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Control of singularities for the Laplace equation

GILBERT BAYILI, ABDOULAYE SENE, AND MARY TEW NIANE

ABSTRACT. In this paper, we prove that by acting on an arbitrarily small part of the domain
or on a small part of the boundary,we obtain a regular solution of the Laplace equation. For
this purpose a density result and a bi-orthogonality property of the Laplacian are used.
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1. Introduction and statement

We consider a bounded polygonal domain € of R? with cracks whose boundary T
is a union of the edges I'; for 0 < j < n. We assume that I' = T'p Uy where I'p
and I'y are two open connected parts of I' such that I'y # . We denote by S; the
vertex between I';_; and I'; for 1 < 7 <n and Sy the vertex between I',, and I'y. We
denote by w; (resp. wp) the measure of the internal angle between I'; and I'j_; (resp.
I', and T) at the point S; (resp. Sp).
On this domain €2, we consider the following problem

—Ay=f inQ

y=20 onI'p

@ =0 onTI -y
o N

where f € L*(Q.
In this case, the problem (1.1) has a unique variational solution in H'(Q). In fact
this is a poor regularity of y.

According to [2], usually, y has not the optimal regularity H?(Q). It is well known,
that the solution of the Laplace equation in a plane non convex polygonal domain
contains in general a singular part even for a very smooth data. In many cases
these singularities produced undesirable phenomena. To avoid these phenomena, we
consider the following problem

—Ay=f+u inQ

%y:v on FD (12)
azw in FN

where u, v and w are smooth functions whose support do not meet any cracks and
acting on an arbitrarily small part of the domain or on a small part of the boundary.
For suitable choice of these functions, we establish that the solution of the problem
(1.2) has the regularity H?(2) if v = w = 0 (internal control). We also prove that the
solution y of the problem (1.2) is in H2(£2) in case u = 0,v = 0 (boundary control on
Neumann condition) and u = 0,w = 0 (boundary control on Dirichlet condition). The
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proof uses a density result, bi-orthogonality property of the dual singular solutions
and the Theorem of Holmgren and Cauchy-Kowalevska.

Such a problem has already been studied in the literature for the Laplacian operator
but with Dirichlet condition [5]. Extensions concerning the Neumann condition and
mixed Dirichlet-Neumann boundary conditions. Similar problem was studied by the
authors for the heat equation [1] restricted to a finite bandwich.

The paper is organized as follows. In Section 2, we propose the calculation of
the singularities coefficients. In the section 3, we state bi-orthogonality properties of
harmonic functions. Finally, in section 4 we show that by acting on an arbitrarily
small part of the domain or on a small part of the boundary, we obtain a regular
solution of the Laplace equation with Neumann and Dirichlet-Neumann conditions.

2. Calculation of the singularities coefficients

For the sake of simplicity, we consider without loss of generality, a particular case
where, we suppose that {2 has one crack or a nonconvex angle at S and .S is the origin
in the local polar coordinates. The local polar coordinates at S are denoted by (r,0)
and w is the measure of the angle at S, (see Figure 1). Consider now A the unbounded
operator defined on L?(]0,w|) as follows: A¢p = —¢".

with ¢ € D(A) = {¢ € L2(J0,w]); A¢ € L2(J0,w]) }

A is nonnegative, self-adjoint and has a discrete spectrum. We denote by ¢,,,,m > 1,
the normalized eigenfunctions and by A\2,,m > 1, the corresponding eigenvalues. We
thus have —¢”, = —\2 ¢,,,, where ¢,,, € D(A) for every m.

Given f € L?(Q), the unique variational solution y € H'(Q) of the following Laplace
equation

Ay=f onf),
7y =0 inI'p, (2.1)
admits according to [2], the following decomposition
Y=y, + Z Nemt ™™ o (0) (2.2)
0<Am<1

where y, € H*(Q) is the regular part of y, ¢,, some real constants called singularities
coefficients depending on the geometry of the domain, S,, = 7" ¢, (6) are the sin-
gular solutions and 7 the cut off function such that n = 1 near S and 0 otherwise.
The dual singular solutions of the problem (2.1), w, = 7 "¢, () + b, where
Yy € HE(Q) verifies the following problem

Awy =0 on €,

Y, =0 inlp, (2.3)
ag; -0 inly

The set of the dual singular solutions of problem (2.3) associated to a vertex S contains
only one element in the following cases: if w; is greater than 7 in the case of Neumann
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FiGURE 1. Polygonal domain.

3
condition or in Dirichlet condition or if w is greater than T and less than X in the
case of mixed boundary conditions. In the case of mixed boundary conditions if the

. 3 . .
angle denoted w at S is greater than —, we have two dual singular solutions.

Using the dual singular solutions, the coefficient of the singularity c¢; at the vertex S,
associated to the solution y of the problem is given by

c1 :/waf dz. (2.4)

In the case of mixed boundary conditions, if the angle w associated to S is greater
3T . . . .
than — then the dual singular solutions set contains two elements. In this case

the calculation of the coefficients co, is quite different from c¢;. For this purpose, we
suppose that uV) = v — S; and f® = Au. Using the same technique we calculate

C2:/f(1)w§dl’.
Q
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3. Bi-orthogonality property of harmonic functions

We prove here the bi-orthogonality property of harmonic functions with Neumann
condition and mixed Dirichlet-Neumann boundary conditions.
We recall the following fundamental result which is proved in [5].

Theorem 3.1. (Density property) Let H be a Hilbert space, D a dense subspace of H
and {e1, €2, ...,em } alinearly independent subset of H. Then, there exist {d1,da, ...,dmn}
a subset of D such that Vi, j € {1,2,...,m}, (e;,dj) g = 0ij.

Now, we can prove the bi-orthogonality property of harmonic functions.

Theorem 3.2. Let Q) be a nonempty domain of R%, and w a nonempty open subset of
Q. If (W})1<i<m are linearly independent harmonic functions of L*(Q) verifying V i €

{1,---,m} wlidx = 0, then, there exist C™ functions (g;)1<i<m with compact

supports in w verifying the following two conditions
(1) Vie{l,---,m} /gidarzO,
Q

(2) Vi, je{l,---,m} /w;‘gjdxzéij.
Q

Proof. We let H = L*(w), w},,; =1 in Q, and prove that (w})i<i<m1 are lin-

early independent. Suppose that there exist real numbers a1, -, au,+1 such that
m+41

3 i -
m+1
Wehave/ Z a;w; dr =0, then a1 = Oand/ Zoz widx = 0. Since (W] )1<i<m
Q

i=1
are linearly independent, we deduce that

a1 == ams1 = 0.

Prove now that (w]|z)1<i<m+1 are linearly independent. Suppose that there exist

m—+1
reals numbers aq, - -+ , Q41 such that Z aiw) | = 0.
i=1
m+1 m+1
Since Z a;(w]|w) is harmonic, we have Z a;w! =0 in Q and then
1=1
(6751 :"':Oém+1:().

D(w) is dense in L*(w), then by Theorem 3.1 there exist C* functions (g;)1<i<m+1
with compact supports on w such that

Vi, je{l,---,m+1}, we have : /wfgjdxzéij.
Q
We conclude that

Vi, j€{l,---,m}, we have: /wfgjdxzéij.
Q

with the conditions V i € {1,--- ,m}, / gidr = 0. O
Q



230 G. BAYILI, A. SENE, AND M. T. NIANE

Theorem 3.3. Let Q be a nonempty domain of R?, T'. be a nonempty open subset
of T. If (w])1<i<m are linearly independent harmonic functions of L*() verifying

Vie{l,---,m} /wfdsz such that:
Q

O’
;Vl lr. =0 on T, and w}|r, € L*(T.), (3.1)

there exist C™ functions (h;)1<i<m with compact supports in I'. verifying the follow-
ing two conditions

Vie{l, - m}

(2) VZ,]é{l, ,m}/w;‘h]dmzéw
r

Proof. Set H = L*(I';) and w},,; =1 in Q. We have that (w])1<i<m+1 are linearly
independent. Prove that (w]|r,)1<i<m-+1 are linearly independent.

m—41
Suppose that there exist real numbers Sy, - - -, Bp41 such that Z Biwilr. =0o0nT..
i=1
m+1 ’
Set W = Z Biw;. W is harmonic and verifying:
i=1

AW =0 in{
YW =0 on I,

ow

v (W
By Cauchy-Kowalevska’s theorem, there exist a nonempty neighbourhood O of T,
such that W =0 1in O N Q.
We conclude by using Holmgren’s Theorem, that W =0in Qand 1 =+ = 41 =
0.
As D(T.) is dense in L?(T.), then by Theorem 3.1 there exist C°° functions (h;)1<i<m
with compact supports in I'. such that

)=0 onl..

Vi, je{l,---,m}, we have : /w;‘hjdcrzéij.
r

Moreover, we have V i € {1,--- ,m} /hi dx = 0. O
r

Theorem 3.4. Let Q be a nonempty domain of R%, T, a nonempty open subset of
I. If (w})1<i<m are linearly independent harmonic functions of L*(§)) verifying

*

Vie{l,---,m}, wr, =0 sur.; and 5‘80.: Ir, € L*(T,), (3.2)

there exist C* functions (hi)1<i<m with compact supports in I'. verifying

VZ7]€{1a7m}/a
I

¥
Proof. Set H = L?(T'.). We have that (w})1<i<m+1 are linearly independent.

*

First of all, we will prove that (88%
v

pc> are linearly independent. Suppose
1<i<m
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W

0
0

*
K3

|Fc =0 sur FC.

m
that there exist reals numbers 31, -, 8,, such that Z Bi
v
i=1

Set W = Z Biw?. W is harmonic and verifying:

i=1

—AW =0 in{
YW =0 on I,

ow
(5,
By Cauchy-Kowalevska’s theorem, there exists a nonempty neighbourhood O of T,
such that W =0in O N Q.
Holmgren’s theorem allows to conclude that W =0 in €2 hence 5, =--- = 3, = 0.
As D(T.) is dense in L?(T';), then by Theorem 3.1 there exist C* functions (h;)1<i<m
with compact supports in I'. such that

)=0 onT..

Vi, je{l,---,m}, we have : /wi*hjdozéij.
r

4. Main results

4.1. Control of singularities of the Laplace equation with Neumann condi-
tions. Let (Sj)i1<j<m be the vertices of the nonconvex angles (w;)1<;j<m; We suppose
that w; is greater than 7 for each j.

Theorem 4.1. Let w be a nonempty open subset of Q, f € L*(Q) satisfying the
condition / fdx =0 and (Ci)1<i<m the coefficients of singularities of the following

problem

—Ay=f inQ,
(4.1)
'y% =0 onl.
ov

Then there exist m C™ functions with compact supports in w, (gi)1<i<m Ssuch that
the solution of the problem

—Au=f-) Cigi inQ
=t (4.2)
ou
7 T
781/ 0 on I,
is in H%(Q).

Proof. The dual singular solutions of problem (4.1) verifies the conditions of Theorem
3.2. There exist m, C* functions (g;)1<i<m Wwith compact support in w verified

Vie{l,---,m} /gidxzoand such that
Q

Vi, je{l,---,m}, we have : /w;‘gjdx:(&j.
Q
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Let (&)1<i<m be the coefficients of singularities of Problem (4.2).
‘We have

& = /w;<f_zcj9j)dm
Q =
= [ wirae=300; [ wig i

=1

i =) Cy6i
j=1

ye?

|
Q

| |
S Q

This shows that u € H?((Q). O

Theorem 4.2. Let Q be a nonempty domain of R?, T'. a nonempty open subset of I.
If f € L*(Q) satisfies the condition / fdx =0 and (C;)1<i<m are the coefficients of
Q

singularities of the following problem

—Ay=f inQ
(4.3)
'y@ =0 onl,
v

then, there exist m, C* (h;)i<i<m functions with compact support in I'c, such that
the solution of the problem

—Au=f in
7% = fZCihi on I,
i=1
is in H%(9).

m
Proof. We suppose that z is a C* extension of Z C;h; in © with support in a neigh-

i=1
bourhood of I'c. Let v = u — z. Suppose that the coefficients of singularities of v
are denoted by (X;)1<i<m- As the dual singular functions w} verify the Theorem 3.3,
there exists C'*° functions (h;)1<;<m With compact support in I'; such that

Vz’,je{l,-~-,m},/wfhjdazéij.
r



CONTROL OF SINGULARITIES FOR THE LAPLACE EQUATION 233

We have that

Xi / wi(f + Az)dx
Q

— /w;‘fdx—k/w:‘Azdm
Q Q
0z owy
- Aw* 9= ot do — i
Cl—f—/gz wzdx—l—/raywj do /1“ By zdo

0z
= C’i—ZC’j/w;‘hjda
=1 7T

= Cl - f:cj(;”
j=1

= 07

then u € H?(Q). O

4.2. Cancellation of singularities of the Laplace equation with mixed bound-
ary conditions. We suppose that the angles (w;)1<i<m are greater than T and as-

3
sume that there exists ig € {1, -+ ,m} such that w;, > ?ﬂ Fori e {1,---,m}, we

denoted by N, the dimension of the dual solution associated to wj.

Theorem 4.3. Assume that w is a nonempty open subset of Q. If for f € L*(Q)
and (Cir) 1<i<m the coefficients of singularities of the problem

1<k<N;
—ANy=f inQ
vy =0 onT'p (4.5)
’y@ =0 only
Ov ’
then there exist (gir) 1<i<m , C™° functions with compact support in w, such that the

1<k<N;
solution of the problem

m N;
—Au=f— ZZC’ikgik in
i=1 k=1
vy =0 onIT'p (4.6)
0
78—3 =0 on 'y,

belongs to H?(2).

Proof. For i € {1,---m}, if N; = 1 then we apply Theorem 4.1 to prove that the
corresponding coefficients of singularities &;; are equal to zero.
If there exists ig € {1,---m}, such that N;, = 2 then the corresponding coefficients
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of singularities &;,1 and &;,2 are calculated as follows.
Calculation of &;,;. We have

m  Nj

it = /wfol(f—zzcjkgjk>dm
Q j=1k=1
m Nj
— /wfolfdfoZCjk/wfolgjkd:r
Q2 =0 k=1 Q
m Nj
= Cipt— Y_ > Cjndiyj01k
j=1k=1
Cip1 — Cig1
0.

Calculation of §;,2. Let u® =y — S;1 and fO = Au®. Then

iz = Awfoz(f—iiCjkgjk)dx

j=1k=1
m  Nj
= / wiyo f dz — Z chk/ w2 Gjk dx
Q2 =1 k=1 Q
m  Nj
= Ci2— Y Y Cjdiy;02
j=1k=1
Cig2 — Cip2
0
This allows us to conclude that u € H?(Q). O

Theorem 4.4. Let ) be a nonempty domain of R2, T'. a nonempty open subset of
I'p such that T.NTy = 0. If f € L*(Q) and (Cy) 1<i<m are the coefficients of

1<k<N;
singularities of the problem
—Ny=f inQ
vy =0 onTp (4.7)
0
’ya—y =0 only,
v
then there exist (hir) 1<i<m , C™ functions with compact supports on I'., such that
1<k<N;
the solution of the problem
—Au=f in Q
m N;
yu=3_> Cihis onTp (4.8)
5 i=1 k=1
'ya—z =0 on 'y,

belongs to H?(2).
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m Ni
Proof. Let z be a C* extension of Z Z Cirhir in Q with support in a neighbour-

i=1 k=1
hood of I'y.
Let v=y — 2z, thenv=0o0nI'p and —Av = f + Az. We denote by &1, ,&mnN,,
the coefficients of singularity associated to v. For ¢ € {1,---m}, if N; = 1 then we
apply Theorem 4.1 to prove that the corresponding coefficients of singularities &;; are
equal to zero.
If there exists ig € {1,---m}, such that N;, = 2 then the corresponding coefficients
of singularities £;,1 and &;,2 are as follows

Ei1 = /waol<f+Az)dx
m N ow?

/ zolfdx_zz llhijdd
=0 k= r

m  Nj
= Cipt = »_ > Cjdiyjork
j=1k=1
= Ci()l - Ci()l
= 0.
and
Civ2 = / 102<f+Az)da:
Q
m Ng
_ / ZOQfdfoZCjk/ zghwdg
J=1k=1
m N;
= Ciz =YY Cinbiyj
j=1k=1
= Ciy2 — Cip2
0.
Then we conclude that u € H?(Q). O

Theorem 4.5. Let ) be a nonempty domain of R%, T'. a nonempty open subset of
'y such that T,NTp = 0. If f € L*(Q) and (Cy) 1<i<m are the coefficients of

1<k<N;
singularities of the problem
—Ny=f inQ
vy =0 onT'p (4.9)
@ =0 only,

"Yau
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Then there exist (hik) 1<i<m , C™ functions with compact support on T, such that

1<k<N;
the solution u of the problem
—Au=f in Q
yu =0 onT'p
_ k_k
’Y%*chigi on 'y,

i=1 k=1
belongs to H?(2).

The proof is similar to the proof of Theorem 4.4.
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