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On a theorem of Ţăndăreanu and Tudor

J. Climent Vidal

Abstract. For an operator domain Σ, which has exactly one binary operator symbol σ, and
a set M , Ţăndăreanu and Tudor have defined a homomorphism fM from the inf-semi-lattice

Sub(M), where Sub(M), the underlying set of Sub(M), is the set of all subsets of M , to the
inf-semi-lattice SubΣ(TΣ(M)), where SubΣ(TΣ(M)), the underlying set of SubΣ(TΣ(M)),
is the set of all subalgebras of the free Σ-algebra TΣ(M) on M , by assigning to each X ⊆
M precisely TΣ(X), the underlying set of the free Σ-algebra TΣ(X) on X, identified to

SgTΣ(M)(X), the subalgebra of TΣ(M) generated by X. In this note we show, on the one

hand, that the aforementioned homomorphisms between inf-semi-lattices are the components
of a natural transformation between two suitable contravariant functors, and, on the other

hand, that when the above mentioned homomorphisms are considered as order preserving
mappings, they are the components of a natural transformation between two appropriate
functors.
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1. Introduction

In the article [3], the authors, Ţăndăreanu and Tudor, for a fixed operator domain
Σ = (Σ, ar), which has exactly one binary operator symbol σ, and a fixed set M ,
define a homomorphism (i.e., a mapping which preserves the nonempty finite infs)
fM from the inf-semi-lattice Sub(M) = (Sub(M),⊆), where Sub(M) is the set of
all subsets of M , to the inf-semi-lattice SubΣ(TΣ(M)) = (SubΣ(TΣ(M)),⊆), where
SubΣ(TΣ(M)) is the set of all subalgebras of the free Σ-algebra TΣ(M) on M (which
is called by the aforementioned authors the Peano Σ-algebra over M and which they
denote by M), by sending each X ⊆ M to TΣ(X), the underlying set of the free
Σ-algebra TΣ(X) on X, identified to the subalgebra of TΣ(M) generated by X.

Before explaining more fully the contents of the subsequent, and final, section of
this note, we next proceed, on the one hand, to recall, mainly to keep the exposition
as self-contained as possible, for an operator domain Σ = (Σ, ar) which has exactly
one binary operator symbol σ, some basic facts concerning the free Σ-algebras, and,
on the other hand, to set up the notation and terminology that will be used in it.

Let Σ = (Σ, ar) be an operator domain which has exactly one binary operator
symbol σ and let M be a set disjoint of {σ}, for simplicity. Then WΣ(M), the Σ-
algebra of words on M , has as underlying set (M ∪ {σ})⋆, i.e., the set of all words of
finite length on the alphabet M ∪ {σ}, and as structural operation, associated to σ,
the mapping Fσ from ((M ∪ {σ})⋆)2 to (M ∪ {σ})⋆ which assigns to an ordered pair
of words (P,Q) the word (σ)fP fQ, i.e., the concatenation of the words (σ), P , and
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Q (which, by abuse of language, is abbreviated to σ(P,Q)). Next, the free Σ-algebra
on M , denoted by TΣ(M), is SgWΣ(M)({(x) | x ∈ M}), the Σ-algebra canonically

associated to SgWΣ(M)({(x) | x ∈ M}), the subalgebra of WΣ(M) generated by the

subset {(x) | x ∈ M} of (M∪{σ})⋆. We next state some relevant background material
concerning TΣ(M), the underlying set of TΣ(M), which will be used afterwards.
(1) TΣ(M) =

∪
n∈N Mn, where (Mn)n∈N is the family of subsets of (M ∪ {σ})⋆

defined by recursion as follows:

M0 = {(x) | x ∈ M},
Mn+1 = Mn ∪ {σ(P,Q) | P,Q ∈ Mn}, n ≥ 0.

(2) TΣ(M) =
∪

n∈N Bn, where (Bn)n∈N is the family of subsets of (M∪{σ})⋆ defined
by recursion as follows:

B0 = {(x) | x ∈ M},
Bn+1 = Mn+1 −Mn, n ≥ 0.

(3) For every P ∈ TΣ(M) there exists a unique n ∈ N such that P ∈ Bn. We call
this unique natural number the length of P and denote it by ℓ(P ).

(4) For every P ∈ TΣ(M), if ℓ(P ) = 0, then there exists a unique x ∈ M such that
P = (x), and if ℓ(P ) ≥ 1, then there exists a unique pair (Q,R) ∈ TΣ(M)2 such
that P = σ(Q,R).

Moreover, we denote by ηM the canonical mapping from M to TΣ(M) which sends
an x in M to (x) in TΣ(M), and, for a mapping h from M to the underlying set
B of a Σ-algebra B, we denote by h♯ the unique homomorphism from TΣ(M) to
B such that h♯ ◦ ηM = h (notice that in a category of structured sets, we carefully
distinguish objects from their underlying sets, while, with the customary abuse of
notation, in such a type of category we identify morphisms with their underlying
mappings). In addition, if f is a mapping from M to M ′, then we denote by TΣ(f)
(≡ TΣ(f)) the canonical homomorphism (ηM ′ ◦ f)♯ from TΣ(M) to TΣ(M

′), with
ηM ′ the canonical mapping from M ′ to TΣ(M

′), the underlying set of TΣ(M
′).

Furthermore, if the mapping f is injective (resp. surjective, bijective), then TΣ(f)
is injective (resp. surjective, bijective), and, for every subset X of M , TΣ(X) is
isomorphic to SgTΣ(M)(X), the Σ-algebra canonically associated to SgTΣ(M)(X),

the subalgebra of TΣ(M) generated by X, which, by abuse of language, we identify.
We will work in one of the familiar systems of set theory, as, e.g., Zermelo-Fraenkel-

Skolem, but assuming, in addition, the existence of a Grothendieck universe U , fixed
once and for all, and from now on we adopt the following conventions concerning
categories and functors.
(1) Set denotes the category which has as objects the U -small sets, i.e., the elements

of U , and as morphisms from a U -small set X to another U -small set Y the
mappings from X to Y .

(2) Alg(Σ) denotes the category of (U -small) Σ-algebras and homomorphisms be-
tween Σ-algebras.

(3) Pos denotes the category of (U -small) partially ordered sets and order-preserving
mappings.

(4) InfSLat denotes the category of (U -small) inf-semi-lattices and homomorphisms
of inf-semi-lattices. i.e., mappings which preserve the nonempty finite infs.

(5) TΣ denotes the functor from Set to Alg(Σ) that sends a set M to TΣ(M), and
a mapping f from M to M ′ to TΣ(f) (≡ TΣ(f)), the canonical homomorphisms
from TΣ(M) to TΣ(M

′).
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(6) Sub denotes the functor from Set to Pos that sends a set M to the partially
ordered set Sub(M) = (Sub(M),⊆), and a mapping f from M to M ′ to f [·],
an abbreviation for Sub(f), the order-preserving mapping from the partially
ordered set Sub(M) to the partially ordered set Sub(M ′) = (Sub(M ′),⊆) that
sends a subset X of M to the subset f [X] of M ′, its direct image under f .

(7) Sub− denotes the contravariant functor from Set to InfSLat that sends a set
M to the inf-semi-lattice Sub(M) = (Sub(M),∩), and a mapping f from M to
M ′ to f−1[·], an abbreviation for Sub−(f), the meet-preserving mapping from
the inf-semi-lattice Sub(M ′) = (Sub(M ′),∩) to the inf-semi-lattice Sub(M) =
(Sub(M),∩) that sends a subset Y of M ′ to the subset f−1[Y ] of M , its inverse
image under f .

(8) SubΣ denotes the functor from Alg(Σ) to Pos that sends a Σ-algebra A to the
partially ordered set SubΣ(A) = (SubΣ(A),⊆) of all subalgebras of A, and a
homomorphism h from A to B to h[·], an abbreviation for SubΣ(h), the order-
preserving mapping from the partially ordered set SubΣ(A) to the partially
ordered set SubΣ(B) = (SubΣ(B),⊆) that sends a subalgebra X of A to the
subalgebra h[X] of B, its direct image under h.

(9) Sub−
Σ denotes the contravariant functor fromAlg(Σ) to InfSLat that sends aΣ-

algebra A to the inf-semi-lattice SubΣ(A) = (SubΣ(A),∩) of all subalgebras of
A, and a homomorphism h from A to B to h−1[·], an abbreviation for Sub−

Σ(h),
the meet-preserving mapping from the inf-semi-lattice SubΣ(B) = (SubΣ(B),∩)
to the inf-semi-lattice SubΣ(A) = (SubΣ(A),∩) that sends a subalgebra Y of
B to the subalgebra h−1[Y ] of A, its inverse image under h.

In this note, for a fixed operator domain Σ = (Σ, ar), which has exactly one binary
operator symbol σ, we show that the family of homomorphisms of inf-semi-lattices
(fM )M∈U , where, for every M ∈ U , we have that fM is precisely

fM

{
Sub(M) // SubΣ(TΣ(M))

X 7−→ TΣ(X)

i.e., the homomorphism defined by Ţăndăreanu and Tudor in [3] for M , is a natural
transformation ζ from the contravariant functor Sub− to the contravariant functor
Sub−

Σ ◦TΣ, both from Set to InfSLat. We represent this situation by the following
diagram

Set

Sub−

&&

Sub−
Σ ◦TΣ

99InfSLat.
�� ��
��ζ

Furthermore, we prove that the family of homomorphisms of inf-semi-lattices (fM )M∈U ,
when considered as a family of order-preserving mappings, is a natural transforma-
tion ξ from the functor Sub to the functor SubΣ ◦TΣ, both from Set to Pos. We
represent this situation by the following diagram

Set

Sub
%%

SubΣ ◦TΣ

::Pos.
�� ��
��ξ

For categorial and algebraic conventions, concepts, and constructions not otherwise
given explicitly within the note, readers are referred to [1], [2], and [4].
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2. The homomorphism of Ţăndăreanu and Tudor is doubly natural.

In this section we state the promised proofs of the facts that the family of homomor-
phisms of inf-semi-lattices (fM )M∈U , defined in Section 1, is a natural transformation
ζ from the contravariant functor Sub− to the contravariant functor Sub−

Σ ◦TΣ, and
that the family of homomorphisms of inf-semi-lattices (fM )M∈U , when considered as
a family of order-preserving mappings, is a natural transformation ζ from the functor
Sub to the functor SubΣ ◦TΣ. We warn the reader that to simplify the proofs, and
without loss of generality, we identify words of length 1 with its unique component.

Proposition 2.1. Let Σ = (Σ, ar) be an operator domain which has exactly one
binary operator symbol σ. Then there exists a natural transformation ζ from the
contravariant functor Sub− to the contravariant functor Sub−

Σ ◦ TΣ, both from the
category Set to the category InfSLat.

Proof. Let ζ be, by definition, the mapping from U , the set of all objects of Set, to
Mor(InfSLat), the set of all homomorphisms of InfSLat, which sends a set M in U
to the homomorphism ζM = fM from Sub(M) to SubΣ(TΣ(M)) in InfSLat. We
want to show that, for every mapping f : M //M ′, the following diagram commutes

Sub(M)
ζM // SubΣ(TΣ(M))

Sub(M ′)

f−1[·]

OO

ζM ′

// SubΣ(TΣ(M
′))

TΣ(f)
−1[·]

OO

where the meaning of f−1[·] was explained in Section 1, and TΣ(f)
−1[·], an ab-

breviation for Sub−
Σ(TΣ(f)), is the homomorphism, i.e., the meet-preserving map-

ping, from the inf-semi-lattice SubΣ(TΣ(M
′)) = (SubΣ(TΣ(M

′)),∩), of all subal-
gebras of TΣ(M

′), to the inf-semi-lattice SubΣ(TΣ(M)) = (SubΣ(TΣ(M)),∩), of
all subalgebras of TΣ(M), that sends a subalgebra Y of TΣ(M

′) to the subalgebra
TΣ(f)

−1[Y ] of TΣ(M), its inverse image under TΣ(f)[·]. Therefore, for a map-
ping f : M //M ′, we should prove that, for every subset Y of M ′, we have that
TΣ(f)

−1[TΣ(Y )] = TΣ(f
−1[Y ]).

Let Y be an arbitrary but fixed subset of M ′. Then we have that TΣ(Y ) =
SgTΣ(M ′)(Y ) and TΣ(f

−1[Y ]) = SgTΣ(M)(f
−1[Y ]) (see Section 1). Therefore, since

TΣ(f) (≡ TΣ(f)) is a homomorphism from TΣ(M) to TΣ(M
′), we can assert that

TΣ(f)
−1[TΣ(Y )] is a subalgebra of TΣ(M) and, because TΣ(f)

−1[TΣ(Y )] ⊇ f−1[Y ],
recall that we have agreed on identifying words of length 1 with its unique component,
we conclude that TΣ(f

−1[Y ]) ⊆ TΣ(f)
−1[TΣ(Y )].

To prove that TΣ(f)
−1[TΣ(Y )] ⊆ TΣ(f

−1[Y ]) we proceed by induction, taking into
account that TΣ(Y ) is

∪
n∈N Yn, where (Yn)n∈N is the family defined by recursion as

follows:

Y0 = {(y) | y ∈ Y },
Yn+1 = Yn ∪ {σ(P ′, Q′) | P ′, Q′ ∈ Yn}, n ≥ 0,

and that TΣ(f)
−1[TΣ(Y )] =

∪
n∈N TΣ(f)

−1[Yn]. We have that TΣ(f)
−1[Y0] ⊆

TΣ(f
−1[Y ]). In fact, let P ∈ TΣ(M) be such that TΣ(f)(P ) ∈ Y0. Then there

exists a unique y ∈ Y such that TΣ(f)(P ) = (y). Hence, necessarily, ℓ(P ) = 0
and, consequently, P = (x), for a unique x ∈ M . Therefore (f(x)) = (y), thus
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f(x) = y. From this it follows that P ∈ TΣ(f
−1[Y ]). Let us suppose that, for n ≥ 0,

TΣ(f)
−1[Yn] ⊆ TΣ(f

−1[Y ]) and that P ∈ TΣ(f)
−1[Yn+1]. Then P ∈ TΣ(f)

−1[Yn]
or P ∈ TΣ(f)

−1[{σ(Q′, R′) | Q′, R′ ∈ Yn}]. If P ∈ TΣ(f)
−1[Yn], then we are done.

Let P ∈ TΣ(M) be such that TΣ(f)(P ) ∈ {σ(Q′, R′) | Q′, R′ ∈ Yn}. Then there
exists a unique pair (Q′, R′) ∈ Y 2

n such that TΣ(f)(P ) = σ(Q′, R′). Hence, necessar-
ily, ℓ(P ) ≥ 1 and, consequently, P = σ(Q,R), for a unique pair (Q,R) ∈ TΣ(M)2.
Therefore TΣ(f)(P ) = TΣ(f)(σ(Q,R)) = σ(TΣ(f)(Q),TΣ(f)(R)) = σ(Q′, R′), thus
TΣ(f)(Q) = Q′ and TΣ(f)(R) = R′. From this it follows that P ∈ TΣ(f

−1[Y ]). �

Proposition 2.2. Let Σ = (Σ, ar) be an operator domain which has exactly one
binary operator symbol σ. Then there exists a natural transformation ξ from the
functor Sub to the functor SubΣ ◦ TΣ, both from the category Set to the category
Pos.

Proof. Let ξ be, by definition, the mapping from U , the set of all objects of Set, to
Mor(Pos), the set of all order-preserving mappings of Pos, which sends a set M in U
to the order-preserving mapping ξM = fM from Sub(M) to SubΣ(TΣ(M)) in Pos
(this is well defined because fM preserves the nonempty finite infs). We want to show
that, for every mapping f : M //M ′, the following diagram commutes

Sub(M)
ξM //

f [·]
��

SubΣ(TΣ(M))

TΣ(f)[·]
��

Sub(M ′)
ξM ′

// SubΣ(TΣ(M
′))

where the meaning of f [·] was explained in Section 1, and TΣ(f)[·], an abbreviation
for SubΣ(TΣ(f)), is the order-preserving mapping from the partially ordered set
SubΣ(TΣ(M)) = (SubΣ(TΣ(M)),⊆), of all subalgebras of TΣ(M), to the partially
ordered set SubΣ(TΣ(M

′)) = (SubΣ(TΣ(M
′)),⊆), of all subalgebras of TΣ(M

′),
that sends a subalgebra X of TΣ(M) to the subalgebra TΣ(f)[X] of TΣ(M

′), its
direct image under TΣ(f)[·]. Therefore, for a mapping f : M //M ′, we should
prove that, for every subset X of M , we have that TΣ(f)[TΣ(X)] = TΣ(f [X]).

Let X be an arbitrary but fixed subset of M . Then we have that TΣ(X) =
SgTΣ(M)(X) and TΣ(f [X]) = SgTΣ(M ′)(f [X]) (see Section 1). Therefore, since TΣ(f)

(≡ TΣ(f)) is a homomorphism from TΣ(M) to TΣ(M
′) and TΣ(f)[X] = f [X],

because we have agreed, in particular, on identifying, for every x ∈ X, the word
(f(x)) of length 1 with f(x), we have that

TΣ(f)[TΣ(X)] = TΣ(f)[SgTΣ(M)(X)]

= SgTΣ(M ′)(TΣ(f)[X])

= SgTΣ(M ′)(f [X])

= TΣ(f [X]).

�
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