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Control of singularities for the Laplace equation

Gilbert Bayili, Abdoulaye Sene, and Mary Tew Niane

Abstract. In this paper, we prove that by acting on an arbitrarily small part of the domain
or on a small part of the boundary,we obtain a regular solution of the Laplace equation. For
this purpose a density result and a bi-orthogonality property of the Laplacian are used.
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1. Introduction and statement

We consider a bounded polygonal domain Ω of R2 with cracks whose boundary Γ
is a union of the edges Γj for 0 ≤ j ≤ n. We assume that Γ = Γ̄D ∪ Γ̄N where ΓD

and ΓN are two open connected parts of Γ such that ΓN ̸= ∅. We denote by Sj the
vertex between Γj−1 and Γj for 1 ≤ j ≤ n and S0 the vertex between Γn and Γ0. We
denote by ωj (resp. ω0) the measure of the internal angle between Γj and Γj−1 (resp.
Γn and Γ0) at the point Sj (resp. S0).
On this domain Ω, we consider the following problem

−△y = f in Ω
y = 0 on ΓD

∂y

∂ν
= 0 on ΓN

(1.1)

where f ∈ L2(Ω.
In this case, the problem (1.1) has a unique variational solution in H1(Ω). In fact
this is a poor regularity of y.

According to [2], usually, y has not the optimal regularity H2(Ω). It is well known,
that the solution of the Laplace equation in a plane non convex polygonal domain
contains in general a singular part even for a very smooth data. In many cases
these singularities produced undesirable phenomena. To avoid these phenomena, we
consider the following problem

−△y = f + u in Ω
y = v on ΓD

∂y

∂ν
= w in ΓN

(1.2)

where u, v and w are smooth functions whose support do not meet any cracks and
acting on an arbitrarily small part of the domain or on a small part of the boundary.
For suitable choice of these functions, we establish that the solution of the problem
(1.2) has the regularity H2(Ω) if v = w = 0 (internal control). We also prove that the
solution y of the problem (1.2) is in H2(Ω) in case u = 0, v = 0 (boundary control on
Neumann condition) and u = 0, w = 0 (boundary control on Dirichlet condition). The
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proof uses a density result, bi-orthogonality property of the dual singular solutions
and the Theorem of Holmgren and Cauchy-Kowalevska.

Such a problem has already been studied in the literature for the Laplacian operator
but with Dirichlet condition [5]. Extensions concerning the Neumann condition and
mixed Dirichlet-Neumann boundary conditions. Similar problem was studied by the
authors for the heat equation [1] restricted to a finite bandwich.

The paper is organized as follows. In Section 2, we propose the calculation of
the singularities coefficients. In the section 3, we state bi-orthogonality properties of
harmonic functions. Finally, in section 4 we show that by acting on an arbitrarily
small part of the domain or on a small part of the boundary, we obtain a regular
solution of the Laplace equation with Neumann and Dirichlet-Neumann conditions.

2. Calculation of the singularities coefficients

For the sake of simplicity, we consider without loss of generality, a particular case
where, we suppose that Ω has one crack or a nonconvex angle at S and S is the origin
in the local polar coordinates. The local polar coordinates at S are denoted by (r, θ)
and ω is the measure of the angle at S, (see Figure 1). Consider now ∧ the unbounded
operator defined on L2(]0, ω[) as follows: ∧ϕ = −ϕ′′.

with ϕ ∈ D(∧) =
{
ϕ ∈ L2(]0, ω[); ∧ϕ ∈ L2(]0, ω[)

}
.

∧ is nonnegative, self-adjoint and has a discrete spectrum. We denote by ϕm,m ≥ 1,
the normalized eigenfunctions and by λ2m,m ≥ 1, the corresponding eigenvalues. We
thus have −ϕ′′m = −λ2mϕm, where ϕm ∈ D(∧) for every m.
Given f ∈ L2(Ω), the unique variational solution y ∈ H1(Ω) of the following Laplace
equation 

△y = f on Ω,

γy = 0 in ΓD,

∂y

∂ν
= 0 in ΓN

(2.1)

admits according to [2], the following decomposition

y = yr +
∑

0<λm<1

ηcmr
λmϕm(θ) (2.2)

where yr ∈ H2(Ω) is the regular part of y, cm some real constants called singularities
coefficients depending on the geometry of the domain, Sm = rλmϕm(θ) are the sin-
gular solutions and η the cut off function such that η = 1 near S and 0 otherwise.
The dual singular solutions of the problem (2.1), ω∗

m = r−λmϕm(θ) + ψm where
ψm ∈ H1

0 (Ω) verifies the following problem

△ω∗
m = 0 on Ω,

γω∗
m = 0 in ΓD,

∂ω∗
m

∂ν
= 0 in ΓN

(2.3)

The set of the dual singular solutions of problem (2.3) associated to a vertex S contains
only one element in the following cases: if ωj is greater than π in the case of Neumann
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Figure 1. Polygonal domain.

condition or in Dirichlet condition or if ω is greater than
π

2
and less than

3π

2
in the

case of mixed boundary conditions. In the case of mixed boundary conditions if the

angle denoted ω at S is greater than
3π

2
, we have two dual singular solutions.

Using the dual singular solutions, the coefficient of the singularity c1 at the vertex S,
associated to the solution y of the problem is given by

c1 =

∫
Ω

fω∗
1 dx. (2.4)

In the case of mixed boundary conditions, if the angle w associated to S is greater

than
3π

2
then the dual singular solutions set contains two elements. In this case

the calculation of the coefficients c2, is quite different from c1. For this purpose, we
suppose that u(1) = u− S1 and f (1) = △u(1). Using the same technique we calculate

c2 =

∫
Ω

f (1)ω∗
2 dx.
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3. Bi-orthogonality property of harmonic functions

We prove here the bi-orthogonality property of harmonic functions with Neumann
condition and mixed Dirichlet-Neumann boundary conditions.
We recall the following fundamental result which is proved in [5].

Theorem 3.1. (Density property) Let H be a Hilbert space, D a dense subspace of H
and {e1, e2, ..., em} a linearly independent subset of H. Then, there exist {d1, d2, ..., dm}
a subset of D such that ∀i, j ∈ {1, 2, ...,m}, (ei, dj)H = δij .

Now, we can prove the bi-orthogonality property of harmonic functions.

Theorem 3.2. Let Ω be a nonempty domain of R2, and ϖ a nonempty open subset of
Ω. If (ω∗

i )1≤i≤m are linearly independent harmonic functions of L2(Ω) verifying ∀ i ∈

{1, · · · ,m}
∫
Ω

ω∗
i dx = 0, then, there exist C∞ functions (gi)1≤i≤m with compact

supports in ϖ verifying the following two conditions

(1) ∀ i ∈ {1, · · · ,m}
∫
Ω

gi dx = 0,

(2) ∀ i, j ∈ {1, · · · ,m}
∫
Ω

ω∗
i gj dx = δij.

Proof. We let H = L2(ϖ), ω∗
m+1 = 1 in Ω, and prove that (ω∗

i )1≤i≤m+1 are lin-
early independent. Suppose that there exist real numbers α1, · · · , αm+1 such that
m+1∑
i=1

αiω
∗
i = 0.

We have

∫
Ω

m+1∑
i=1

αiω
∗
i dx = 0, then αm+1 = 0 and

∫
Ω

m∑
i=1

αiω
∗
i dx = 0. Since (ω∗

i )1≤i≤m

are linearly independent, we deduce that

α1 = · · · = αm+1 = 0.

Prove now that (ω∗
i |ϖ)1≤i≤m+1 are linearly independent. Suppose that there exist

reals numbers α1, · · · , αm+1 such that
m+1∑
i=1

αiω
∗
i |ϖ = 0.

Since
m+1∑
i=1

αi(ω
∗
i |ϖ) is harmonic, we have

m+1∑
i=1

αiω
∗
i = 0 in Ω and then

α1 = · · · = αm+1 = 0.

D(ϖ) is dense in L2(ϖ), then by Theorem 3.1 there exist C∞ functions (gi)1≤i≤m+1

with compact supports on ϖ such that

∀ i, j ∈ {1, · · · ,m+ 1}, we have :

∫
Ω

ω∗
i gj dx = δij .

We conclude that

∀ i, j ∈ {1, · · · ,m}, we have :

∫
Ω

ω∗
i gj dx = δij .

with the conditions ∀ i ∈ {1, · · · ,m},
∫
Ω

gi dx = 0. �
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Theorem 3.3. Let Ω be a nonempty domain of R2, Γc be a nonempty open subset
of Γ. If (ω∗

i )1≤i≤m are linearly independent harmonic functions of L2(Ω) verifying

∀ i ∈ {1, · · · ,m}
∫
Ω

ω∗
i dx = 0 such that:

∀ i ∈ {1, · · · ,m}, ∂ω
∗
i

∂ν
|Γc = 0 on Γc and ω∗

i |Γc ∈ L2(Γc), (3.1)

there exist C∞ functions (hi)1≤i≤m with compact supports in Γc verifying the follow-
ing two conditions

(1) ∀ i ∈ {1, · · · ,m}
∫
Γ

hi dx = 0

(2) ∀ i, j ∈ {1, · · · ,m}
∫
Γ

ω∗
i hj dx = δij .

Proof. Set H = L2(Γc) and ω∗
m+1 = 1 in Ω. We have that (ω∗

i )1≤i≤m+1 are linearly
independent. Prove that (ω∗

i |Γc)1≤i≤m+1 are linearly independent.

Suppose that there exist real numbers β1, · · · , βm+1 such that
m+1∑
i=1

βiω
∗
i |Γc = 0 on Γc.

Set W =
m+1∑
i=1

βiω
∗
i . W is harmonic and verifying:



−△W = 0 in Ω

γW = 0 on Γc

γ(
∂W

∂ν
) = 0 on Γc.

By Cauchy-Kowalevska’s theorem, there exist a nonempty neighbourhood O of Γc

such that W = 0 in O ∩ Ω.
We conclude by using Holmgren’s Theorem, thatW = 0 in Ω and β1 = · · · = βm+1 =
0.
As D(Γc) is dense in L

2(Γc), then by Theorem 3.1 there exist C∞ functions (hi)1≤i≤m

with compact supports in Γc such that

∀ i, j ∈ {1, · · · ,m}, we have :

∫
Γ

ω∗
i hj dσ = δij .

Moreover, we have ∀ i ∈ {1, · · · ,m}
∫
Γ

hi dx = 0. �

Theorem 3.4. Let Ω be a nonempty domain of R2, Γc a nonempty open subset of
Γ. If (ω∗

i )1≤i≤m are linearly independent harmonic functions of L2(Ω) verifying

∀ i ∈ {1, · · · ,m}, ω∗
i |Γc = 0 sur Γc and

∂ω∗
i

∂ν
|Γc ∈ L2(Γc), (3.2)

there exist C∞ functions (hi)1≤i≤m with compact supports in Γc verifying

∀ i, j ∈ {1, · · · ,m}
∫
Γ

∂ω∗
i

∂ν
hj dx = δij . (3.3)

Proof. Set H = L2(Γc). We have that (ω∗
i )1≤i≤m+1 are linearly independent.

First of all, we will prove that

(
∂ω∗

i

∂ν
|Γc

)
1≤i≤m

are linearly independent. Suppose
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that there exist reals numbers β1, · · · , βm such that
m∑
i=1

βi
∂ω∗

i

∂ν
|Γc = 0 sur Γc.

Set W =
m∑
i=1

βiω
∗
i . W is harmonic and verifying:



−△W = 0 in Ω

γW = 0 on Γc

γ(
∂W

∂ν
) = 0 on Γc.

By Cauchy-Kowalevska’s theorem, there exists a nonempty neighbourhood O of Γc

such that W = 0 in O ∩ Ω.
Holmgren’s theorem allows to conclude that W = 0 in Ω hence β1 = · · · = βm = 0.
As D(Γc) is dense in L

2(Γc), then by Theorem 3.1 there exist C∞ functions (hi)1≤i≤m

with compact supports in Γc such that

∀ i, j ∈ {1, · · · ,m}, we have :

∫
Γ

ω∗
i hj dσ = δij .

�

4. Main results

4.1. Control of singularities of the Laplace equation with Neumann condi-
tions. Let (Sj)1≤j≤m be the vertices of the nonconvex angles (ωj)1≤j≤m; we suppose
that ωj is greater than π for each j.

Theorem 4.1. Let ϖ be a nonempty open subset of Ω, f ∈ L2(Ω) satisfying the

condition

∫
Ω

f dx = 0 and (Ci)1≤i≤m the coefficients of singularities of the following

problem 
−△y = f in Ω,

γ
∂y

∂ν
= 0 on Γ.

(4.1)

Then there exist m C∞ functions with compact supports in ϖ, (gi)1≤i≤m such that
the solution of the problem

−△u = f −
m∑
i=1

Cigi in Ω

γ
∂u

∂ν
= 0 on Γ,

(4.2)

is in H2(Ω).

Proof. The dual singular solutions of problem (4.1) verifies the conditions of Theorem
3.2. There exist m, C∞ functions (gi)1≤i≤m with compact support in ϖ verified

∀ i ∈ {1, · · · ,m}
∫
Ω

gi dx = 0 and such that

∀ i, j ∈ {1, · · · ,m}, we have :

∫
Ω

ω∗
i gj dx = δij .
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Let (ξi)1≤i≤m be the coefficients of singularities of Problem (4.2).
We have

ξi =

∫
Ω

ω∗
i

(
f −

m∑
j=1

Cjgj

)
dx

=

∫
Ω

w∗
i f dx−

m∑
j=1

Cj

∫
Ω

w∗
i gj dx

= Ci −
m∑
j=1

Cjδij

= Ci − Ci

= 0.

This shows that u ∈ H2(Ω). �

Theorem 4.2. Let Ω be a nonempty domain of R2, Γc a nonempty open subset of Γ.

If f ∈ L2(Ω) satisfies the condition

∫
Ω

f dx = 0 and (Ci)1≤i≤m are the coefficients of

singularities of the following problem


−△y = f in Ω

γ
∂y

∂ν
= 0 on Γ,

(4.3)

then, there exist m, C∞ (hi)1≤i≤m functions with compact support in Γc, such that
the solution of the problem


−△u = f in Ω

γ
∂u

∂ν
= −

m∑
i=1

Cihi on Γ,
(4.4)

is in H2(Ω).

Proof. We suppose that z is a C∞ extension of
m∑
i=1

Cihi in Ω with support in a neigh-

bourhood of ΓC . Let v = u − z. Suppose that the coefficients of singularities of v
are denoted by (χi)1≤i≤m. As the dual singular functions ω∗

i verify the Theorem 3.3,
there exists C∞ functions (hi)1≤i≤m with compact support in Γc such that

∀ i, j ∈ {1, · · · ,m},
∫
Γ

ω∗
i hj dσ = δij .
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We have that

χi =

∫
Ω

ω∗
i (f +△z)dx

=

∫
Ω

ω∗
i f dx+

∫
Ω

ω∗
i △z dx

= Ci +

∫
Ω

z△ω∗
i dx+

∫
Γ

∂z

∂ν
ω∗
j dσ −

∫
Γ

∂ω∗
i

∂ν
z dσ

= Ci +

∫
Γ

∂z

∂ν
ω∗
i dσ

= Ci −
m∑
j=1

Cj

∫
Γ

ω∗
i hjdσ

= Ci −
m∑
j=1

Cjδij

= 0,

then u ∈ H2(Ω). �

4.2. Cancellation of singularities of the Laplace equation with mixed bound-

ary conditions. We suppose that the angles (ωi)1≤i≤m are greater than
π

2
and as-

sume that there exists i0 ∈ {1, · · · ,m} such that ωi0 >
3π

2
. For i ∈ {1, · · · ,m}, we

denoted by Ni the dimension of the dual solution associated to ωi.

Theorem 4.3. Assume that ϖ is a nonempty open subset of Ω. If for f ∈ L2(Ω)
and (Cik) 1≤i≤m

1≤k≤Ni

the coefficients of singularities of the problem


−△y = f in Ω
γy = 0 on ΓD

γ
∂y

∂ν
= 0 on ΓN ,

(4.5)

then there exist (gik) 1≤i≤m

1≤k≤Ni

, C∞ functions with compact support in ϖ, such that the

solution of the problem

−△u = f −
m∑
i=1

Ni∑
k=1

Cikgik in Ω

γy = 0 on ΓD

γ
∂y

∂ν
= 0 on ΓN ,

(4.6)

belongs to H2(Ω).

Proof. For i ∈ {1, · · ·m}, if Ni = 1 then we apply Theorem 4.1 to prove that the
corresponding coefficients of singularities ξi1 are equal to zero.
If there exists i0 ∈ {1, · · ·m}, such that Ni0 = 2 then the corresponding coefficients
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of singularities ξi01 and ξi02 are calculated as follows.
Calculation of ξi01. We have

ξi01 =

∫
Ω

ω∗
i01

(
f −

m∑
j=1

Nj∑
k=1

Cjkgjk

)
dx

=

∫
Ω

ω∗
i01 f dx−

m∑
j=0

Nj∑
k=1

Cjk

∫
Ω

ω∗
i01 gjk dx

= Ci01 −
m∑
j=1

Nj∑
k=1

Cjkδi0jδ1k

= Ci01 − Ci01

= 0.

Calculation of ξi02. Let u
(1) = u− Sj,1 and f (1) = △u(1). Then

ξi02 =

∫
Ω

ω∗
i02

(
f −

m∑
j=1

Nj∑
k=1

Cjkgjk

)
dx

=

∫
Ω

ω∗
i02 f dx−

m∑
j=1

Nj∑
k=1

Cjk

∫
Ω

ω∗
i02 gjk dx

= Ci02 −
m∑
j=1

Nj∑
k=1

Cjkδi0jδ2k

= Ci02 − Ci02

= 0

This allows us to conclude that u ∈ H2(Ω). �

Theorem 4.4. Let Ω be a nonempty domain of R2, Γc a nonempty open subset of
ΓD such that Γc ∩ ΓN = ∅. If f ∈ L2(Ω) and (Cik) 1≤i≤m

1≤k≤Ni

are the coefficients of

singularities of the problem 

−△y = f in Ω

γy = 0 on ΓD

γ
∂y

∂ν
= 0 on ΓN ,

(4.7)

then there exist (hik) 1≤i≤m

1≤k≤Ni

, C∞ functions with compact supports on Γc, such that

the solution of the problem
−△u = f in Ω

γu =

m∑
i=1

Ni∑
k=1

Cikhik on ΓD

γ
∂u

∂ν
= 0 on ΓN ,

(4.8)

belongs to H2(Ω).
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Proof. Let z be a C∞ extension of

m∑
i=1

Ni∑
k=1

Cikhik in Ω with support in a neighbour-

hood of Γ0.
Let v = y − z, then v = 0 on ΓD and −△v = f +△z. We denote by ξ11, · · · , ξmNm

the coefficients of singularity associated to v. For i ∈ {1, · · ·m}, if Ni = 1 then we
apply Theorem 4.1 to prove that the corresponding coefficients of singularities ξi1 are
equal to zero.
If there exists i0 ∈ {1, · · ·m}, such that Ni0 = 2 then the corresponding coefficients
of singularities ξi01 and ξi02 are as follows

ξi01 =

∫
Ω

ω∗
i01

(
f +△z

)
dx

=

∫
Ω

ω∗
i01 f dx−

m∑
j=0

Nj∑
k=1

Cjk

∫
Γ

∂ω∗
i01

∂ν
hij dσ

= Ci01 −
m∑
j=1

Nj∑
k=1

Cjkδi0jδ1k

= Ci01 − Ci01

= 0.

and

ξi02 =

∫
Ω

ω∗
i02

(
f +△z

)
dx

=

∫
Ω

ω∗
i02 f dx−

m∑
j=1

Nj∑
k=1

Cjk

∫
Γ

∂ω∗
i02

∂ν
hij dσ

= Ci02 −
m∑
j=1

Nj∑
k=1

Cjkδi0jδ2k

= Ci02 − Ci02

= 0.

Then we conclude that u ∈ H2(Ω). �

Theorem 4.5. Let Ω be a nonempty domain of R2, Γc a nonempty open subset of
ΓN such that Γc ∩ ΓD = ∅. If f ∈ L2(Ω) and (Cik) 1≤i≤m

1≤k≤Ni

are the coefficients of

singularities of the problem



−△y = f in Ω

γy = 0 on ΓD

γ
∂y

∂ν
= 0 on ΓN ,

(4.9)
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Then there exist (hik) 1≤i≤m

1≤k≤Ni

, C∞ functions with compact support on Γc, such that

the solution u of the problem
−△u = f in Ω
γu = 0 on ΓD

γ
∂u

∂ν
=

m∑
i=1

Ni∑
k=1

Ck
i g

k
i on ΓN ,

(4.10)

belongs to H2(Ω).

The proof is similar to the proof of Theorem 4.4.
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(Mary Tew Niane) Université Gaston-Berger de Saint-Louis, Laboratoire d’analyse

numérique et d’informatique BP 234, Université Gaston-Berger, Saint-Louis, Sénégal
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