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Some Hilbert-type inequalities on time scales
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ABSTRACT. A time scale version of the Hilbert inequality is presented, which unifies and
extends well-known Hilbert inequalities in the continuous and in the discrete setting.
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1. Introduction

Few years ago, M. Krni¢ and J. Pecarié¢ [4], provided an unified treatment of the
Hilbert and Hardy-Hilbert type inequalities in general form and extended them to
cover the case when p and g are conjugate exponents. More precisely, they obtained
the following two equivalent inequalities:
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where p > 1, uq, uo are positive o-finite measures, K : Q@ x Q = R, f,g, 0,0 : Q2 = R
are measurable, non-negative functions and
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Before we present our main result, let us recall essentials about time scales. A time
scale T is an arbitrary nonempty closed subset of the real numbers R. Let a,b € T.
The interval [a, b] in time scale T is defined by [a,b] :={t € T : a <t < b}. We define
the forward jump operator o by o(t) := inf{s € T : s > t}, and the graininess y of the
time scale T by u(t) := o(t)—t. A point ¢ € T is said to be right-dense, right-scattered,
if o(t) = t, o(t) > t, respectively. We define f7 := f oo. For a function f: T — R
the delta derivative is defined by

F(x) = | ——=dus(y) and G(y) =
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Here are some basic formulas involving delta derivatives: f7 = f + uf?, (fg)> =
29+ 179% = f29° + f92, (f/9)® = (f29 — f9°)/(99°), where f, g are delta
differentiable and gg? # 0 in the last formula. A function f : T — R is called rd-
continuous provided it is continuous at all right-dense points in T and its left-sided
limits exist (finite) at all left-dense points in T. The classes of real rd-continuous
functions on an interval I will be denoted by C,q(I,R). For a, b € T and a delta
differentiable function f, the Cauchy integral is defined by f fAALt = f(b) — f(a).
For the concept of the Riemann delta integral and the Lebesgue delta integral, see
[2]. Note that the definition of the Riemann delta integrability is similar to the
classical one of a real variable, and that the Lebesgue delta integral is the Lebesgue
integral associated with the so-called Lebesgue delta measure. Every rd-continuous
function is Riemann delta integrable, and every Riemann delta integrable function is
Lebesgue delta integrable. Throughout, for convenience, when we speak about a delta
integrability, we mean the integrability in some of the above senses. The integration
by parts formula is given by:

b b
/ u(t)v® (t) At = [u(t)v(t)]’ —/ u® (t)v° (t)At. (1.4)

The chain rule formula (see [1], Theorem 1.90) that we will use in this paper is

W (1) = ( [+ h)u(t)]“dh) A1), (15)

where v > 1 and u : T — R is delta differentiable function.

Our results will be based on the mentioned results of Krni¢ and Pecari¢. First step
is to reformulate the inequalities (1.1) and (1.2) for time scales. Namely, rewriting
inequalities (1.1) and (1.2) for Lebesgue delta measures Az, Ay and time scale interval
[a, b], we have
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where p > 1, K : [a,b] X [a,b] = R, f,g,0,% : [a,b] — R are delta measurable,
non-negative functions and
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K K
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In what follows, without further explanation, we assume that all integrals exist on
the respective domains of their definitions.

F(x) =

(1.8)

2. Main results

By applying the inequalities (1.6) and (1.7) we obtain the following result.
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Theorem 2.1. Let T be a time scale with a € T. Let A > 2, 1% + % =1 withp > 1,
and define

> 1 1 1
A = | (,(y)((H(,(y))x(ﬁyﬁ(Hywﬂg(y)))% ™ € [a,00)

Then the following inequality
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(2.1)
holds for all non-negative and delta measurable functions f,g: T — R.

Proof. Rewrite the inequality (1.6) for the functions K(z,y) = (z +y)™*, A > 2,
o(x) = [zo(x)]9, (y) = [yo(y)]/?, z,y € |a,o0). Further, making use of (1.8), it
follows that
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o) @Y

Using the integration by parts formula (1.4) on the term F'(x) with

F(z) =G(z) = /OO x € [a,00). (2.2)

uMy) = b an v2 (y) = L
(v) Y d (v) o)’
we have
Flo) =l - [ W)t iy, (23)
where
1 ) =
v(y) = 2 and v (y) = o) (2.4)
Applying the chain rule (1.5) we obtain
1
s = ([ e+ 0w an) ud ), (25)
where
uA(y) = ! . (2.6)

(z+y)(z+o(y))

Taking into account (2.5) and the well-known inequality
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we observe that
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and therefore
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Finally, using (1.6) and (2.7) we obtain (2.1). O

The Hardy-Hilbert type inequality is proved in the following theorem.

Theorem 2.2. Let T be a time scale with a € T. Let A > 2, %—i—% =1 withp > 1, and
let A be defined as in the statement of Theorem 2.1. Then the following inequality

/aoo yal(y) (a(a Jlr v A(y)>1p {(ﬂrf]i(rxy))AAxrAy

< [Two@r (s - A@) A (25)

a+x

holds for all non-negative and delta measurable functions f : T — R.

Proof. The proof follows directly from the inequalities (1.7) and (2.7). Namely, if
p > 1, then we have

1 L
——— —A <G P(y),
[a(a Y (y)] < (y)
where G(y) is defined by (2.2). Now, the inequality (2.8) follows easily from (1.7). O

Remark 2.1. For T = R, we have o(y) = y, y € R, and the term A(z) defined in
Theorem 2.1 takes form

A(CU)ZQ/ W, l’e[a,o@), GER+.

For example, if a = 1, A > 2, then applying the inequality (2.1) we obtain the following
result
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where F'(a, 8;7;2) denotes the Gaussian hypergeometric function defined by

I'(v)
L(B)T(y - B)

Remark 2.2. Similarly, for T =N, a € N, we obtain

1
F(a, B;7;2) = / P 1 =) P 1 = 2t) "%t v > B> 0,2 < 1.
0

1 1 1
A(”):Zs+1 ((n+s+1)A(n+s) - (n+5)A(n+5+1)>7 men

s=a
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and the inequalities (2.1) and (2.8) become

S mm + 1! ((jm) - A<m>) fp(m)>

B (b ]

and

P

m=a

i (o + 0P (s — A ) 720,

Now, our further step is to derive corresponding inequalities for the kernel K (z,y) =
(1+2y)~*, A > 0, and the weight functions p?(z) = P (x) = /0 (x) + o(x)\/7.
Proceeding as in the proof of Theorem 2.1, we can prove the following result.

Theorem 2.3. Let T be a time scale with a € T. Let A > 0, % + % =1 withp > 1,
and define

1 1

:/a Vo) ((1 T o) A+ ay) | A+ ey (1 + 20())

Then the following inequality
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a(l+ay

> Ay, z € [a,00).

o=

holds for all non-negative and delta measurable functions f,g: T — R.

In the following, instead of the formula (1.5) we use the chain rule (see [1], Theorem
1.87):

(fo9)2(t) = f'(9(c))g™(t), for some c € [t,0(t)], (2.10)

where g : R — R is continuous, ¢ : T — R is delta differentiable and f : R — R is
continuously differentiable.

Theorem 2.4. Let T be a time scale with a € T. Let X > 0, % + % =1 withp > 1,
and define

> 1 1
Aa) = A/a O R ) B AR Gl
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Then the following inequalities

[ 1w ([ e (G 200) f%)m)é
x(AdewP*(MaiwA+A@09%wA@é
(2.11)

and

[ e 50) [ s

< / o) ((1(1 + A(@) (@) An (2.12)

a+xz)?
hold for all non-negative and delta measurable functions f,g: T — R.
Proof. We prove (2.11) only. To show this, we follow the same procedure as in the
proof of Theorem 2.1 except that we provide a new estimate for the functions F'(z)

and G(x) defined by (2.2).
More precisely, from the inequality (2.3) we get

R V.S I WP,
Fo) = oo+ [ W) st acles) 1)
where u(y) = 1/(z + y). Using (2.6) and (2.10) we have
(u*(y)> = A , for some ¢ € [y, o(y)],

(z+ )M (z+y)(z+a(y))
and therefore

A
A A< . 2.14
TS o) (240
Finally, making use of (1.6), (2.13) and (2.14) we obtain (2.11). O
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