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Abstract. This paper presents a novel approach to build an intelligent decision system (IDS)

inspired by the evolutionary paradigm in order to solve the automatic liver fibrosis stadial-
ization by optimizing the decision-making process. The evolutionary paradigm was used to
answer the basic question: how to distinguish between machine learning algorithms facing
a medical decision issue, and how to integrate the most effective of them into IDS, able to

provide an optimum decision? In the proposed IDS, a set of well-known neural networks are
regarded as the initial population of solutions, and an appropriate hierarchy of algorithms is
established fitness-proportionally based on a statistically built fitness measure. Then, the IDS
framework is built using the best algorithms and the paradigm of a weighted voting system.

In a concrete application, the degrees of liver fibrosis, ranging from F0 (no fibrosis) to F4 (cir-
rhosis), have been automatically identified in 722 patients with chronic hepatitis C infection
using 25 main medical attributes. The decision performance proved significantly superior to
the classical approach using standalone algorithms. This approach showed a way to directly

and easily optimize the medical decision-making by using the evolutionary paradigm.
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1. Introduction

From a computational point of view, by a decision support system (DSS) we un-
derstand a computer-based information system assisting the decision-making process,
and used to solve a large variety of real-life problems. Basically, DSSs are devel-
oped to support the solution of unstructured management issues in order to improve
the decision-making process [15]. Recent advances in artificial intelligence (AI) and
statistical learning (SL) enhanced these systems, giving rise to intelligent decision
systems (IDS) [10]. Among the most popular approaches, one can mention the expert
systems and well-known AI models, such as neural networks (NNs), genetic algo-
rithms (GAs), support vector machines (SVMs), cluster analysis, intelligent agents,
swarm intelligence, random forests, etc. [25], [11], [7]. The IDSs development has
been encouraged by their effectiveness when applied in a large variety of real-world
decision issues, such as: medical decision-making, business intelligence, customers’
relationship management, etc.

The majority of IDSs based on machine learning (ML) techniques is built around a
single algorithm and solves a specific problem only. There are various such approaches
based on natural computing algorithms applied to different real-life problems. Recent
studies propose the use of structured frameworks, usually known as committees of

Received September 20, 2013.

237



238 S. BELCIUG, M.S. SERBANESCU, F. GORUNESCU, AND R. BADEA

machines, involving more than one algorithm (e.g., NNs, SVMs) working together to
solve a given problem [4], [12], [23].

The medical decision-making is nowadays one of the most promising fields to use
IDSs. Thus, NNs, SVMs and classification trees have been proposed as standalone
algorithms to solve medical decision problems, such as: prediction of severe acute
pancreatitis at admission to hospital [1], seizure prediction with spectral power of EEG
in epilepsy [14], improving the accuracy of early diagnosis of Alzheimer-type dementia
[18]. On the other hand, competitive/collaborative neural computing systems and
hybrid neural network-genetic algorithms have been used as structured computational
frameworks involving more than one algorithm to solve decision issues, such as: early
detection of pancreatic cancer, or breast cancer detection and recurrence [9], [3].

Inspired by the evolutionary paradigm, the current work proposes a flexible stra-
tegy to design and implement IDS in order to optimize the liver fibrosis stadialization.
Thus, based on the evolutionary metaphor, this strategy envisages the integration
in an evolutionary manner of different well-performing NNs, competing and colla-
borating with each other in straight relation to the environment, hence making an
”intelligent” global decision. The main contributions of the paper are twofold: first,
the novel evolutionary-inspired strategy was used to develop IDS to support medical
decision, and, secondly, the validation of IDS in a real-life application regarding the
liver fibrosis stadialization.

2. Methods and Material

2.1. IDS design. The evolutionary-based concept underlying the design and func-
tionality of IDS is inspired by the ideas behind both the committees of machines
and the competitive/collaborative computation paradigm. In this respect, firstly a
committee of ML techniques is formed by combining several algorithms into a single
system, and, secondly, the overall decision of this committee is achieved in a synergic
evolutionary way by using a fitness-based weighted voting system (WVS).

The basic idea is to think about efficient types of natural computing algorithms to
form the initial population of solutions of a decision problem. Afterward, they will
”evolve” this way:

• Obtaining new variants by a ’mutation’ operator, used to maintain the genetic
diversity from one generation to the next one;

• Obtaining hybrids by a crossover operator, using pairs of selected algorithms to
breed offspring.

The original population will be enriched, and, after applying the selection mecha-
nism, the next population will be obtained. Basically, after the algorithms have been
tested, the best of them will be retained, based on their fitness given by the individual
decision performance, to give birth to the next generation. After a certain number
of generations, the most performing algorithms will be kept to form IDS. The popu-
lation of potential solutions (algorithms) is subject to a problem-dependent selection
process, followed by the establishment of a fitness proportional hierarchy.

Secondly, based on WVS and inspired by the evolutionary metaphor, the synergism
of this decision structure is involved by both the competition and the collaboration
between the component algorithms in making the overall decision. In this context,
the ’crossover’ operator refers to the fitness-based ’recombination’ of the individual
decisions, and the ’offspring’ represents the overall IDS decision.



EVOLUTIONARY-BASED INTELLIGENT DECISION MODEL 239

Because the algorithms forming IDS are of stochastic nature, they have to be in-
dependently run a certain number of times to obtain a reliable result regarding their
robustness and effectiveness. In this respect, a sample size estimation procedure (two-
tailed type of null hypothesis with default statistical power goal P ≥ 95%, and type I
error α = 0.05) has been proposed. The average accuracy computed as the percentage
of correctly classified cases represented the decision performance of each competitor.
From a statistical point of view, the classification accuracy obtained during the mul-
tiple independent computer runs of each algorithm constitutes a statistical sample of
decision performance. The model validation has been achieved by using the standard
10-fold cross-validation.

3. Fitness measure

For the sake of simplicity, the corresponding fitness measure was defined by four
standard performance metrics, integrated in the following structured functional frame-
work:
(1) Decision accuracy (training/testing) computed as the percentage of correctly

classified cases in both training and testing phases.
(2) Accuracy standard deviation (SD) (training/testing).
(3) Accuracy 95% confidence interval (CI) (training/testing).
(4) CPU time (running time) (training/testing) over a specific number of indepen-

dent computer runs, measuring the computation speed of each algorithm.

3.1. Benchmarking methodology. The fitness-based comparison of the decision
components is solved by means of a thorough statistical analysis, using the indepen-
dent samples of computer runs, and consisting of:
(1) The parametric t-test for independent samples.
(2) The nonparametric alternatives given by Mann-Whitney U test (M-W U) and

Kolmogorov-Smirnov two-sample test (K-S).
(3) Two-sided z-test for comparing proportions.
In addition, in conjunction with the above tests, and in order to analyze the long-

run behavior of each algorithm, the following statistical tests have been also used:
(1) Normality test: Kolmogorov-Smirnov & Lilliefors (K-S & L).
(2) Homogeneity of variances: Levene’s test.

3.2. Variation operators and selection. Based on the fitness measure used in
conjunction with the benchmark methodology presented above, the initial and the
”offspring” algorithms are statistically compared, and the fittest are chosen to seed
the next generations by applying the ’variation’ approach. Inspired by the idea un-
derlying the classical variation operators from the evolutionary computing field, we
have considered the hybridization of two algorithms as ’recombination’, and the de-
velopment of new variants as ’mutation’.

The survivor selection mechanism used in this approach is based on a steady-state
model, in which the entire population is not replaced at once, but just a number of
old individuals are replaced by offspring. Technically, once each algorithm has been
individually evaluated and the comparison process ended, two scenarios might be
possible regarding either the selection of individuals to form the new population, or
the IDS final decision-making:
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• There is no statistically significant difference between two or more algorithms,
measured using the corresponding p-level value (default threshold p = 0.05),
regardless of the comparison tests;

• Some tests reveal statistically significant difference while others do not identify
such a difference.

In the former case, the algorithms in question will be kept or removed together
from the population, or will be ex aequo ranked, receiving the same decision weight
when used to make the overall decision. In the latter case, depending on the ranking
order and taking into account the concrete problem to be solved, some of them will
be kept while others will be removed.

3.3. Decision-making synergic mechanism. In the decision-making process, the
IDS components are involved in a weighted collaborative operating mode in the fol-
lowing way. The best algorithms selected to form IDS are applied to new data and an
overall decision is being made based on a standard WVS. From mathematical point
of view, WVS is represented as a system {q: w1, w2, ..., wk}, where q is the quota, and
algorithm Pk has Wk votes, associated with the corresponding weight wk. It is worth
mentioning that a thorough approach involves, in addition, the use of the power index
[24].

In essence, the steps of the synergic decision-making process concern:
(1) The weights estimation for the selected algorithms. By default, a weight is

directly proportional to the individual decision performance;
(2) The choice of a quota between 51% and 100% of the total number of votes

(’legitimate’ WVS);
(3) Computation of the IDSS decision and estimation of the corresponding confidence

level.
The estimation of a confidence level of the IDS decision is based on a probabilistic
approach, described in [9]. Moreover, if a consensus is obtained, an upper bound can
also be estimated.

3.4. Case study: liver fibrosis stadialization. Hepatic fibrosis is the major indi-
cator of progressive liver disease and, in case of patients with chronic hepatitis C, its
precise stage is the most important predictor of disease progression and determines the
need for antiviral therapy. Technically, liver fibrosis is evaluated semi-quantitatively
according to the METAVIR F scoring system as follows: F0 - no fibrosis, F1 - portal
fibrosis without septa, F2 - portal fibrosis and few septa, F3 - numerous septa without
cirrhosis, and F4 - cirrhosis.

For 60 years liver biopsy was thought of as the ”gold standard” diagnosis for as-
sessing the progression of fibrosis in chronic hepatitis C patients [5]. An obvious
trend in clinical practice observed in the latter years consists in finding non-invasive
ways to obtain reliable methods for liver fibrosis evaluation by using both biochem-
ical tests as well as medical imaging methods, seen as a viable alternative. In this
regard, one of the last technological approaches in the evaluation of liver fibrosis is
the Fibroscan R⃝(Echosens, Paris, France - http://www. echosens.com), a specially
adapted ultrasound device using the principle of the one-dimension transient elastog-
raphy for the assessment of liver stiffness [19]. On the other hand, ML techniques
have been often used as decision-making tools in hepatic fibrosis stadialization. In
this respect, one can mention the use of NNs [6], [8], [16], [17], SVMs, evolutionary
SVMs, and cooperative coevolutionary classifier [20], [21], [22].
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In this study, the evolutionary-inspired IDS has been applied for liver fibrosis sta-
dialization to assess its practical effectiveness. Using a concrete medical database
regarding the chronic HCV infection, IDS has proven its efficacy against the stan-
dalone utilization of its ’intelligent’ components, outlining thus the benefits of this
novel approach.

3.5. Dataset. The proposed IDS has been applied on a medical database consisting
of 722 patients with chronic HCV infection, examined at the 3rd Medical Clinic within
the University of Medicine and Pharmacy ”Iuliu Haţieganu” Cluj-Napoca, Romania,
between May 2007 and August 2008. The patients were referred to liver stiffness
measurement (LSM) one day prior to percutaneous liver biopsy, and besides the
epidemiological, anthropometric and clinical parameters, the biological parameters
were determined for all patients on the same day as LSM. The data refer to: healthy
volunteers, chronic viral C hepatitis, liver cirrhosis, and fatty alcoholic liver disease.
The main medical attributes that are chosen by doctors to trigger a certain degree of
liver fibrosis are outlined in Table 1, and consist of 25 noninvasive attributes related
to the fibrosis stages F0-F4. The fibrosis stage was confirmed by the result of the
liver biopsy procedure.

The study was approved by the local Ethical Committee of the University of
Medicine and Pharmacy ”Iuliu Hatieganu” Cluj-Napoca, and the nature of the study
was explained to the patients, each of whom provided written informed consent before
the beginning of the study, in accordance with the principles of the Declaration of
Helsinki (revision of Edinburgh, 2000).

3.6. Evolutionary-based design of the model. The main components of the
evolutionary-based design of IDS are the following ones.

A. Initial population of algorithms
For the sake of simplicity, the initial population of algorithms taking into account

consisted of neural networks (NNs) only, known as well-performing classifiers, and
a genetic algorithm (GA), seen as efficient optimization algorithm. Concretely, we
considered three well-known NNs in use today: three-layer perceptron (3-MLP), radial
basis function neural network (RBF), and probabilistic neural network (PNN) [4], [12].

Note.
(1) For a standardization of the decision performance, we used the implementa-

tion within the Statistica 7 software package (Statistica Neural Networks (SNN)
package -StatSoft. Inc., Tulsa, OK 74104, USA).

(2) Although the evolution process can be theoretically iterated in many steps (gen-
erations), we stopped it after the second generation, and, therefore, IDS consisted
of one parent (3-MLP), one offspring (hybrid -MLP/GA) and one mutant (par-
tially connected neural network -PCNN).

(3) According to the universal approximation theorem, a single hidden layer (i.e., 3-
layer MLP) is sufficient to uniformly approximate any given continuous function
[12]

B. Crossover: hybrid MLP/GA algorithm
We considered the hybridization of MLP with GA to enhance the classification per-

formance of the former, since MLP proved to provide the best decision performance
during the training/testing process. Starting from the fact that training MLP means
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Table 1. Description of the fibrosis data average values and stan-
dard deviation

Feature F0 F1 F2 F3 F4

Stiffness 4.28± 0.88 6.06± 2.02 7.8± 3.6 11.92± 6.93 32.28± 18
Sex Male: 8 Male: 78 Male: 55 Male: 32 Male: 118
Body Mass Index 25.23±5 23.76±8.05 24.94±6.27 24.31±8.2 24±9.6
Glycemia 110±79.83 83.4±41.39 80.45±47.42 99±44.62 101.93±49.3

Triglycerides 125.66±90 92.62±79.96 87.48±64.66 98.85±64 106.6±74.92
Cholesterol 207.48±73.92 154.44±94.38 150±86.23 164±73.8 147.27±74.5
HLD Cholesterol 39.21±28.49 33.42±32.45 37.4±32.93 33.97±32.6 27.9±29.46
Aspartate

aminotransferase 32.41±20.42 39±29 47.47±36.5 68.56±54.37 77.15±54.9
Alanin
aminotransferase 53.72±37.85 63.77±51.24 75.62±60.63 102.75±94.93 77.2±59.82

Gama glutamyl
transpeptidase 63.59±63.52 49.19±46.74 62.45±71 78.34±84.3 137.4±208.44
Total bilirubin 0.57±0.31 0.56±0.4 0.58±0.46 0.7±0.4 2.15±7.68
Alkaline

phosphatase 188.83±146.31 148.17±97.01 150.33±110.45 178.97±106.77 248.95±163.3
Prothrombin
index 87±42.82 76.64±47.5 63.84±50.45 70.15±44.28 69.4±36.8
TQS (quiq time) 12.36±5.93 10.78±10.37 9.06±7.76 10.6±7.9 16±7

Prothrombin
time ratio 0.84±0.36 0.75±0.43 0.68±0.48 0.84±0.46 1.09±0.48
Prolonged activ.
partial 24.8±12.26 20.43±14.23 17.85±15.08 21±14.42 28.26±11.66

thromboplastin
time
Haematids 4.05±1.72 3.87±2.08 29.97±336.66 4.16±1.85 6.26±29.13

Hemoglobin 11.89±5.07 11.5±5.95 11.05±6.36 12.62±5.37 12.85±4.32
Hematocrit 35.18±14.86 31±19.68 25.65±21.44 30.9±19.87 36.06±14.38
Medium erytrocity
volume 69±36.23 57.7±41.63 48.92±44.11 58.8±42 72.82±35.73

Avg. erytrocitary
hemoglobin 22.16±12.83 18.7±14.38 16.43±15.04 19.2±14.62 26.3±15.8
Avg. concetration
of hemoglobin in 16.31±17.2 17.26±17 15.17±16.8 18.6±17.05 21.68±17.22

a red blood cell
Thrombocytes 209.69±73.35 184.6±105.54 170.85±105.3 175.84±85.19 116.33±76.3
Sideraemia 56.59±56 69.38±58.45 73.31±62.69 86±74.2 85.25±77.72
Interquartile

range 0.55±0.2 0.89±0.6 1.16±1.07 1.75±1.68 4.91±4.76

optimizing its synaptic weights, on the one hand, and GAs represent efficient opti-
mization techniques, we replaced the classical back-propagation (BP) learning algo-
rithm with the GA approach. The recently developed method of evolutionary-driven
MLP [3], which has been thoroughly investigated and validated on several benchmark
real-world medical datasets regarding the breast cancer detection and recurrence, has
provided the motivation to consider employing the new learning strategy towards the
automatic identification of the liver fibrosis degrees.

The proposed methodology unfolds in the following manner. The hybrid algorithm
consists of:

• The NN component -the classifier, designed as MLP;
• The GA component -the MLP’s weights optimizer, designed as GA.
MLP consists of a number of inputs equaling the number of predictive attributes

(25), one hidden layer with a number of processing units equaling the number of liver
fibrosis stages (5), and one output unit representing the class attribute (F0-F4). The
classical logistic sigmoid:

f(x) = 1/(1 + e−x) (1)
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has been considered as activation function since it satisfies the condition imposed
by the universal approximation theorem on the approximation function. It is worth
noting that the choice of the number of hidden processing units has been heuristically
chosen in order to produce competitive performance with low computational costs.

Next, a weight vector has been encoded as a vector of real numbers (MLP weights),
and thus, in evolutionary computing terms, the weight vector is represented by a
chromosome which contains a number of genes equaling the number of neurons from
the input layer multiplied by the number of neurons from the hidden layer. The
binary tournament selection [7] has been used, while the blend crossover (BLX-α) [13]
has been considered for recombination. Technically, two offspring were (uniformly)
randomly generated from the interval [chromosomemin - Iα, chromosomemax + Iα],
I = chromosomemax − chromosomemin, using the formulas:

chromosomemin = min{chromosome1i , chromosome2i } (2)

chromosomemax = max{chromosome1i , chromosome2i } (3)

The mutation process consisted of two steps:
(a) One establishes whether an addition or a subtraction is being made by randomly

generating a number between 0 and 1 per gene for each chromosome chosen for
mutation. If the number is smaller than the mutation probability pm, then that
gene is being mutated;

(b) Using the chromosome’s error, given by the formula:

chromosomeerror = (100− chromosomeaccuracy)/100, (4)

each gene is being mutated according to step (a), subtracting or adding to the initial
value the chromosome’s error.

Regarding the appropriate choice of the population size and number of generations,
we have heuristically considered a population of 100 individuals and a number of
generations equaling 100, given that the best performance has been experimentally
obtained in this case. At each iteration, all the 100 existing chromosomes have been
evaluated (the fitness of a given chromosome was computed by running the network
on the training set and considering the corresponding accuracy), and the best 40 of
them were kept for reproduction and mutation. Then, they have been mated with
each other, replenishing the population with 40 new offspring. The corresponding
parameters were heuristically chosen as α = 0.3 and pm = 0.35 to provide the best
accuracy possible in this case.

C. Mutation: partially connected MLP
The ’mutation’ proposed an artificial replica of the way the human brain works,

commonly known as partially connected neural network (PCNN). Originally, when
a signal is being processed by the brain, only certain neurons participate to that
course of action, those who have been excited, the other synapses being inhibited.
Thus, inspired by the methodology presented in [2], we developed a PCNN especially
designed to handle this type of data. Technically, after a certain number of training
samples have been presented to the network, the weights that did not suffer major
modifications (i.e., did not surpass a certain threshold throughout the BP learning
algorithm) are erased from the network’s architecture, being inhibited (i.e., set to
0). In this study, we have heuristically used a MLP with two hidden layers trained
by the BP algorithm. The first hidden layer contains 7 neurons, heuristically chosen
for optimal performance, the second hidden layer contains a number of processing
units equaling the number of liver fibrosis stages (5), and there is one output unit
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representing the class attribute (F0-F4). In addition, the models parameters have
also been heuristically chosen as N = 50 training samples, and τ = 0.005, in order to
produce higher performance with less computational costs.

Note. Both the hybrid MLP/GA and PCNN algorithms have been implemented
in Java by the authors.

4. Results

Apart from the theoretical argument based on the philosophy behind the evolution-
ary strategy that this novel technique would surpass its component algorithms, the
assumption that it also outperforms standard ML classifiers as regards the decision
accuracy on the liver fibrosis prediction task is further on investigated.

Technically, to assess the performance of the decision models envisaged in this
study, each algorithm has been executed in 100 independent computer runs (i.e.,
each model has been run 100 times in a complete 10-fold cross-validation cycle),
thus obtaining a statistical power greater than 95%, with type I error α = 0.05, for
the statistical comparison tests subsequently used. The average accuracy obtained
over the 100 complete cross-validation cycles represented the decision performance
of each competitor. The CPU time was measured for each model averaged over
100 independent runs using a relatively high-level system with Intel(R) Core(TM)2
Extreme CPU X9000, 2.80 GHz and 4GB (RAM).

4.1. IDS construction. As it was stated above, the fitness measure considered in
this case consisted of the training/testing accuracy, standard deviation (SD), 95%
confidence interval (CI), and CPU time, averaged over 100 independent complete
cross-validation cycles. The experimental results are displayed in Table 2.

Table 2. Fitness measure

Model Training Testing 95% CI- CPU
accuracy/SD (%) accuracy/SD (%) training/testing time

3-MLP 63.31/3.67 59.19/2.12 (62.58, 64.04)/(58.77, 59.61) 3’58”
RBF 60.78/2.84 55.35/3.45 (60.22, 61.34)/(54.66, 56.03) 0’6”
PNN 59.93/7.66 53.64/3.11 (58.42, 61.46)/(53.03, 54.26) 0’6”
Hybrid 63.50/3.14 61.16/4.54 (62.87, 64.13)/(60.26, 62.06) 3’15”
PCNN 62.02/3.28 57.92/3.85 (61.38, 62.66)/(57.17, 58.67) 3’21”

At the first glance, the competitive phase generated a fitness-based hierarchy, in
terms of classification performance, given as follows: (1) hybrid MLP/GA, (2) 3-MLP,
(3) PCNN, (4) RBF, (5) PNN. Taking into account the difference in performance
between the first three algorithms above and the last two, despite their higher com-
putation speed, we kept for the subsequent comparative statistical analysis and IDS
construction MLP/GA, 3-MLP and PCNN only. In this context, it is worth compar-
ing the performance of the selected algorithms with the performance, ranging between
51.8% and 62.03%, obtained by the use of other ML methods applied on the same
dataset and reported in the literature [8], [21], [22], showing the effectiveness of the
IDS components.

To compare the performance, we considered the following four statistical tests: (a)
t-test for independent samples, (b) Mann-Whitney U test (c) Kolmogorov-Smirnov
two-sample test, (d) two-sided z-test, while to analyze the long-run behavior of each
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algorithm we used: (a) Kolmogorov-Smirnov & Lilliefors, and (b) Levene tests. The
reason to use both parametric and nonparametric comparison tests resides in the fact
that the data are not entirely normally distributed, and the non-parametric alterna-
tives could provide valuable information, in addition. The corresponding results are
displayed in Table 3.

Table 3. Benchmark results

Comparison tests

Competitors t-test Mann-Whitney Kolomogorov z -test
p-level U/ p-level -Smirnov (p - level)

max min/max pos
(p-level)

3-MLP vs. hybrid 3.947/0.00 3000/0.00 -0.43/0.09 (< 0.001) 0.78
3-MLP vs. PCNN 2.86/0.00 4017/0.2 -0.1/0.26 (< 0.005) 0.88
Hybrid vs. PCNN 5.43/0.00 2771/0.00 -0.01/0.42/(< 0.001) 0.65

Thus, while there are highly significant differences in testing accuracy between the
three competitors when using both the parametric t-test for independent samples, the
nonparametric alternative given by the Kolmogorov-Smirnov two-sample test and the
Mann-Whitney U test, excepting the case 3-MLP vs. PCNN (M-W U), the two-sided
z-test did not reveal any statistically significant difference, which is not surprising
taking into account the nature of this test comparing the proportions only.

The normality test applied to data revealed different results. Thus, 3-MLP and
PCNN behave ”normally”, while the data corresponding to the hybrid MLP/GA were
not completely normally distributed. In addition, the variances are slightly different
(Levene’s test). This is not problematic for the t-test since the sample size is large
enough and the samples have the same size.

4.2. Synergic decision process. Taking into account the above selection process,
the WVS considered in this study was given by {51: 34.3, 33.2, 32.5}.

In order to evaluate the confidence level of the overall diagnosis, the correspond-
ing decision partition Bi, i =1, 2, 3, with P (B1) = 34.3%, P (B2) = 33.2% and
P (B3) = 32.5%, respectively, has been considered. Since the percentages of success-
ful diagnosis each algorithms produces is 61.16%, 59.19% and 57.92%, respectively,
then the confidence level of the IDS decision equals 59.45%. For a consensus between
the three ”voters” (”virtual doctors”), obtained in certain cases, the upper bound
confidence level can reach 93.33%.

4.3. Case study. A concrete example consisting in three different testing cases is
displayed in Table 4.

The model decision was given by the weighted sum of the three classifiers’ diagno-
sis, rounded to the nearest integer, determining the medical IDS diagnosis (fibrosis
stage). Thus, while in the first case, the first two standalone algorithms provided
the same diagnosis (F1), which is the real one, contrary to the third one (F2), the
WVS collaborative mechanism provided the right diagnosis. In the second case, the
second best algorithm provided the correct diagnosis (F3), while the first and the
third disagreed. Still the WVS system successfully solved the situation, providing the
right diagnosis. The third case, the most interesting one, showed that all the three
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Table 4. Concrete application (Decisions for three testing samples)

True Hybrid MLP/GA 3-MLP PCNN WVS IDSS
diagnosis diagnosis

F1 F1 F1 F2 0.343 · 1 + 0.332 · 1 F1
+ 0.325 · 2 = 1.32

F3 F4 F3 F2 0.343 · 4 + 0.332 · 3 F3
+ 0.325 · 2 = 3.01

F2 F3 F3 F0 0.343 · 3 + 0.332 · 3 F2
+ 0.325 · 0 = 1.99

decision components were wrong. Still, the WVS mechanism, by balancing the stan-
dalone decisions, provided the correct one. To conclude, this example illustrates once
again the effectiveness of the synergic competitive/collaborative diagnosis system in
comparison to separate standalone competitors.

5. Conclusions and Future Work

As opposed to the traditional paradigm, an evolutionary metaphor-based strategy
is proposed to build an intelligent decision model for medical purpose. Applied to
a real-world medical database regarding the liver fibrosis stadialization, its design
and functionality proved to be straightforward and efficient. Due to the well-known
flexibility and adaptability of its ”intelligent” components, it is easily adaptable to a
wide variety of decision problems.

Future work has to propose:
(1) The design and deploy of a management module, seen as the ”engine control unit

(ECU)”, automatically running the decision system;
(2) The enrichment of the initial population of candidate algorithms by considering

other powerful bio-inspired algorithms instead of NNs only.
(3) The application of IDS to other medical or non-medical decision issues.
Finally, let us mention the only major limitation in using this decision model,

given by this particular database size used in the learning phase. Basically, for large
databases, one can abandon the 10-fold cross-validation, using instead different sub-
sets for training and testing (e.g., 75% vs. 25%), and increasing thus the reliability
of the results.
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ucation and Research and the National Authority for Scientific Research (MEdC &
ANCS), and involving University of Craiova, University of Medicine and Pharmacy of
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