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Some Hilbert-type inequalities on time scales

Josip Pečarić and Predrag Vuković

Abstract. A time scale version of the Hilbert inequality is presented, which unifies and
extends well-known Hilbert inequalities in the continuous and in the discrete setting.
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1. Introduction

Few years ago, M. Krnić and J. Pečarić [4], provided an unified treatment of the
Hilbert and Hardy-Hilbert type inequalities in general form and extended them to
cover the case when p and q are conjugate exponents. More precisely, they obtained
the following two equivalent inequalities:∫

Ω×Ω

K(x, y)f(x)g(y)dµ1(x)dµ2(y) (1.1)

≤
[∫

Ω

φp(x)F (x)fp(x)dµ1(x)

] 1
p
[∫

Ω

ψq(y)G(y)gq(y)dµ2(y)

] 1
q

and∫
Ω

G1−p(y)ψ−p(y)

[ ∫
Ω

K(x, y)f(x)dµ1(x)

]p
dµ2(y) ≤

∫
Ω

φp(x)F (x)fp(x)dµ1(x),

(1.2)
where p > 1, µ1, µ2 are positive σ-finite measures, K : Ω×Ω → R, f, g, φ, ψ : Ω → R
are measurable, non-negative functions and

F (x) =

∫
Ω

K(x, y)

ψp(y)
dµ2(y) and G(y) =

∫
Ω

K(x, y)

φq(x)
dµ1(x). (1.3)

Before we present our main result, let us recall essentials about time scales. A time
scale T is an arbitrary nonempty closed subset of the real numbers R. Let a, b ∈ T.
The interval [a, b] in time scale T is defined by [a, b] := {t ∈ T : a ≤ t ≤ b}. We define
the forward jump operator σ by σ(t) := inf{s ∈ T : s > t}, and the graininess µ of the
time scale T by µ(t) := σ(t)−t. A point t ∈ T is said to be right-dense, right-scattered,
if σ(t) = t, σ(t) > t, respectively. We define fσ := f ◦ σ. For a function f : T → R
the delta derivative is defined by

f∆(t) := lim
s→t,σ(s)̸=t

fσ(s)− f(t)

σ(s)− t
.
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Here are some basic formulas involving delta derivatives: fσ = f + µf∆, (fg)∆ =
f∆g + fσg∆ = f∆gσ + fg∆, (f/g)∆ = (f∆g − fg∆)/(ggσ), where f, g are delta
differentiable and ggσ ̸= 0 in the last formula. A function f : T → R is called rd-
continuous provided it is continuous at all right-dense points in T and its left-sided
limits exist (finite) at all left-dense points in T. The classes of real rd-continuous
functions on an interval I will be denoted by Crd(I,R). For a, b ∈ T and a delta

differentiable function f, the Cauchy integral is defined by
∫ b

a
f∆(t)∆t = f(b)− f(a).

For the concept of the Riemann delta integral and the Lebesgue delta integral, see
[2]. Note that the definition of the Riemann delta integrability is similar to the
classical one of a real variable, and that the Lebesgue delta integral is the Lebesgue
integral associated with the so-called Lebesgue delta measure. Every rd-continuous
function is Riemann delta integrable, and every Riemann delta integrable function is
Lebesgue delta integrable. Throughout, for convenience, when we speak about a delta
integrability, we mean the integrability in some of the above senses. The integration
by parts formula is given by:∫ b

a

u(t)v∆(t)∆t = [u(t)v(t)]ba −
∫ b

a

u∆(t)vσ(t)∆t. (1.4)

The chain rule formula (see [1], Theorem 1.90) that we will use in this paper is

(uγ(t))∆ = γ

(∫ 1

0

[huσ(t) + (1− h)u(t)]γ−1dh

)
u∆(t), (1.5)

where γ > 1 and u : T → R is delta differentiable function.
Our results will be based on the mentioned results of Krnić and Pečarić. First step

is to reformulate the inequalities (1.1) and (1.2) for time scales. Namely, rewriting
inequalities (1.1) and (1.2) for Lebesgue delta measures ∆x,∆y and time scale interval
[a, b], we have

∫ b

a

∫ b

a

K(x, y)f(x)g(y)∆x∆y ≤

[∫ b

a

φp(x)F (x)fp(x)∆x

] 1
p
[∫ b

a

ψq(y)G(y)gq(y)∆y

] 1
q

(1.6)
and ∫ b

a

G1−p(y)ψ−p(y)

[ ∫ b

a

K(x, y)f(x)∆x

]p
∆y ≤

∫ b

a

φp(x)F (x)fp(x)∆x, (1.7)

where p > 1, K : [a, b] × [a, b] → R, f, g, φ, ψ : [a, b] → R are delta measurable,
non-negative functions and

F (x) =

∫ b

a

K(x, y)

ψp(y)
∆y and G(y) =

∫ b

a

K(x, y)

φq(x)
∆x. (1.8)

In what follows, without further explanation, we assume that all integrals exist on
the respective domains of their definitions.

2. Main results

By applying the inequalities (1.6) and (1.7) we obtain the following result.
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Theorem 2.1. Let T be a time scale with a ∈ T. Let λ ≥ 2, 1
p + 1

q = 1 with p > 1,

and define

Λ(x) :=

∫ ∞

a

1

σ(y)

(
1

(x+ σ(y))λ(x+ y)
+

1

(x+ y)λ(x+ σ(y))

)
∆y, x ∈ [a,∞).

Then the following inequality∫ ∞

a

∫ ∞

a

f(x)g(y)

(x+ y)λ
∆x∆y ≤

(∫ ∞

a

[xσ(x)]p−1

(
1

a(a+ x)λ
− Λ(x)

)
fp(x)∆x

) 1
p

×
(∫ ∞

a

[yσ(y)]q−1

(
1

a(a+ y)λ
− Λ(y)

)
gq(y)∆y

) 1
q

(2.1)

holds for all non-negative and delta measurable functions f, g : T → R.

Proof. Rewrite the inequality (1.6) for the functions K(x, y) = (x + y)−λ, λ ≥ 2,
φ(x) = [xσ(x)]1/q, ψ(y) = [yσ(y)]1/p, x, y ∈ [a,∞). Further, making use of (1.8), it
follows that

F (x) = G(x) =

∫ ∞

a

1

yσ(y)

1

(x+ y)λ
∆y, x ∈ [a,∞). (2.2)

Using the integration by parts formula (1.4) on the term F (x) with

uλ(y) =
1

(x+ y)λ
and v∆(y) =

1

yσ(y)
,

we have

F (x) = uλv|∞a −
∫ ∞

a

(uλ(y))∆vσ(y)∆y, (2.3)

where

v(y) = −1

y
and vσ(y) = − 1

σ(y)
. (2.4)

Applying the chain rule (1.5) we obtain

(uλ(y))∆ = λ

(∫ 1

0

[huσ + (1− h)u]λ−1dh

)
u∆(y), (2.5)

where

u∆(y) = − 1

(x+ y)(x+ σ(y))
. (2.6)

Taking into account (2.5) and the well-known inequality

(a+ b)γ ≥ aγ + bγ , a, b ≥ 0, γ ≥ 1,

we observe that

λ

∫ 1

0

[
h

x+ σ(y)
+

1− h

x+ y

]λ−1

dh ≥ λ

∫ 1

0

[(
h

x+ σ(y)

)λ−1

+

(
1− h

x+ y

)λ−1
]
dh

=
1

(x+ σ(y))λ−1
+

1

(x+ y)λ−1
,
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and therefore

F (x) ≤ uλv|∞a −
∫ ∞

a

1

σ(y)

(
1

(x+ σ(y))λ−1
+

1

(x+ y)λ−1

)
1

(x+ y)(x+ σ(y))
∆y

=
1

a(a+ x)λ
− Λ(x).

(2.7)

Finally, using (1.6) and (2.7) we obtain (2.1). �

The Hardy-Hilbert type inequality is proved in the following theorem.

Theorem 2.2. Let T be a time scale with a ∈ T. Let λ ≥ 2, 1
p +

1
q = 1 with p > 1, and

let Λ be defined as in the statement of Theorem 2.1. Then the following inequality∫ ∞

a

1

yσ(y)

(
1

a(a+ y)λ
− Λ(y)

)1−p [
f(x)

(x+ y)λ
∆x

]p
∆y

≤
∫ ∞

a

[xσ(x)]p−1

(
1

a(a+ x)λ
− Λ(x)

)
fp(x)∆x (2.8)

holds for all non-negative and delta measurable functions f : T → R.

Proof. The proof follows directly from the inequalities (1.7) and (2.7). Namely, if
p > 1, then we have [

1

a(a+ y)λ
− Λ(y)

]1−p

≤ G1−p(y),

where G(y) is defined by (2.2). Now, the inequality (2.8) follows easily from (1.7). �

Remark 2.1. For T = R, we have σ(y) = y, y ∈ R, and the term Λ(x) defined in
Theorem 2.1 takes form

Λ(x) = 2

∫ ∞

a

dy

y(x+ y)λ+1
, x ∈ [a,∞), a ∈ R+.

For example, if a = 1, λ ≥ 2, then applying the inequality (2.1) we obtain the following
result∫ ∞

1

∫ ∞

1

f(x)g(y)

(x+ y)λ
dxdy

≤
(∫ ∞

1

x2(p−1)

(
1

(x+ 1)λ
− 2F (1 + λ, 1 + λ; 2 + λ;−x)

)
fp(x)dx

) 1
p

×
(∫ ∞

1

y2(q−1)

(
1

(y + 1)λ
− 2F (1 + λ, 1 + λ; 2 + λ;−y)

)
gq(y)dy

) 1
q

,

where F (α, β; γ; z) denotes the Gaussian hypergeometric function defined by

F (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− zt)−αdt, γ > β > 0, z < 1.

Remark 2.2. Similarly, for T = N, a ∈ N, we obtain

Λ(n) =

∞∑
s=a

1

s+ 1

(
1

(n+ s+ 1)λ(n+ s)
+

1

(n+ s)λ(n+ s+ 1)

)
, n ∈ N,
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and the inequalities (2.1) and (2.8) become

∞∑
m=a

∞∑
n=a

f(m)g(n)

(m+ n)λ
≤

( ∞∑
m=a

[m(m+ 1)]p−1

(
1

a(a+m)λ
− Λ(m)

)
fp(m)

) 1
p

×

( ∞∑
n=a

[n(n+ 1)]q−1

(
1

a(a+ n)λ
− Λ(n)

)
gq(n)

) 1
q

and

∞∑
n=a

1

n+ 1

(
1

a(a+ n)λ
− Λ(n)

)1−p
[ ∞∑
m=a

f(m)

(m+ n)λ

]p

≤
∞∑

m=a

[m(m+ 1)]p−1

(
1

a(a+m)λ
− Λ(m)

)
fp(m).

Now, our further step is to derive corresponding inequalities for the kernelK(x, y) =

(1 + xy)−λ, λ > 0, and the weight functions φq(x) = ψp(x) = x
√
σ(x) + σ(x)

√
x.

Proceeding as in the proof of Theorem 2.1, we can prove the following result.

Theorem 2.3. Let T be a time scale with a ∈ T. Let λ ≥ 0, 1
p + 1

q = 1 with p > 1,

and define

Λ(x) :=

∫ ∞

a

x√
σ(y)

(
1

(1 + xσ(y))λ(1 + xy)
+

1

(1 + xy)λ(1 + xσ(y))

)
∆y, x ∈ [a,∞).

Then the following inequality∫ ∞

a

∫ ∞

a

f(x)g(y)

(1 + xy)λ
∆x∆y

≤
(∫ ∞

a

[x
√
σ(x) + σ(x)

√
x]p−1

(
1√

a(1 + ax)λ
− Λ(x)

)
fp(x)∆x

) 1
p

×
(∫ ∞

a

[y
√
σ(y) + σ(y)

√
y]q−1

(
1√

a(1 + ay)λ
− Λ(y)

)
gq(y)∆y

) 1
q

(2.9)

holds for all non-negative and delta measurable functions f, g : T → R.

In the following, instead of the formula (1.5) we use the chain rule (see [1], Theorem
1.87):

(f ◦ g)∆(t) = f ′(g(c))g∆(t), for some c ∈ [t, σ(t)], (2.10)

where g : R → R is continuous, g : T → R is delta differentiable and f : R → R is
continuously differentiable.

Theorem 2.4. Let T be a time scale with a ∈ T. Let λ ≥ 0, 1
p + 1

q = 1 with p > 1,

and define

Λ(x) := λ

∫ ∞

a

1

σ(y)

1

(x+ σ(y))λ+2(x+ σ(y))
∆y, x ∈ [a,∞).
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Then the following inequalities∫ ∞

a

∫ ∞

a

f(x)g(y)

(x+ y)λ
∆x∆y ≤

(∫ ∞

a

[xσ(x)]p−1

(
1

a(a+ x)λ
+ Λ(x)

)
fp(x)∆x

) 1
p

×
(∫ ∞

a

[yσ(y)]q−1

(
1

a(a+ y)λ
+ Λ(y)

)
gq(y)∆y

) 1
q

(2.11)

and ∫ ∞

a

1

yσ(y)

(
1

a(a+ y)λ
+ Λ(y)

)1−p [∫ ∞

a

f(x)

(x+ y)λ
∆x

]p
∆y

≤
∫ ∞

a

[xσ(x)]p−1

(
1

a(a+ x)λ
+ Λ(x)

)
fp(x)∆x (2.12)

hold for all non-negative and delta measurable functions f, g : T → R.

Proof. We prove (2.11) only. To show this, we follow the same procedure as in the
proof of Theorem 2.1 except that we provide a new estimate for the functions F (x)
and G(x) defined by (2.2).

More precisely, from the inequality (2.3) we get

F (x) =
1

a(a+ x)λ
+

∫ ∞

a

(uλ(y))∆
1

σ(y)
∆y, x ∈ [a,∞), (2.13)

where u(y) = 1/(x+ y). Using (2.6) and (2.10) we have

(uλ(y))∆ =
λ

(x+ c)λ+1(x+ y)(x+ σ(y))
, for some c ∈ [y, σ(y)],

and therefore

(uλ(y))∆ ≤ λ

(x+ y)λ+2(x+ σ(y))
. (2.14)

Finally, making use of (1.6), (2.13) and (2.14) we obtain (2.11). �
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