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Spherical functions on transitive groupoids
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Abstract. Let G be a topological locally compact, Hausdorff and second countable groupoid
with a Haar system and K a compact subgroupoid of G with a Haar system too. (G,K) is a

Gelfand pair if the algebra of K-biinvariant functions is commutative under convolution. In

this paper, we study spherical functions on groupoids and generalize some well-known results
on groups.
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1. Introduction

Since the works of E. Cartan and H. Weyl around 1930, the theory of spheri-
cal functions plays an important part in non commutative harmonic analysis. They
showed that spherical harmonics arise in a natural way from the study of functions
on n− dimensional sphere. The first generalization of the theory were given by I.M.
Gelfand in 1950. In [6], Gelfand considers a Lie group G (not necessarily compact)
and a compact subgroup K of G such that the bi-K-invariant integrable functions
on G, L1(G\\K), forms a commutative Banach algebra for the convolution product.
Such a pair (G,K) is called Gelfand pair. Under this condition, a function ϕ from
G to the complex field is spherical if it is continuous, bi-K-invariant and the linear
form f 7−→ ϕ(f) =

∫
f(x)ϕ(x)dx is a homomorphism of L1(G\\K) onto the com-

plex field. The spherical functions play the role of the exponential function for the
Gelfand pairs. The theory was extended to locally compact group and several other
generalizations exist in the literature. For more details on Gelfand pairs and spher-
ical functions the reader can consult [2, 3, 5, 6, 7]. Groupoids are generalizations of
groups. Thus in [15, 16], we have extending the notion of Gelfand pair from groups to
groupoids. In this paper, our main goal is to study spherical functions associated to
Gelfand pairs on groupoids and establish some classical theorems of harmonic anal-
ysis including Bochner theorem. As in [15] we are interested in transitive groupoids.
More precisely, this paper is a continuation of [15]. The outline of this work is as
follows. In the following section we give notations and setup useful for the remainder
of this paper. In section 3, we establish the basic properties of spherical functions on
groupoids including functional equation characterizing them. Also the closed connec-
tion between positive definite spherical functions and irreducible representations with
K− fixed vector is proved in groupoids context where K− fixed vector is replaced by
K− fixed square integrable section. The notion of positive definite function has been
extended to groupoids by Ramsay and Walter [12]. In section 4, thanks to the main
result of [15] which asserts that for transitive groupoids G, (G,K) is a Gelfand pair if
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and only if for each m ∈ G(0), (Gmm,K
m
m ) is a Gelfand pair, we establish a correspon-

dence between the positive definite spherical functions on G and the positive definite
spherical functions on Gmm. Thanks to this correspondence, we have generalized to
groupoids some classical theorems of harmonic analysis on groups.

2. Preliminaries

We use the notations and setup of this section in the rest of the paper without
mentioning. We shall use definition of a locally compact groupoid and the definition
of a Haar system on groupoid giving by J. Renault in [14]. Let G be a locally compact,
Hausdorff, second countable groupoid. G(0) denotes the unit space of G and G(2) the
set of composable pairs. For x ∈ G, r(x) = xx−1 and d(x) = x−1x are respectively
the range and the domain of x. For u, v ∈ G(0), let us put Gu = r−1(u), Gv = d−1(v),
Guv = Gu ∩ Gv and for each unit element u, Guu = {x ∈ G : r(x) = d(x) = u}
is the isotropy group at u. The group bundle G′ = {x ∈ G : r(x) = d(x)} is
called the isotropy group bundle of G. There exists an equivalent relation on G(0)

defined as follows: u, v ∈ G(0), u ∼ v iff Guv 6= ∅. The equivalence class of u is
denoted by [u] and is called the orbit of u. As a subset of G(0) × G(0), the graph
R = {(r(x), d(x)) : x ∈ G} of this equivalent relation is a groupoid on G(0). The
anchor map θ = (r, d) is a continuous homomorphism of G into G(0)×G(0) with image
R. A groupoid is transitive if θ is onto i.e. the range of θ is equal to G(0) × G(0).
Otherwise, the groupoid is transitive if it has a single orbit. Let {λu, u ∈ G(0)} be a
left Haar system on G. For u ∈ G(0), λu will denote the image of λu by the inverse
map and {λu, u ∈ G(0)} is a right Haar system on G. Let µ be a quasi-invariant
measure on G(0) for the Haar system {λu, u ∈ G(0)}, ν =

∫
λudµ(u) be the induced

measure by µ on G, ν−1 =
∫
λudµ(u) be the inverse of ν, ν2 =

∫
λu×λudµ(u) be the

induced measure by µ on G(2) and ∆ the modular function of µ. In [9], it was proved
that ∆ is a homomorphism ν2 a.e from G to R∗+, the group of multiplicative positive

real numbers. There is a decomposition of the left Haar system {λu, u ∈ G(0)} for
G over R. Firstly, there is a measure βuv concentrated on Guv for all (u, v) ∈ R such
that:
• βuu is a left Haar measure on Guu,
• βuv is a translate of βvv i.e. βuv = xβvv if x ∈ Guv .
Notice that βuv is independent of the choice of x ∈ Guv . Then, there is a unique Borel
Haar system α = {αu : u ∈ G(0)} for R with the property that for every u ∈ G(0),
we have λu =

∫
βωv dα

u(ω, v). Renault [13] proves that there exists a continuous

homomorphism δ of G to R+ such that for any quasi-invariant measure µ on G(0), the

modular functions ∆ of G, defined by µ and λ, and ∆̃ of R, defined by µ and α, satisfy

∆ = δ∆̃ ◦ θ. We can also notice that for all u ∈ G(0), δ | Guu is the modular function
of Guu relatively to the left Haar measure βuu . It is proved in [12, 13] that there is a
transitive quasi-invariant measure µ̃ (i.e. a quasi-invariant measure concentrated on

an orbit) such that ∆̃ = 1 and so ∆=δ. In particular, for a transitive groupoid there
is a unique quasi-invariant measure on G(0) with full support such that the modular
function ∆ is a continuous homomorphism of G. Cc(G) will denote the space of
complex-valued continuous functions on G with compact support, endowed with the
inductive limit topology and L1(G, ν) the space of ν− integrable functions onG. In [8],
P. Hahn defines the following norm on L1(G, ν): ‖ f ‖I= max(‖ f ‖I,r; ‖ f ‖I,d) where

‖ f ‖I,r= sup{
∫
Gu f(x)dλu(x), u ∈ G(0)}, ‖ f ‖I,d= sup{

∫
Gu

f(x)dλu(x), u ∈ G(0)}
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and introduces the following groupoid algebra,

I(G,λ, µ) = {f ∈ L1(G, ν) :‖ f ‖I<∞}
I(G,λ, µ) is a Banach ∗-algebra under the following convolution product: for all
f, g ∈ I(G,λ, µ),

f ∗ g(x) =

∫
Gr(x)

f(y)g(y−1x)dλr(x)(y).

The involution is defined by: for f ∈ I(G,λ, µ),

f∗(x) = ∆(x−1)f(x−1) = ∆(x−1)f̌(x).

Let K be a compact subgroupoid of G with unit space G(0). We shall assume that
K is equipped with a normalized Haar system γ = {γu, u ∈ G(0)} that means
γu(Ku) = γu(Ku) = 1, for each u ∈ G(0). As it is explain above, {γu, u ∈ G(0)} has a
decomposition {(γuv )(u,v)∈RK

, (ρu)u∈G(0)}, where RK is the graph of the equivalence

relation on G(0) seen as unit space of K, such that γu=
∫
γωv dρ

u(ω, v). We put

I(G\\K) = {f ∈ I(G,λ, µ) : f(kxk′) = f(x)∀x ∈ G,∀k ∈ Kr(x),∀k′ ∈ Kd(x)};
the space of bi-K− invariant integrable functions which is a Banach ∗-subalgebra of
I(G,λ, µ). For any f ∈ I(G,λ, µ), let us denote by f \ the bi-K-invariant function
defined by: for all x ∈ G,

f \(x) =

∫ ∫
f(kxk′)dγr(x)(k)dγd(x)(k′).

If I(G\\K) is commutative for convolution product, we say that (G,K) is a Gelfand
pair. This notion in groupoids case has been studied by authors in [15, 16]. Let
H = (Hu)u∈G(0) be a Hilbert bundle over G(0) and U(H) the unitary groupoid of
the bundle H. (π,H) is a unitary continuous representation of G if π is a groupoid
morphism of G into U(H) such that for all square integrable sections ξ and η of H,
the map x 7→< π(x)ξ(d(x)), η(r(x)) > is continuous. A closed nonzero subbundle M
of H (i.e. Mu is a nonzero closed subspace of Hu for each u ∈ G(0)) is invariant under
π if π(x)Md(x) ⊂ Mr(x), for each x ∈ G. If π admits a non trivial closed invariant
subbundleM, it is called reducible. Otherwise it is called irreducible. If ξ is a section
of H, the subbundle Mξ whose leaf at u ∈ G(0) is the closed linear span of the set
{π(x)ξ(d(x)) : x ∈ Gu} is called the cyclic subbundle generated by ξ. We say that ξ
is cyclic if (Mξ)u is dense in Hu, for each u ∈ G(0). We denote by Γµ(H), the Hilbert
space of square integrable section of H. In [14], J. Renault associates to any unitary
representation (π,H) a representation L of Cc(G) on Γµ(H) defined by:

(L(f)ξ, η) =

∫
f(x) < π(x)ξ(d(x)), η(r(x)) > dν0(x),

for all f ∈ Cc(G), ξ,η ∈ Γµ(H), where ν0 = ∆
−1
2 ν. L is a bounded non-degenerate

∗-representation of Cc(G) where Cc(G) is equipped with the norm ‖ · ‖I . We may

also define L by: L(f)ξ(u) =
∫
Gu f(x)π(x)ξ(d(x))∆

−1
2 (x)dλu(x). In [12], the authors

extend the notion of positive definite function to groupoids. In fact, a bounded
continuous function p : G → C is positive definite if for each u ∈ G(0) and for each
f ∈ Cc(G) we have ∫ ∫

f(x)f̄(y)p(y−1x)dλu(x)dλu(y) ≥ 0.

Ramsay and Walter establish for groupoids the well-known correspondence between
positive definite functions and representations. In fact, for any bounded continuous
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positive definite function p : G→ C, there exists a unitary representation π of G on a
Hilbert bundle H, and a bounded continuous cyclic section ξ of H such that for each
x ∈ G, p(x) =< π(x)ξ(d(x)), ξ(r(x)) >.

3. Spherical functions

Throughout this section and the followings G is Hausdorff, second countable, tran-
sitive locally compact groupoid with a left Haar system λ = {λu, u ∈ G(0)}. K is
a compact subgroupoid of G containing G(0). It follows that G(0) is the unit space
of K. Let µ be the quasi-invariant measure on G(0) such that supp(µ) = G(0) and
the modular function ∆ associated to (λ, µ) is a continuous homomorphism. Since
K contains G(0), it follows that G(0) is compact. So we assume that µ is normalized.
For each u ∈ G(0), the measure αu is concentrated on u× [u], and αu = εu×µ, where
εu is the unit point mass at u. So λu =

∫
βuωdµ(ω). K is equipped with a normalized

Haar system γ = {γu, u ∈ G(0)}. In this section, (G,K) is a Gelfand pair. It follows
that µ is invariant (see [15]) i.e ν = ν−1. Let ϕ : G → C be a bounded continuous
bi-K-invariant function.

Definition 3.1. ϕ is a spherical function if the map χϕ : f 7→
∫
f(y)ϕ(y)dν(y), from

I(G\\K) to C, is a non-trivial character of I(G\\K).

We will study some properties of these spherical functions, in particular, extend to
groupoids case some well-known results on groups. The following result extends to
groupoids the classical functional equation of spherical functions.

Theorem 3.1. ϕ is a spherical function if and only if for all x, y ∈ G∫
K

d(x)

r(y)

ϕ(xky)dγ
d(x)
r(y) (k) = ϕ(x)ϕ(y).

Proof. Let f, g be in I(G,λ, µ). We will first compute χϕ(f \ ∗ g\).

χϕ(f \ ∗ g\) =

∫
f \(x)g\(x−1y)ϕ(y)dλr(y)(x)dν(y)

=

∫
f \(x)g\(y)ϕ(xy)dλu(x)dλd(x)(y)dµ(u)

=

∫
f(xk2)g(k3yk4)ϕ(xy)dγd(x)

ω2
(k2)dγω3

u (k3)dγd(y)
ω4

(k4)dH̃
u,d(k3)
λ,µ

=

∫
f(xk2)g(yk4)ϕ(xk−1

3 y)dγd(x)
ω2

(k2)dγω3

d(x)(k3)dγd(y)
ω4

(k4)dH̃
u,r(k3)
λ,µ

=

∫
f(xk2)g(yk4)ϕ(xk−1

3 y)dγuω2
(k2)dγω3

u (k3)dγd(y)
ω4

(k4)dH̄
r(k2),r(k3)
λ,µ

=

∫
f(x)g(yk4)ϕ(xk−1

2 k−1
3 y)dγuω2

(k2)dγω3
u (k3)dγd(y)

ω4
(k4)dH̄

r(d2),r(k3)
λ,µ

=

∫
f(x)g(yk4)ϕ(xk−1

3 y)dγr(y)
u (k3)dγω3

ω4
(k4)dḦ

u,r(k4)
λ,µ

=

∫
f(x)g(y)ϕ(xk−1

3 y)dγr(y)
u (k3)dγω3

ω4
(k4)dḦ

u,d(k4)
λ,µ

=

∫
f(x)g(y)ϕ(xky)dγ

d(x)
r(y) (k)dν(x)dν(y)
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where dH̃v,t
λ,µ = dλv(x)dλt(y)dµ(ω2)dµ(ω3)dµ(ω4)dµ(u),

dH̄
r(k2),r(k3)
λ,µ = dλv(x)dλt(y)dµ(ω2)dµ(ω3)dµ(ω4)dµ(u)

and dḦv,t
λ,µ = dλv(x)dλt(y)dµ(ω3)dµ(ω4)dµ(u).

Then we compute χϕ(f \) χϕ(g\).

χϕ(f \)χϕ(g\) =

∫
f(xk2)ϕ(x)dγu(k2)dλr(k2)(x)dµ(u)×∫
g(yk4)ϕ(y)dγv(k4)dλr(k4)(y)dµ(v)

=

∫
f(x)ϕ(x)dγu(k2)dλd(k2)(x)dµ(u)×

∫
g(y)ϕ(y)dγv(k4)dλd(k4)(y)dµ(v)

=

∫
f(x)ϕ(x)dγu(k2)dλd(k2)(x)dµ(u)×

∫
g(y)ϕ(y)dγv(k4)dλd(k4)(y)dµ(v)

=

∫
f(x)ϕ(x)dγd(x)(k2)dλu(x)dµ(u)×

∫
g(y)ϕ(y)dγd(y)(k4)dλv(y)dµ(v)

=

∫
f(x)g(y)ϕ(x)ϕ(y)dν(x)dν(y)

Thus if ϕ is spherical then χϕ(f \ ∗ g\) = χϕ(f \)χϕ(g\). So according above calcu-

lations, we have
∫
ϕ(xky)dγ

d(x)
r(y) (k) = ϕ(x)ϕ(y) for all x, y ∈ G. Conversely if the

equality of theorem is verified then ϕ is spherical always according above calcula-
tions. �

The next result shows that spherical functions are eigenfunctions of certain convo-
lution operator.

Theorem 3.2. Let ϕ be a bi-K-invariant, bounded continuous function on G. We
suppose ϕ is not identically zero. Then the function ϕ is spherical if and only if
(i) ϕ(u) = 1 for all u ∈ G(0),
(ii) for every f ∈ I(G\\K) there is a complex number χ(f) such that f ∗ϕ = χ(f)ϕ.

Proof. Let ϕ be a spherical function. Then by the previous theorem, we have for

all x, y ∈ G,
∫
ϕ(xky)dγ

d(x)
r(y) (k) = ϕ(x)ϕ(y). In particular for y = u ∈ G(0), we

have ϕ(x) = ϕ(x)ϕ(u) for all x ∈ G and since ϕ 6= 0 we conclude ϕ(u) = 1. For
f ∈ I(G\\K) and x ∈ G,

f ∗ ϕ(x) =

∫
f(ky)ϕ(y−1x)dγvr(y)(k)dλr(x)(y)dµ(v)

=

∫
f(y)ϕ(y−1kx)dγvr(x)(k)dλr(k)(y)dµ(v)

=

∫
f(y)(

∫
ϕ(y−1kx)dγ

r(y)
r(x)(k))dλv(y)dµ(v)

= (

∫
f(y)ϕ(y−1)dν(y))ϕ(x)

thanks to the left K-invariance of ϕ and the previous theorem. Conversely, suppose
the conditions (i) and (ii) satisfied. Since ϕ(u) = 1 for all u ∈ G(0), we have
f ∗ ϕ(u) = χ(f). Hence

∫
f(y)ϕ(y−1)dν(y) = χ(f), so χϕ(f̌) = χ(f). Let now

f, g ∈ I(G\\K). Thanks to (ii) and the associativity of convolution product, we
have (f ∗ g) ∗ ϕ = χ(f ∗ g)ϕ and (f ∗ g) ∗ ϕ = χ(f)χ(g)ϕ. So χ(f ∗ g) = χ(f)χ(g).
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Consequently, we have

χϕ(f ∗ g) = χ(ǧ ∗ f̌) = χ(ǧ)χ(f̌) = χϕ(f)χϕ(g)

So the map χϕ is a non-trivial character of I(G\\K). �

Theorem 3.3. Let ϕ be a bounded spherical function. The mapping
f 7→ χϕ(f) =

∫
f(x)ϕ(x)dν(x) is a character of I(G\\K) and each non-trivial con-

tinuous character of I(G\\K) is of this form.

Proof. The proof is similar to group case. �

Let (π,H) be a unitary representation of G where H is a Hilbert bundle on the
unit space G(0). Let us notice that any continuous section ξ of H is bounded since
G(0) is compact. It follows that any continuous section ξ of H is square integrable
since µ is normalized. We set

ΓKµ (H) = {ξ ∈ Γµ(H) : π(k)ξ(d(k)) = ξ(r(k))∀k ∈ K},
the space of K-invariant square integrable section of H. If ξ ∈ Γµ(H), then the section
PKξ defined by PKξ(u) =

∫
π(k)ξ(d(k))dγu(k) is K-invariant and square integrable.

Also ΓKµ (H) is a closed subspace of Γµ(H).

Theorem 3.4. Let H be a Hilbert bundle on G(0). Let (π,H) be an irreducible unitary
representation of G on H and let ξ be a K-invariant continuous section of H such
that ‖ ξ(u) ‖u= 1 for all u ∈ G(0). Then the map
ϕ : x 7→< π(x)ξ(d(x)), ξ(r(x)) > on G is a positive definite spherical function.

Proof. First, for all u ∈ G(0), ϕ(u) =< π(u)ξ(u), ξ(u) >=‖ ξ(u) ‖2u= 1. Now, let
x ∈ G, k ∈ Kr(x) and k′ ∈ Kd(x),

ϕ(kxk′) = < π(kxk′)ξ(d(k′)), ξ(r(k)) >

= < π(x)ξ(r(k′)), ξ(d(k)) >

= < π(x)ξ(d(x)), ξ(r(x)) >= ϕ(x).

Hence ϕ is bi-K-invariant. ϕ is bounded since π is unitary and ‖ ξ(u) ‖u= 1 for all
u ∈ G(0). Since ξ is continuous then ϕ is also continuous (see [12]). In [12] it is proved

that ϕ is positive definite. So it remains to prove that ϕ is spherical. Let L̃\ be the
corresponding representation to π on I(G\\K) in ΓKµ (H). Note that ξ ∈ ΓKµ (H) by

hypothesis. So according to theorem 3.3 in [15] dimΓKµ (H) = 1. Let f ∈ I(G\\K)
and x ∈ G, we have

f ∗ ϕ(x) =

∫
Gr(x)

f(y) < π(y−1x)ξ(d(x)), ξ(d(y)) > dλr(x)(y)

= < π(x)ξ(d(x)),

∫
Gr(x)

f(y)π(y)ξ(d(y))dλr(x)(y) >

= < π(x)ξ(d(x)), L̃\(f̄)ξ(r(x)) >

= < π(x)ξ(d(x)), cf̄ξ(r(x)) >

= c̄f̄ϕ(x),

where c̄f̄ ∈ C. From Theorem 3.2, it follows that ϕ is a spherical function. �

As we have recall in preliminaries, for any bounded continuous positive defi-
nite function ϕ : G → C, there exists a unitary representation of G on a Hilbert
bundle H, and a bounded continuous cyclic section ξ of H such that: ϕ(x) =<
π(x)ξ(d(x)), ξ(r(x)) > for all x ∈ G.
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Lemma 3.5. ξ belong to ΓKµ (H) if and only if ϕ is bi-K-invariant.

Proof. Since ξ is bounded and the quasi-invariant measure µ is normalized then ξ is
square integrable. If ξ is K-invariant then clearly ϕ is bi-K-invariant. Assume now
that ϕ is bi-K-invariant. Then for all k ∈ K and x ∈ Gr(k), we have

< π(x)ξ(d(x)), ξ(r(k)) > = ϕ(x) = ϕ(k−1x)

= < π(k−1x)ξ(d(x)), ξ(d(k)) >

= < π(x)ξ(d(x)), π(k)ξ(d(k)) > .

Since ξ is cyclic, then π(k)ξ(d(k)) = ξ(r(k)) for all k ∈ K. Hence ξ ∈ ΓKµ (H). �

Lemma 3.6. Let π be a unitary representation of G on a Hilbert bundle H admitting
a continuous K-invariant cyclic section ξ. If dimΓKµ (H) = 1, then the representation
π is irreducible.

Proof. Let T = (Tu)u∈G(0) be an intertwining unitary operator bundle for π i.e. for
all x ∈ G, π(x)Td(x) = Tr(x)π(x). In particular for all k ∈ K, we have
Tr(k)π(k)ξ(d(k)) = π(k)Td(k)ξ(d(k)). Hence Tr(k)ξ(r(k)) = π(k)[Td(k)ξ(d(k))]. So the

section Tξ defined by Tξ(u) = Tuξ(u) for all u ∈ G(0) is K-invariant. It is easy to
show that < π(f)ξ, ξ >=< π(f)Tξ, Tξ > for all f ∈ L1(G, ν). Since Tξ is continuous
on G(0), which is compact, then Tξ ∈ Γµ(H). So, finally Tξ ∈ ΓKµ (H). It follows that
Tξ = λξ, for some complex number λ. For an arbitrary x ∈ G, we obtain:

Tr(x)π(x)ξ(d(x)) = π(x)Td(x)ξ(d(x)) = λπ(x)ξ(d(x)).

So, because ξ is a cyclic section we have T = λI, where I is the identity operator.
Consequently, π is irreducible thanks to Schur Lemma. �

A positive definite function ϕ is said to be elementary if the unitary representation
associated with ϕ is irreducible.

Theorem 3.7. Let ϕ be a bi-K-invariant, continuous, positive definite function such
that ϕ(u) = 1 for all u ∈ G(0). Then ϕ is spherical if and only if ϕ is elementary.

Proof. Let ϕ be a spherical function and π a unitary representation of G associated
with ϕ. Then ϕ(x) =< π(x)ξ(d(x)), ξ(r(x)) >, where ξ is a continuous cyclic section
on G(0). Notice that by the Lemma 3.5, ξ ∈ ΓKµ (H). For any f ∈ I(G\\K), we have
f ∗ ϕ = χ(f)ϕ, where χ(f) ∈ C. So, we obtain for x ∈ G;

< π(x)ξ(d(x)), L̃\(f̄)ξ(r(x)) >=

∫
f(y)× < π(y−1x)ξ(d(x)), ξ(d(y)) > dλr(x)(y)

=

∫
f(y) < π(y−1x)ξ(d(y−1x)), ξ(r(y−1x)) > dλr(x)(y)

=

∫
Gr(x)

f(y)ϕ(y−1x)dλr(x)(y)

=f ∗ ϕ(x) =< π(x)ξ(d(x)), χ(f)ξ(r(x)) >,

and since ξ is cyclic then L̃\(f̄)ξ = χ(f)ξ. Now ξ is also a cyclic section for L̃\ in
ΓKµ (H), so we have dimΓKµ (H)=1. By Lemma 3.6, π is irreducible and hence ϕ is
elementary.
Conversely suppose that ϕ is elementary, that is π is irreducible. Since ξ ∈ ΓKµ (H),
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then dimΓKµ (H) >0. Hence, according to theorem 3.3 of [15], dimΓKµ (H)=1. For any
f ∈ I(G\\K) and for all x ∈ G, we now have

f ∗ ϕ(x) = < π(x)ξ(d(x)), L̃\(f)ξ(r(x)) >

= < π(x)ξ(d(x)), χ(f)ξ(r(x)) >

= χ(f)ϕ(x),

where χ(f) is a constant depending on f . From Theorem 3.2, it now follows that ϕ
is a spherical function. �

4. Harmonic analysis on pair (G,K)

In [15], the authors prove that if K is transitive then (G,K) is a Gelfand pair if
and only if (Gmm,K

m
m ) is a Gelfand pair for any m ∈ G(0). So let m ∈ G(0) be a fixed

unit. In the following result, we establish a connection between the positive definite
spherical function on G and those of Gmm.

Theorem 4.1. (a) If ϕ is a positive definite spherical function on G then the restric-
tion ϕm of ϕ to Gmm is a positive definite spherical function on Gmm.
(b) Given a positive definite spherical function ϕm on Gmm, there is a positive definite
spherical function ϕ on G such that ϕ | Gmm = ϕm.
(c) If ϕ and ϕ′ are two positive definite spherical functions on G then ϕ = ϕ′ if and
only if ϕ | Gmm = ϕ′ | Gmm.

Proof. (a) Let ϕ be a positive definite spherical function on G and ϕm = ϕ | Gmm its
restriction to Gmm. If π denotes the irreducible unitary representation on G associated
to ϕ then ϕ(x) =< π(x)ξ(d(x)), ξ(r(x)) > for all x ∈ G; where ξ is a cyclic continuous
section on G. In particular, for all x ∈ Gmm, ϕm(x) =< πm(x)ξ(m), ξ(m) >, where πm
is the restriction of π to Gmm and ξ(m) is a cyclic vector for πm. We know that πm is a
unitary representation [1, 17] and it is irreducible (see [15]). So according to classical
theory of spherical functions [3, 5], ϕm is a positive definite spherical function.
(b) Let (πm, H) and h be respectively the irreducible unitary representation of G
and the cyclic vector associated to ϕm such that ϕm(x) =< πm(x)h, h > for all
x ∈ Gmm. Let π be the unitary representation of G on the Hilbert bundle H = G(0)×H
associated to πm such that π | Gmm = πm (see [1, 17]). It is irreducible (see [15]).
Put ξ(u) = (u, h) for any u ∈ G(0). ξ is a section of G(0) × H which is square
integrable. Since h is cyclic, then ξ is cyclic . Then the function ϕ defined by ϕ(x) =<
π(x)ξ(d(x)), ξ(r(x)) > for all x ∈ G is a positive definite spherical function on G
thanks to Theorem 3.4. Also, for x ∈ Gmm, we have ϕ(x) =< πm(x)ξ(m), ξ(m) >=<
πm(x)h, h >= ϕm(x).
(c) Let ϕ and ϕ′ be two positive definite spherical functions on G such that ϕ | Gmm =

ϕ′ | Gmm. For x ∈ G, k ∈ Km
r(x) and k′ ∈ Kd(x)

m we have kxk′ ∈ Gmm and since ϕ and

ϕ′ are bi-K−invariant then

ϕ(x) = ϕ(kxk′) = ϕm(kxk′) = ϕ′m(kxk′) = ϕ′(kxk′) = ϕ′(x),

where we have set ϕm = ϕ | Gmm and ϕ′m = ϕ′ | Gmm. The part ”If” is trivial. �

Denote by Z (respectively by Zm) the set of positive definite spherical functions on
G (respectively on Gmm). We know by classical theory (see [3, 5]) that Zm equipped
with the topology σ(L∞, L1) is locally compact. Let us consider the map ψ : ϕ 7→ ϕm
from Z to Zm. It is bijective thanks to Theorem 4.1. If we equip Z with the coarsest
topology making continuous the map ψ, then it is locally compact.
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Definition 4.1. The Fourier transform of a function f ∈ I(G\\K) will be the func-

tion f̂ , defined on Z by f̂(ϕ) =
∫
G
f(x)ϕ(x−1)dν(x) for all ϕ ∈ Z.

We have the following properties

Theorem 4.2. (1) For all f ∈ I(G\\K), f̂(ϕ) = f̂m(ϕm) for all ϕ ∈ Z;

(2) For all f, g ∈ I(G\\K), f̂ ∗ g(ϕ) = f̂(ϕ)ĝ(ϕ) for all ϕ ∈ Z
(3) f̂ is a continuous function on Z, vanishing at ”infinity” ; moreover ‖ f̂ ‖∞≤‖

f ‖I where ‖ f̂ ‖∞= sup | f̂(ϕ) |;
(4) The function f 7→ f̂ is a linear transformation;

(5)
¯̂
f = ˆ(f∗)

Proof. (1)

f̂(ϕ) =

∫
f(x)ϕ(x−1)dν(x)

=

∫
f(x−1)ϕ(kxk

′
)dγmr(x)(k)dγd(x)

m (k
′
)dλu(x)dµ(u)

=

∫
f(x−1)ϕ(kxk

′
)dγmr(x)(k)dγd(x)

m (k
′
)dβuv (x)dµ(v)dµ(u)

=

∫
f(k

′
x−1k)ϕ(x)dγmu (k)dγvm(k

′
)dβ

r(k)

d(k′ )
(x)dµ(v)dµ(u)

=

∫
fm(x−1)ϕm(x)dβmm(x) = f̂m(ϕm)

(2)

f̂ ∗ g(ϕ) =

∫
(f ∗ g)(x)ϕ(x−1)dν(x)

=

∫
f(y)g(x)ϕ(x−1y−1)dλd(y)(x)dλu(y)dµ(u)

=

∫
f(y)g(kx)ϕ(x−1y−1)dγvd(y)(k)dλd(k)(x)dλu(y)dµ(u)dµ(v)

=

∫
f(y)g(x−1)ϕ(xky−1)dγ

d(x)
d(y) (k)dλv(x)dλu(y)dµ(u)dµ(v)

=

∫
f(y)g(x−1)(

∫
ϕ(xky−1)dγ

d(x)
d(y) (k))dν(x)dν(y)

=

∫
f(y)g(x−1)ϕ(x)ϕ(y−1)dν(x)dν(y) = f̂(ϕ)ĝ(ϕ)

For (3), (4) and (5) we can use (1) since these properties are true on groups. �

Denote byM1(Z) (respectively byM1(Zm)) the space of bounded complex measure
on Z (respectively on Zm). Put M0(Z) = {µ ∈ M1(Z) : µ positive, ‖ µ ‖≤ 1} and
M0(Zm) = {µ ∈ M1(Zm) : µ positive, ‖ µ ‖≤ 1} where ‖ . ‖ denotes the norm of µ.
The following result extends the theorem of Bochner to groupoids.

Theorem 4.3. Let ϕ be a bi-K-invariant continuous positive definite function on G
such that ϕ(u) ≤ 1 for all u ∈ G(0). Then there exists a unique µZ ∈ M0(Z) such
that for all x ∈ G,

ϕ(x) =

∫
Z

ω(x)dµZ(ω).
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Proof. For m ∈ G(0), the restriction ϕm of ϕ to Gmm is also bi-Km
m -invariant continuous

positive definite function on Gmm such that ϕm(m) ≤ 1. Then, according to the
classical Bochner theorem on groups, there exists a unique measure µm ∈ M0(Zm)
such that for all x ∈ Gmm, ϕm(x) =

∫
Zm

ωm(x)dµm(ωm). The choice above of the

topology of Z makes ψ a continuous open bijection and therefore an homeomorphism.
So let us put µZ = ψ−1(µm) the image measure of µm by ψ−1. For all x ∈ G, k ∈ Km

r(x)

and k′ ∈ Kd(x)
m we have,

ϕ(x) = ϕ(kxk′) = ϕm(kxk′)

=

∫
Zm

ωm(kxk′)dµm(ωm)

=

∫
Z

ψ(ω)(kxk′)dµZ(ω)

=

∫
Z

ω(kxk′)dµZ(ω)

=

∫
Z

ω(x)dµZ(ω)

�

Let f be a bi-K-invariant continuous positive definite function on G and belong

to I(G\\K). By previous theorem, there exists a unique µfZ ∈ M0(Z) such that for

all x ∈ G, f(x) =
∫
Z
ω(x)dµfZ(ω). µfZ = ψ−1(µfmm ) where µfmm corresponds to the

restriction fm of f to Gmm. According to Fourier’s inversion formula on groups there

exists a unique positive measure σm on Zm such that dµfmm = f̂mdσm and f̂m ∈
L1(Zm, σm). Let us put σ = ψ−1(σm). So thanks to Theorem 4.2 (1) f̂ ∈ L1(Z, σ)

and for all x ∈ G, k ∈ Km
r(x) and k′ ∈ Kd(x)

m we have,

f(x) = f(kxk′) = fm(kxk′)

=

∫
Zm

ωm(kxk′)f̂m(ωm)dσm(ωm)

=

∫
Z

ψ(ω)(kxk′)f̂(ω)dσ(ω)

=

∫
Z

ω(kxk′)f̂(ω)dσ(ω)

=

∫
Z

ω(x)f̂(ω)dσ(ω).

Let us denote by V 1 the set of bi-K-invariant continuous positive definite function on
G which belong to I(G\\K). Thus we have proved the following result.

Theorem 4.4. There exists a unique positive measure σ on Z such that for all f ∈
V 1, dµfZ = f̂dσ and f̂ ∈ L1(Z, σ).

Let σ be the positive measure on Z, obtained in Theorem 4.4, we have the analogue
of Plancherel formula for f ∈ I(G\\K).

Theorem 4.5. For every f ∈ I(G\\K) ∩ L2(G, ν) one has:

(i)f̂ ∈ L2(Z, σ)

(ii)
∫
G
| f(x) |2 dν(x) =

∫
Z
| f̂(ω) |2 dσ(ω)
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Proof. Let us put g = f ∗ f̃ for f ∈ Cc(G), where f̃ = f̌ . We know that g ∈ Cc(G)
and is definite positive (see proposition 3.3 of [11]). So by density, for f ∈ I(G\\K),
g ∈ V 1 and hence ĝ ∈ L1(Z, σ). Also for all x ∈ G, g(x) =

∫
Z
ω(x)ĝ(ω)dσ(ω) thanks

to Theorem 4.4. We have thanks to Theorem 4.2 (1) and (5), ĝ(ω) =| f̂(ω) |2, so

f̂ ∈ L2(Z, σ). And since g(u) =
∫
| f(x) |2 dν(x), we have

∫
| f(x) |2 dν(x) =∫

Z
ĝ(ω)dσ(ω) =

∫
Z
| f̂(ω) |2 dσ(ω). �

5. Examples

Example 5.1. Let G be a locally compact group and K a compact subgroup of G
such that (G,K) is a Gelfand pair. Let M be a topological compact space. Let us
consider the transitive trivial Lie groupoid M×G×M with groupoid structure which
is defined in the following way: d(m, g, n)=(n, e, n),
r(m, g, n)=(m, e,m), (m, g, n)(n, h, p) = (m, gh, p) and (m, g, n)−1 = (n, g−1,m)
where m,n, p ∈ M , g, h ∈ G and e the identity element of G. The set M ×K ×M
equipped with the above groupoid structure is a compact subgroupoid of G. (M ×
G×M,M ×K×M) is a Gelfand pair. If ω is a spherical function for (G,K) then the
function ϕ defined by : ϕ(m, g, n) = ω(g) is spherical for (M ×G×M ;M ×K ×M).

This method of construction can be generalized.

Theorem 5.1. If ωm is a spherical function on Gmm for m ∈ G(0) then ω defined for

x ∈ G by ω(x) =
∫
ωm(kxk′)dγmr(x)(k)dγ

d(x)
m (k′) is a spherical function on G.

Proof. It suffices to prove the functional equation of Theorem 3.1. For x, y ∈ G, we
have∫

ω(xky)dγ
d(x)
r(y) (k) =

∫
ωm(k1xkyk

′
1)dγmr(x)(k1)dγd(y)

m (k′1)dγ
d(x)
r(y) (k)

=

∫
ωm((k1xk2)(k−1

2 kk−1
3 )(k3yk

′
1))dγmr(x)(k1)dγd(y)

m (k′1)×

dγ
r(k2)
d(k3)(k)dγd(x)

m (k2)dγmr(y)(k3)

=

∫
ωm(k1xk2)ωm(k3yk

′
1)dγmr(x)(k1)dγd(y)

m (k′1)×

dγd(x)
m (k2)dγmr(y)(k3)

=

∫
ωm(k1xk2)dγmr(x)(k1)dγd(x)

m (k2)×∫
ωm(k3yk

′
1)dγd(y)

m (k′1)dγmr(y)(k3) = ω(x)ω(y).

�
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