

(NC
1
N

N )−1)B(µ(r))(µ(r))
1
N −1(−µ′(r))dr

)
dσ.

(2.24)
Now, by a variable change and by the Hölder inequality, we estimate the argument of
the exponential function on the right hand side of (2.24)∫ σ

s

B(µ(r))(µ(r))
1
N −1(−µ′(r))dr =

∫ σ

s

B(z)z
1
N −1dz

≤
∫ |Ω|

0

B(z)z
1
N −1dz

≤ ||B||Lr

(∫ |Ω|

0

z(
1
N −1)r′

) 1
r′

.

(2.25)

Raising to the power p′ in (2.24) and we can write

−d
ds

∫
{s<|un|}

|∇un|p dx ≤M1. (2.26)

where M1 depends only on Ω, N , p, p′, f , α and ||b||Lr(Ω), integrating between 0 and
k, and then (2.14) is proved.

We now give the proof of (2.15), using Tk(un) as test function in (2.12), gives∫
Ω

a(x, un,∇un) · ∇Tk(un) dx+

∫
Ω

(
gn(x, un,∇un) +Hn(x,∇un)

)
Tk(un) dx

+

∫
Ω

Φ(un) · ∇Tk(un) dx =

∫
Ω

fnTk(un) dx.

By the divergence theorem, we get∫
Ω

Φ(un) · ∇Tk(un) = 0,

using (2.7), we deduce that,∫
{|un|≤k}

a(x, un,∇un) · ∇un dx+

∫
Ω

Φ(un) · ∇Tk(un) dx

+

∫
{|un|≤k}

gn(x, un,∇un)un dx+

∫
{|un|>k}

gn(x, un,∇un)Tk(un) dx

≤
∫
Ω

fnTk(un) dx+

∫
Ω

b(x)|∇un|p−1|Tk(un)| dx

(2.27)
and by using in the fact that gn(x, un,∇un)un ≥ 0 and (2.3), we have

α

∫
{|un|≤k}

|∇un|p dx+

∫
{|un|>k}

g(x, un,∇un)Tk(un) dx

≤ k||f ||L1 + k

∫
{|un|≤k}

b(x)|∇un|p−1 dx+ k

∫
{|un|≥k}

b(x)|∇un|p−1 dx,
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which implies that,∫
{|un|>k}

g(x, un,∇un)Tk(un) dx

≤ k||f ||L1k

∫
{|un|≤k}

b(x)|∇un|p−1 dx+ k

∫
{|un|≥k}

b(x)|∇un|p−1 dx.

By the Hölder inequality and (2.14), we obtain∫
{|un|>k}

g(x, un,∇un)Tk(un) dx

≤ k||f ||L1(Ω) + k
1+ 1

p′M1||b||Lp(Ω) + k

∫
{|un|>k}

b(x)|∇un|p−1 dx.
(2.28)

From (2.6) and applying Young’s inequality, we get for all k > δ

ν′k

∫
{|un|>k}

|∇un|p dx ≤ k||f ||L1(Ω) + k
1+ 1

p′M1||b||Lp(Ω) + k

∫
{|un|>k}

b(x)|∇un|p−1 dx

≤ k||f ||L1(Ω) + k
1+ 1

p′M1||b||Lp(Ω) +M6k||b||pLp + 1
p′ ν

′k

∫
{|un|>k}

|∇un|p dx.

(2.29)
Hence

(1− 1
p′ )

∫
{|un|>k}

|∇un|p dx ≤M3||f ||L1(Ω) + k
1
p′M5||b||Lp(Ω) +M7||b||pLp , (2.30)

and Lemma 2.3 is proved. �

Step 2: Almost everywhere convergence of un. We prove that un converges to some
function u locally in measure (and therefore, we can always assume that the conver-
gence is a.e. after passing to a suitable subsequence). We will show that un is a
Cauchy sequence in measure in any ball BR.

Let k > 0 large enough, we have

k meas({|un| > k} ∩BR) =

∫
{|un|>k}∩BR

|Tk(un)|dx

≤
∫
BR

|Tk(un)|dx

≤ C

(∫
Ω

|∇Tk(un)|pdx
) 1

p

≤ c1.

(2.31)

Which implies

meas({|un| > k} ∩BR) ≤ c1
k1 , for all k > 1. (2.32)

We have, for every δ > 0,

meas({|um − un| > δ} ∩BR) ≤ meas({|un| > k} ∩BR) + meas({|um| > k} ∩BR)
+ meas({|Tk(un)− Tk(um)| > δ}).

(2.33)

Since Tk(un) is bounded in W 1,p
0 (Ω), there exists some vk ∈W 1,p

0 (Ω), such that

Tk(un)⇀ vk weakly in W 1,p
0 (Ω),

Tk(un) → vk strongly in Lp(Ω) and a.e. in Ω.

Consequently, we can assume that Tk(un) is a Cauchy sequence in measure in Ω.
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Let ε > 0, then, by (2.32) and (2.33), there exists some k(ε) > 0 such that
meas({|un − um| > δ} ∩ BR) < ε for all n,m ≥ n0(k(ε), δ, R). This proves that
(un) is a Cauchy sequence in measure in BR, thus converges almost everywhere to
some measurable function u. Then

Tk(un)⇀ Tk(u) weakly in W 1,p
0 (Ω),

Tk(un) → Tk(u) strongly in Lp(Ω) and a.e. in Ω.

Which implies, by using (2.1), for all k > 0 there exists a function

hk ∈ (Lp′
(Ω))N , such that

a(x, Tk(un),∇Tk(un))⇀ hk weakly in (Lp′
(Ω))N . (2.34)

Step 3: Strong convergence of truncations. Let k > 0, we consider the function

ϕ(s) = seλs
2

, with λ ≥ (L1(k)
α )2, we have the following inequality

ϕ′(s)− L1(k)

α
| ϕ(s) |≥ 1

2
, (2.35)

holds for all s ∈ R. Here, we define wn = T2k(un − Th(un) + Tk(un) − Tk(u)) where
h > 2k > 0, and the following function

vn = ϕ(wn). (2.36)

Using vn as test function in (2.12), we obtain∫
Ω

a(x, un,∇un) · ∇wnϕ
′(wn) dx+

∫
Ω

Φn(un) · ϕ′(un)∇un dx

+

∫
Ω

gn(x, un,∇un)ϕ(wn) dx+

∫
Ω

Hn(x,∇un)ϕ(wn) dx =

∫
Ω

fnϕ(wn) dx.

(2.37)

Using the fact that

∫ un

0

Φn(s) · ϕ′(s) ds ∈W 1,p
0 (Ω) and Stokes formula, we get

∫
Ω

Φn(un) · ϕ′(un)∇un dx =

∫
Ω

div

[∫ un

0

Φn(s) · ϕ′(s) ds
]
dx = 0. (2.38)

Note that, ∇wn = 0 on the set where {|un| > h+4k}, therefore, setting M = 4k+h,
and denoting by α1

h(n), α
2
h(n),..., various sequences of real numbers which converge

to zero when n tends to infinity for any fixed value of h, we get by (2.37) and (2.38)∫
Ω

a(x, TM (un),∇TM (un)) · ∇wnϕ
′(wn) dx+

∫
Ω

gn(x, un,∇un)ϕ(wn) dx

≤
∫
Ω

fnϕ(wn) dx+

∫
Ω

|Hn(x,∇un)ϕ(wn)| dx.
(2.39)

Since ∣∣∣∣∫
Ω

Hn(x,∇un)ϕ(wn) dx

∣∣∣∣ ≤ ||∇un||p−1
Lp(Ω)||bϕ(T2k(u− Th(u)))||Lp , (2.40)

(where bϕ(wn) → bϕ(T2k(u − Th(u))) in Lp, by Lebesgue’s dominated convergence
theorem, because ϕ(wn) is bounded ).∣∣∣∣∫

Ω

Hn(x,∇un)ϕ(wn) dx

∣∣∣∣ =M9||bϕ(T2k(u− Th(u)))||Lp + α3
h(n), (2.41)
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and since gn(x, un,∇un)ϕ(wn) ≥ 0 on the subset {x ∈ Ω : |un(x)| > k}, we deduce
from (2.39) that∫

Ω

a(x, TM (un),∇TM (un)) · ∇wnϕ
′(wn) dx+

∫
{|un(x)|≤k}

gn(x, un,∇un)ϕ(wn) dx

≤
∫
Ω

fnϕ(wn) dx+M9||bϕ(T2k(u− Th(u)))||Lp + α3
h(n).

(2.42)
Splitting the first integral on the left hand side of (2.42) where |un| ≤ k and |un| > k,
we can write, by using (2.3)∫

Ω

a(x, TM (un),∇TM (un)) · ∇wnϕ
′(wn)dx

≥
∫
Ω

a(x, Tk(un),∇Tk(un)) · (∇Tk(un)−∇Tk(u))ϕ′(wn)dx

−Ck

∫
{|un|>k}

|a(x, TM (un),∇TM (un))||∇Tk(un)|dx.

(2.43)

where Ck = ϕ′(2k). Since, when n tends to infinity, we have ∇Tk(u)χ{|un|>k} tends

to 0 strongly in (Lp(Ω))N while, (a(x, TM (un),∇TM (un)))n is bounded in (Lp′
(Ω))N

hence the last term in the previous inequality tends to zero for every h fixed as n
tends to infinity. Now, observe that∫

Ω

a(x, Tk(un),∇Tk(un)) · [∇Tk(un)−∇Tk(u)]ϕ′(wn)dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))] · [∇Tk(un)−∇Tk(u)]ϕ′(wn)dx

+

∫
Ω

a(x, Tk(un),∇Tk(u)) · [∇Tk(un)−∇Tk(u)]ϕ′(wn)dx.

(2.44)
By the continuity of the Nymetskii operator, we have for all i = 1, ..., N,

ai(x, Tk(un),∇Tk(u))ϕ′(wn) → ai(x, Tk(u),∇Tk(u))ϕ′(T2k(u− Tk(u)))

strongly in Lp′
(Ω), and since ∂(Tk(un))

∂xi
⇀ ∂(Tk(u))

∂xi
weakly in Lp(Ω), the second term

of the right hand side of (2.44) tends to zero as n tends to infinity. So that (2.43)
yields ∫

Ω

a(x, TM (un),∇TM (u)) · [∇Tk(un)−∇Tk(u)]ϕ′(wn)dx

≥
∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

·[∇Tk(un)−∇Tk(u)]ϕ′(wn)dx+ α5
h(n).

(2.45)

For the second term of the left hand side of (2.42), we can estimate as follows∫
{|un|≤k}

g(x, un,∇un)ϕ(wn)dx ≤
∫
{|un|≤k}

L1(k)
(
L2(x) + |∇Tk(un)|p

)
|ϕ(wn)|dx

≤ L1(k)

∫
Ω

L2(x)|ϕ(wn)|dx+
L1(k)

α

∫
Ω

a(x, Tk(un),∇Tk(un)) · ∇Tk(un)|ϕ(wn)|dx.

(2.46)
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Remark that, we have∫
Ω

a(x, Tk(un),∇Tk(un)) · ∇Tk(un)|ϕ(wn)|dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))] · [∇Tk(un)−∇Tk(u)]|ϕ(wn)|dx

+

∫
Ω

a(x, Tk(un),∇Tk(un)) · ∇Tk(u)|ϕ(wn)|dx

+

∫
Ω

a(x, Tk(un),∇Tk(u)) · [∇Tk(un)−∇Tk(u)]|ϕ(wn)|dx.

(2.47)
By the Lebesgue’s Theorem, we have

∇Tk(u)|ϕ(wn)| → ∇Tk(u)|ϕ(T2k(u− Th(u)))| strongly in (Lp(Ω))N

Moreover, in view of (2.34) the second term of the right hand side of (2.47) tends to∫
Ω

hk.∇Tk(u)|ϕ(T2k(u− Th(u)))| dx.

The third term of the right hand side of (2.47) tends to 0 since for all i = 1, ..., N,

ai(x, Tk(un),∇Tk(u))ϕ(wn) → ai(x, Tk(u),∇Tk(u))ϕ(T2k(u− Tk(u)))

strongly in Lp′
(Ω), while

∂(Tk(un))

∂xi
⇀

∂(Tk(u))

∂xi
weakly in Lp(Ω).

From (2.46) and (2.47), we obtain∣∣∣∫
{|un|≤k}

g(x, un,∇un)ϕ(wn)dx
∣∣∣

≤
∫
Ω

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
·
[
∇Tk(un)−∇Tk(u)

]
|ϕ(wn)|dx

+

∫
Ω

hk.∇Tk(u)|ϕ(T2k(u− Th(u)))| dx+ L1(k)

∫
Ω

L2(x)|ϕ(wn)|dx+ α10
h (n),

(2.48)
Now, by the strongly convergence of fn and in fact that

wn ⇀ T2k(u− Tk(u)) weakly in W 1,p
0 (Ω) and weakly∗ in L∞(Ω), (2.49)

moreover, combining (2.45) and (2.48), we conclude that∫
Ω

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
·
[
∇Tk(un)−∇Tk(u)

]
(ϕ′(wn)− L1(k)

α |ϕ(wn)|)dx

≤ L1(k)

∫
Ω

L2(x)|ϕ(T2k(u− Th(u)))|dx+

∫
Ω

fϕ(T2k(u− Th(u)))|dx

+

∫
Ω

hk.∇Tk(u)|ϕ(T2k(u− Th(u)))| dx+M9||bϕ(T2k(u− Th(u)))||Lp + α11
h (n),

(2.50)
which and (2.35), implies that
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∫
Ω

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
·
[
∇Tk(un)−∇Tk(u)

]
dx

≤ 2L1(k)

∫
Ω

L2(x)|ϕ(T2k(u− Th(u)))|dx+ 2

∫
Ω

fϕ(T2k(u− Th(u)))|dx

+ 2

∫
Ω

hk.∇Tk(u)|ϕ(T2k(u− Th(u)))| dx+ 2M9||bϕ(T2k(u− Th(u)))||Lp + α12
h (n),

(2.51)
hence, passing to the limit over n, we obtain

lim sup
n→+∞

∫
Ω

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
·
[
∇Tk(un)−∇Tk(u)

]
dx

≤ 2L1(k)

∫
Ω

L2(x)|ϕ(T2k(u− Th(u)))|dx+ 2

∫
Ω

fϕ(T2k(u− Th(u)))|dx

+2M9||bϕ(T2k(u− Th(u)))||Lp + 2

∫
Ω

hk.∇Tk(u)|ϕ(T2k(u− Th(u)))| dx+ α13
h (n).

(2.52)
It remains to show, for our purposes, that the all terms on the right hand side of
(2.52) converge to zero as h goes to infinity. Therefore by (2.52), letting h go to
infinity, we conclude,

lim
n→+∞

∫
Ω

[
a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u))

]
· [∇Tk(un)−∇Tk(u)]dx = 0.

(2.53)
Then, Lemma 5 of [11] implies,

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω). (2.54)

Step 4: Equi-integrability of Hn and gn. We shall now prove that Hn(x,∇un) con-
verges to H(x,∇u) and gn(x, un,∇un) converges to g(x, u,∇u) strongly in L1(Ω) by
using Vitali’s theorem. Since Hn(x,∇un) → H(x,∇u) a.e. Ω and gn(x, un,∇un) →
g(x, u,∇u) a.e. Ω, thanks to (2.4) and (2.7), it suffices to prove that Hn(x,∇un) and
gn(x, un,∇un) are uniformly equi-integrable in Ω. We will now prove thatHn(x,∇un)
is uniformly equi-integrable, we use Hölder’s inequality and (2.13), we have for any
measurable subset E ⊂ Ω:∫

E

|Hn(x,∇un)| dx ≤
(∫

E

bp(x) dx
) 1

p
(∫

Ω

|∇un|p
) 1

p′

≤ C
(∫

E

bp(x) dx
) 1

p
(2.55)

which is small uniformly in n when the measure of E is small.

To prove the uniform equi-integrability of gn(x, un,∇un). For any measurable
subset E ⊂ Ω and m ≥ 0,∫
E

|g(x, un,∇un)| dx =

∫
E∩{|un|≤m}

|g(x, un,∇un)| dx+

∫
E∩{|un|>m}

|g(x, un,∇un)| dx

≤ L1(m)

∫
E∩{|un|≤m}

(
L2(x) + |∇un|p

)
dx+

∫
E∩{|un|>m}

|g(x, un,∇un)| dx

≤ L1(m)

∫
E∩{|un|≤m}

(
L2(x) + |∇Tm(un)|p

)
dx+

∫
E∩{|un|>m}

|g(x, un,∇un)| dx

= K1 +K2.
(2.56)
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For fixed m, we get

K1 ≤ L1(m)

∫
E

(
L2(x) + |∇Tm(un)|p

)
dx,

which is thus small uniformly in n for m fixed when the measure of E is small (recall

that Tm(un) tends to Tm(u) strongly in W 1,p
0 (Ω)). We now discuss the behavior of

the second integral of the right hand side of (2.56), let ψm be a function such that ψm(s) = 0 if |s| ≤ m− 1,
ψm(s) = sign(s) if |s| ≥ m,
ψ′
m(s) = 1 if m− 1 < |s| < m.

(2.57)

We choose for m > 1, ψm(un) as a test function in (2.12), we obtain∫
Ω

a(x, un,∇un) · ∇unψ′
m(un) dx+

∫
Ω

Φn(un) · ∇unψ′
m(un) dx

+

∫
Ω

gn(x, un,∇un)ψm(un) dx+

∫
Ω

Hn(x,∇un)ψm(un) dx =

∫
Ω

fnψm(un) dx.

By the divergence theorem, we get∫
Ω

Φn(un) · ∇unψ′
m(un) dx = 0.

Using (2.3) and Hölder’s inequality∫
{m−1≤|un|}

|gn(x, un,∇un)| dx ≤
∫
E

|Hn(x,∇un)| dx+

∫
{m−1≤|un|}

|f | dx,

and by (2.13), we have

lim
m→∞

sup
n∈N

∫
{|un|>m−1}

|gn(x, un,∇un)| dx = 0.

Thus we proved that the second term of the right hand side of (2.56) is also small,
uniformly in n and in E whenm is sufficiently large. Which shows that gn(x, un,∇un)
and Hn(x,∇un) are uniformly equi-integrable in Ω as required, we conclude that

Hn(x,∇un) → H(x,∇u) strongly in L1(Ω),
gn(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω).

(2.58)

Step 5: Passing to the limit. We take Tk(un − v) as test function in (2.12), with

v ∈W 1,p
0 (Ω) ∩ L∞(Ω), we can write∫

Ω

a(x, Tk+||v||∞(un),∇Tk+||v||∞(un)) · ∇Tk(un − v)dx+

∫
Ω

Φn(un) · ∇Tk(un − v)dx

+

∫
Ω

(g(x, un,∇un) +H(x,∇un))Tk(un − v) dx =

∫
Ω

fnTk(un − v)dx.

(2.59)
By Fatou’s lemma and in fact that

a(x, Tk+||v||∞(un),∇Tk+||v||∞(un))⇀ a(x, Tk+||v||∞(u),∇Tk+||v||∞(u))

weakly in (Lp′
(Ω))N . It easily see that∫

Ω

a(x, Tk+||v||∞(u),∇Tk+||v||∞(u)) · ∇Tk(u− v)dx

≤ lim infn→∞

∫
Ω

a(x, Tk+||v||∞(un),∇Tk+||v||∞(un)) · ∇Tk(un − v)dx.
(2.60)
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For the second term of the right hand side of (2.59). Since ∇Tk(un−v)⇀ ∇Tk(u−v)
weakly in (Lp(Ω))N , for the second term of the left hand side of (2.59), we have∫

Ω

Φn(un) · ∇Tk(un − v)dx→
∫
Ω

Φ(u) · ∇Tk(u− v)dx as n→ +∞. (2.61)

On the other hand, we have∫
Ω

fnTk(un − v)dx→
∫
Ω

fTk(u− v)dx as n→ +∞. (2.62)

Thanks to (2.58) and (2.60)-(2.62), we can pass to the limit in (2.59), and we obtain
that u is a solution of the problem (1.1). This completes the proof of Theorem 2.2. �

Remark 2.4. The condition (2.4) can be replaced by the weaker one

|g(x, s, ξ)| ≤ L2(x) + L1(|s|)|ξ|p, (2.63)

where L1 : R+ → R+ is a continuous increasing function and L2(x) ∈ L1(Ω).
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