Congruence relations on pseudo BE -algebras

A. Rezaei, A. Borumand Saeid, A. Radfar, and R. A. Borzooei

Abstract

In this paper, we consider the notion of congruence relation on pseudo $B E-$ algebras and construct quotient pseudo $B E$-algebra via this congruence relation. Also, we use the notion of normal pseudo filters and get a congruence relation.

2010 Mathematics Subject Classification. Primary 06F35; Secondary 03G25.
Key words and phrases. (distributive, quotient)pseudo $B E$-algebra, (normal)pseudo filter, congruence relation.

1. Introduction

Some recent researchers led to generalizations of some types of algebraic structures by pseudo structures. G Georgescu and A. Iorgulescu [3], and independently J. Rachunek [11], introduced pseudo $M V$-algebras which are a non-commutative generalization of $M V$-algebras. The notions of pseudo $B L$-algebras and pseudo $B C K$-algebras were introduced and studied by G. Georgescu and A. Iorgulescu [9, 10, 4]. A. Walendziak gave a system of axioms defining pseudo $B C K$ - algebras [12]. Y, B. Jun and et al. introduced the concepts of pseudo-atoms, pseudo $B C I$-ideals and pseudo $B C I-$ homomorphisms in pseudo $B C I$ - algebras and characterizations of a pseudo $B C I-$ ideal, and provide conditions for a subset to be a pseudo $B C I$-ideal [5]. Y. H. Kim and K. S. So [7], discuss on minimal elements in pseudo $B C I$-algebras.

The notion of $B E$-algebras was introduced by H. S. Kim and Y. H. Kim [6]. We generalized the notion of $B E$-algebras and introduced the notion of pseudo $B E-$ algebras, pseudo subalgebras, pseudo filters and investigated some related properties [1]. We introduced the notion of distributive pseudo $B E$-algebra and normal pseudo filters and prove some basic properties. Furthermore, the notion of pseudo upper sets in pseudo $B E$ - algebras introduced and prove that the every pseudo filter F of X is union of pseudo upper sets. We show that in distributive pseudo $B E$-algebras normal pseudo filters and pseudo filters are equivalent [2].

In the present paper, we apply the notion of congruence relations to pseudo $B E-$ algebras and discuss on the quotient algebras via this congruence relations. It is a natural question which is the relationships between congruence relations on pseudo $B E$-algebras and (normal)pseudo filters. From here comes the main motivation for this. We show that quotient of a pseudo $B E$-algebra via a congruence relation is a pseudo $B E$-algebra and prove that, if X is a distributive pseudo $B E$-algebra, then it becomes to a $B E$-algebra.

[^0]
2. Preliminaries

In this section we review the basic definitions and some elementary aspects that are necessary for this paper.

Definition 2.1. [1] An algebra $(X ; *, \diamond, 1)$ of type $(2,2,0)$ is called a pseudo $B E$ algebra if it satisfies in the following axioms:
$(p B E 1) \quad x * x=1$ and $x \diamond x=1$,
($p B E 2$) $\quad x * 1=1$ and $x \diamond 1=1$,
$(p B E 3) \quad 1 * x=x$ and $1 \diamond x=x$,
$(p B E 4) \quad x *(y \diamond z)=y \diamond(x * z)$,
(pBE5) $\quad x * y=1 \Leftrightarrow x \diamond y=1$, for all $x, y, z \in X$.
In a pseudo $B E$-algebra, one can introduce a binary relation " \leq " by $x \leq y \Leftrightarrow$ $x * y=1 \Leftrightarrow x \diamond y=1$, for all $x, y \in X$. From now on X is a pseudo $B E$-algebra, unless otherwise is stated and we note that if $(X ; *, \diamond, 1)$ is a pseudo $B E$-algebra, then $(X ; \diamond, *, 1)$ is a pseudo $B E$-algebra, too.
Remark 2.1. If X is a pseudo $B E$-algebra satisfying $x * y=x \diamond y$, for all $x, y \in X$, then X is a $B E$-algebra.

Proposition 2.1. [1, 2] The following statements hold:
(1) $x *(y \diamond x)=1, x \diamond(y * x)=1$,
(2) $x \diamond(y \diamond x)=1, x *(y * x)=1$,
(3) $x \diamond((x \diamond y) * y)=1, x *((x * y) \diamond y)=1$,
(4) $x *((x \diamond y) * y)=1, x \diamond((x * y) \diamond y)=1$,
(5) If $x \leq y * z$, then $y \leq x \diamond z$,
(6) If $x \leq y \diamond z$, then $y \leq x * z$,
(7) $1 \leq x$, implies $x=1$.
(8) If $x \leq y$, then $x \leq z * y$ and $x \leq z \diamond y$,
for all $x, y, z \in X$.
Definition 2.2. [1] A non-empty subset F of X is called a pseudo filter of X if it satisfies in the following axioms:
($p F 1$) $1 \in F$,
($p F 2$) $\quad x \in F$ and $x * y \in F$ imply $y \in F$.
Proposition 2.2. [1] Let $F \subseteq X$ and $1 \in F$. F is a pseudo filter if and only if $x \in F$ and $x \diamond y \in F$ imply $y \in F$, for all $x, y \in X$.

Theorem 2.3. [1] Let X be a pseudo BE-algebra. Then every pseudo filter of X is a pseudo sub-algebra.

Definition 2.3. [2] X is said to be distributive if it satisfies in the following condition:

$$
x *(y \diamond z)=(x * y) \diamond(x * z), \text { for all } x, y, z \in X
$$

Theorem 2.4. [2] Let X be a distributive and $x \leq y$. Then
(i) $z * x \leq z * y$, and $z * x \leq z \diamond y$,
(ii) $z \diamond x \leq z * y$, and $z \diamond x \leq z \diamond y$,
for all $x, y, z \in X$.
Proposition 2.5. [2] Let X be a distributive. Then
(i) $y * z \leq(x * y) *(x * z)$, and $y * z \leq(x * y) \diamond(x * z)$,
(ii) $y \diamond z \leq(x * y) *(x * z)$, and $y \diamond z \leq(x * y) \diamond(x * z)$,
(iii) $A(x * y)=A(x \diamond y)$,
for all $x, y, z \in X$.
Definition 2.4. [2] A pseudo filter F is said to be normal, if for all $x, y \in X$

$$
x * y \in F \text { if and only if } x \diamond y \in F
$$

Theorem 2.6. [2] Let X be distributive. Then every pseudo filter is normal.
Theorem 2.7. [2] Let $(X ; *, \diamond, 1)$ be a distributive pseudo BE-algebra. $(X, \diamond, *, 1)$ is a distributive pseudo $B E$-algebra if and only if $(X ; *, 1)$ is a $B E$-algebra (i. e. $x * y=x \diamond y$, for all $x, y \in X)$.

3. Congruences relations on pseudo $B E$-algebras

Quotient algebras are a basic tool for exploring the structures of pseudo $B E-$ algebras. There are some relations between pseudo filters, pseudo congruence and quotient pseudo $B E$-algebras. We define the notion of congruence relations on pseudo $B E$-algebras and prove that the quotient algebra $\left(X / \theta ; *, \diamond, C_{1}\right)$ is a pseudo $B E$ algebra.

Definition 3.1. Let " θ " be an equivalence relation on X. " θ " is called:
(i) Left congruence relation on X if $(x, y) \in \theta$ implies $(u * x, u * y) \in \theta$ and $(u \diamond$ $x, u \diamond y) \in \theta$, for all $u \in X$.
(ii) Right congruence relation on X if $(x, y) \in \theta$ implies $(x * v, y * v) \in \theta$ and $(x \diamond v, y \diamond v) \in \theta$, for all $v \in X$.
(iii) Congruence relation on X if has the substitution property with respect to "*" and " \diamond ", that is, for any $(x, y),(u, v) \in \theta$ we have $(x * u, y * v) \in \theta$ and $(x \diamond u, y \diamond v) \in$ θ.

Example 3.1. (i). It is obvious that $\nabla=X \times X$ and $\triangle=\{(x, x) \mid x \in X\}$ is a congruence relation on X.
(ii). Let $X=\{1, a, b, c, d\}$ and operations " *" and " \diamond defined as follows:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	a	1	1
b	1	1	1	1	1
c	1	a	a	1	1
d	1	a	b	c	1

\diamond	1	a	b	c	d
1	1	a	b	c	d
a	1	1	c	1	1
b	1	1	1	1	1
c	1	a	b	1	1
d	1	a	b	c	1

Set $\theta_{1}:=\triangle \cup\{(d, 1),(1, d)\}$ and $\theta_{2}:=\triangle \cup\{(1, a),(a, 1)\}$. We can see that θ_{1} is a congruence relation on X and θ_{2} is a left congruence relation on X. Since $(1, a) \in \theta_{2}$, and $(b, a)=(1 * b, a * b) \notin \theta_{2}$, it follows that θ_{2} is not a right congruence relation. (iii). Let $X=\{1, a, b, c\}$, operations $" * "$ and " \diamond "defined as follows:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	1	a
b	1	1	1	1
c	1	1	1	1

\diamond	1	a	b	c
1	1	a	b	c
a	1	1	1	b
b	1	1	1	1
c	1	1	1	1

Then, $(X ; *, \diamond, 1)$ is a pseudo $B E$-algebra. If set $\theta_{3}=\Delta \cup\{(b, c),(c, b)\}$, then θ_{3} is a right congruence relation. Since $(b, c) \in \theta_{3}$ and $a \in X$, but $(1, a)=(a * b, a * c) \notin \theta_{3}$, it follows that θ_{3} is not a left congruence neither a congruence relation.

For any $x \in X$, we define

$$
\phi_{x}=\{(a, b) \in X \times X: x * a=x * b \text { and } x \diamond a=x \diamond b\} .
$$

Proposition 3.1. ϕ_{x} is a left congruence relation on X, for all $x \in X$.
Proof. It is obvious that ϕ_{x} is an equivalence relation on X. Let $(a, b) \in \phi_{x}$ and $u \in X$. Hence $x * a=x * b$. Now, we have $x *(u * a)=u *(x * a)=u *(x * b)=x *(u * b)$. Therefore, $(u * a, u * b) \in \phi_{x}$. By a similar way $(u \diamond a, u \diamond b) \in \phi_{x}$.

The following example shows that ϕ_{x} is not a right congruence relation on X, in general.
Example 3.2. Let $X=\{1, a, b, c\}$ and operations $" * "$ and $" \diamond "$ defined as follows:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	1	1
b	1	a	1	c
c	1	b	1	1

\diamond	1	a	b	c
1	1	a	b	c
a	1	1	1	1
b	1	c	1	c
c	1	c	1	1

Then, $(X ; *, \diamond, 1)$ is a pseudo $B E$-algebra. It can be seen that

$$
\phi_{c}=\{(1,1),(a, a),(b, b),(c, c),(1, b),(b, 1),(b, c),(c, b)\}
$$

is a left congruence relation on X, but it is not right congruence relation because $(c, b) \in \phi_{c}$ but $(c * a, b * a)=(b, a) \notin \phi_{c}$.
Proposition 3.2. Let X be distributive. Then ϕ_{x} is a right congruence relation on X, for all $x \in X$.
Proof. It is sufficient to show that if $(a, b) \in \phi_{x}$ and $v \in X$, then $(a * v, b * v) \in \phi_{x}$. Let $(a, b) \in \phi_{x}$ and $v \in X$. Hence $x * a=x * b$ and $x \diamond a=x \diamond b$. Now, by using distributivity of X we have $x *(a \diamond v)=(x * a) \diamond(x * v)=(x * b) \diamond(x * v)=x *(b \diamond v)$. Therefore, $(a \diamond v, b \diamond v) \in \phi_{x}$. By a similar way $(a * v, b * v) \in \phi_{x}$.

Example 3.3. In Example 3.2, consider

$$
c *(c \diamond a)=c * c=1 \neq b=1 \diamond b=(c * c) \diamond(c * a),
$$

then X is not distributive. Also we showed that ϕ_{c} is not a right congruence relation.
Let $p \operatorname{Con}(X)$ be the set of all congruence relations on X and respectively $p \operatorname{Con}_{L}(X)$ $\left(p \operatorname{Con}_{R}(X)\right)$ be the set of all the left (right) congruence relations on X. It is clear that $p \operatorname{Con}(X)=p \operatorname{Con}_{L}(X) \cap p \operatorname{Con}_{R}(X)$. For $\theta \in p \operatorname{Con}(X)$ we will denote $C_{x}(\theta)=\left\{y \in X: y \sim_{\theta} x\right\}$, abbreviated by C_{x}. We will call C_{x} the equivalence class containing x and so $X / \theta=\left\{C_{x}: x \in X\right\}$.
Theorem 3.3. Let $\theta \in p \operatorname{Con}(X)$. Then $C_{1}=\left\{x \in X: x \sim_{\theta} 1\right\}$ is a pseudo filter of X.
Proof. Since θ is a reflexive relation, we see that $(1,1) \in \theta$ and so $1 \sim_{\theta} 1$. Thus $1 \in C_{1}$. Now, let $x, y \in X$. Assume that $a \in C_{1}, a * x \in C_{1}$. Then $a * x \sim_{\theta} 1$. Now, we have $x \diamond(a * x) \sim_{\theta} x \diamond 1$. Thus $1 \sim_{\theta} a \sim_{\theta} x$ and so $x \in C_{1}$. This shows that C_{1} is a pseudo filter of X.
Note. Let $\theta \in p \operatorname{Con}(X)$. Define operations " $* "$ and " \diamond on X / θ by $C_{x} * C_{y}=C_{x * y}$ and $C_{x} \diamond C_{y}=C_{x \diamond y}$. Let $\nu: X \rightarrow X / \theta$ be such that $\nu(x)=C_{x}$ for all $x \in X$. Then, ν is an epimorphism. In fact $\nu(x * y)=C_{x * y}=C_{x} * C_{y}=\nu(x) * \nu(y)$ and $\nu(x \diamond y)=C_{x \diamond y}=C_{x} \diamond C_{y}=\nu(x) \diamond \nu(y) . \nu$ is called the natural homomorphism from X to X / θ.

Proposition 3.4. The following statements hold:
(i) if $\theta=X \times X$, then $X / \theta=\left\{C_{1}\right\}$,
(ii) if $\theta=\triangle_{X}$, then $X / \theta=\{X\}$,
(iii) if $x \leq y$, then $C_{x} \leq C_{y}$.

Proof. (i). Let $C_{x} \in X / \theta$, for some $x \in X$. Since $\theta=X \times X$, we have $(x, y) \in \theta$ for all $y \in X$. Hence $C_{x}=C_{y}$. Putting $y:=1$, then $C_{x}=C_{1}$. Therefore, $X / \theta=\left\{C_{1}\right\}$.
(ii). Let $C_{x} \in X / \theta$, for some $x \in X$. Since $\theta=\triangle_{X}$, we have $C_{x}=\{x\}$. Therefore, $X / \theta=\{X\}$.
(iii). Since $x \leq y$, we get that $x * y=1$ and $x \diamond y=1$. Hence $C_{x * y}=C_{1}=C_{x} * C_{y}$ and $C_{x \diamond y}=C_{1}=C_{x} \diamond C_{y}$. Therefore, $C_{x} \leq C_{y}$.
Proposition 3.5. Let $\theta \in p \operatorname{Con}(X)$. Then $\left(X / \theta ; *, \diamond, C_{1}\right)$ is a pseudo $B E$-algebra.
Proof. If $C_{x}, C_{y}, C_{z} \in X / \theta$, then we have
(pBE1) $C_{x} * C_{x}=C_{1}$ and $C_{x} \diamond C_{x}=C_{1}$,
(pBE2) $C_{x} * C_{1}=C_{1}$ and $C_{x} \diamond C_{1}=C_{1}$,
(pBE3) $C_{1} * C_{x}=C_{x}$ and $C_{1} \diamond C_{x}=C_{x}$,
$(p B E 4) \quad C_{x} *\left(C_{y} \diamond C_{z}\right)=C_{y} \diamond\left(C_{x} * C_{z}\right)$,
(pBE5) $\quad C_{x} \leq C_{y} \Leftrightarrow C_{x} * C_{y}=C_{1} \Leftrightarrow C_{x} \diamond C_{y}=C_{1}$.
Then, $\left(X / \theta ; *, \diamond, C_{1}\right)$ is a pseudo $B E$-algebra.
Example 3.4. Consider congruence relation θ_{1} in Example 3.1(ii), then

$$
X / \theta_{1}=\left\{C_{1}=C_{d}=\{1, d\}, C_{a}=\{a\}, C_{b}=\{b\}, C_{c}=\{c\}\right\}
$$

with the operations "*" and " \diamond " defined by following table is a pseudo $B E$-algebra.

$*$	C_{1}	C_{a}	C_{b}	C_{c}
C_{1}	C_{1}	C_{a}	C_{b}	C_{c}
C_{a}	C_{1}	C_{1}	C_{a}	C_{1}
C_{b}	C_{1}	C_{1}	C_{1}	C_{1}
C_{c}	C_{1}	C_{a}	C_{a}	C_{1}

\diamond	C_{1}	C_{a}	C_{b}	C_{c}
C_{1}	C_{1}	C_{a}	C_{b}	C_{c}
C_{a}	C_{1}	C_{1}	C_{c}	C_{1}
C_{b}	C_{1}	C_{1}	C_{1}	C_{1}
C_{c}	C_{1}	C_{a}	C_{b}	C_{1}

Theorem 3.6. Let X be distributive and $\theta \in p \operatorname{Con}(X)$. Then $\left(X / \theta ; *, \diamond, C_{1}\right)$ is too.
Proof. Let $C_{x}, C_{y}, C_{z} \in X / \theta$, for any $x, y, z \in X$. Then

$$
\begin{aligned}
C_{x} *\left(C_{y} \diamond C_{z}\right)=C_{x} * C_{y \diamond z} & =C_{x *(y \diamond z)} \\
& =C_{(x * y) \diamond(x * z)} \\
& =C_{x * y} \diamond C_{x * z} \\
& =\left(C_{x} * C_{y}\right) \diamond\left(C_{x} * C_{z}\right) .
\end{aligned}
$$

Therefore, X / θ is distributive.
Proposition 3.7. Let $f: X \rightarrow Y$ be a homomorphism. Then
(i) $f(1)=1$,
(ii) f has the isotonic property, i. e., if $x \leq y$, then $f(x) \leq f(y)$, for all $x, y \in X$.

Proof. (i). Let $x \in X$. Since $x * x=x \diamond x=1$ and f is a homomorphism, we see that $f(1)=f(x * x)=f(x) * f(x)=1$ and $f(1)=f(x \diamond x)=f(x) \diamond f(x)=1$. Hence $f(1)=1$.
(ii). If $x \leq y$, Then $x * y=x \diamond y=1$. So, (i) implies

$$
f(x) * f(y)=f(x * y)=f(1)=1, \text { and } f(x) \diamond f(y)=f(x \diamond y)=f(1)=1
$$

Hence $f(x) \leq f(y)$. Therefore, f has the isotonic property.

Proposition 3.8. Let $f: X \rightarrow Y$ be a homomorphism and $\theta=\{(x, y): f(x)=f(y)\}$. Then
(i) θ is a congruence relation on X,
(ii) $X / \theta \cong f(X)$.

Proof. (i). It is obvious θ is an equivalence relation on X. We only show that θ satisfies the substitution property. Assume that (x, y) and $(u, v) \in \theta$. Then we have $f(x)=f(y)$ and $f(u)=f(v)$. Since f is a homomorphism and above argument yields,

$$
f(x * u)=f(x) * f(u)=f(y) * f(v)=f(y * v)
$$

and

$$
f(x \diamond u)=f(x) \diamond f(u)=f(y) \diamond f(v)=f(y \diamond v) .
$$

Then $(x * u, y * v),(x \diamond u, y \diamond v) \in \theta$. In the same way we have $(u * x, v * y),(u \diamond x, v \diamond y) \in \theta$. Hence θ is a congruence relation on X.
(ii). By using the Proposition 3.5, we have $\left(X / \theta ; *, \diamond, C_{1}\right)$ is a pseudo $B E$-algebra. Let $\nu: X / \theta \rightarrow f(X)$ be such that $\nu\left(C_{x}\right)=f(x)$, for all $C_{x} \in X / \theta$. Then
(i). $\quad v$ is well defined, because if $C_{x}=C_{y}$, for any $x, y \in X$, then $(x, y) \in \theta$. Therefore, $f(x)=f(y)$. Hence $\nu\left(C_{x}\right)=\nu\left(C_{y}\right)$.
(ii). $\operatorname{ker} \nu=\left\{C_{x}: \nu\left(C_{x}\right)=f(x)=1\right\}=\left\{C_{x}: f(x)=f(1)\right\}=\left\{C_{x}:(x, 1) \in \theta\right\}=$ C_{1}. Then v is one to one.
(iii). $\quad \nu\left(C_{x} * C_{y}\right)=\nu\left(C_{x * y}\right)=f(x * y)=f(x) * f(y)=\nu\left(C_{x}\right) * \nu\left(C_{y}\right)$ and $\nu\left(C_{x} \diamond C_{y}\right)=\nu\left(C_{x \diamond y}\right)=f(x \diamond y)=f(x) \diamond f(y)=\nu\left(C_{x}\right) \diamond \nu\left(C_{y}\right)$. Thus ν is a homomorphism. Therefore, $X / \theta \cong f(X)$.

4. Congruence relations induced by pseudo filters

In this section we assume that X is a distributive pseudo $B E$-algebra, unless otherwise is stated.

Proposition 4.1. Let F be a pseudo filter of X. Define

$$
x \sim_{F} y \text { if and only if } x * y, y * x \in F
$$

Then $\sim_{F} \in p \operatorname{Con}(X)$.
Proof. (i). Since $1 \in F$, we have $x * x=1 \in F$, i.e., $x \sim_{F} x$. This means that $" \sim_{F}$ " is reflexive. Now, if $x \sim_{F} y$ and $y \sim_{F} z$, then $x * y, y * x \in F$ and $y * z, z * y \in F$. By Proposition 2.5(i), $y * z \leq(x * y) *(x * z)$. Now, since $y * z \in F$ and F is a pseudo filter, it follows that $(x * y) *(x * z) \in F$. So $x * z \in F$. By a similar way we see that $z * x \in F$. This shows that $" \sim_{F} "$ is transitive. The symmetry of $" \sim_{F} "$ is immediate from the definition. Therefore, $" \sim_{F} "$ is an equivalence relation on X.
(ii). Let $x \in X$ and $u \sim_{F} v$. Then by Proposition 2.5(i), $v * u \leq(x * v) *(x * u)$. Now, since $v * u \in F$ and F is a pseudo filter, $(x * v) *(x * u) \in F$. By a similar way, $(x * u) *(x * v) \in F$. Therefore, $x * v \sim_{F} x * u$. Also, by Proposition 2.5(ii), $u * v \leq(x \diamond u) *(x \diamond v)$. Now, since $u * v \in F$ and F is a pseudo filter, we see that $(x \diamond u) *(x \diamond v) \in F$. By a similar way, $(x \diamond v) *(x \diamond u) \in F$. Therefore, $x \diamond v \sim_{F} x \diamond u$.

By using Proposition 2.5(ii), we have $x * u \leq(y \diamond x) *(y \diamond u)$, then $(x * u) \diamond((y \diamond x) *$ $(y \diamond u))=1$ and so by $(p B E 4)$ we have $(y \diamond x) *((x * u) \diamond(y \diamond u))=1$, which implies that $(x * u) \diamond(y \diamond u) \in F$, because F is pseudo filter $y * x \in F$ and by Theorem 2.6, F is normal, then $y \diamond x \in F$. Hence $(x * u) *(y \diamond u) \in F$. On the other hand, we have
$x * y \leq(y \diamond u) *(x * u)$, because

$$
\begin{aligned}
(x * y) \diamond((y \diamond u) *(x * u)) & =(y \diamond u) *((x * y) \diamond(x * u)) \\
& =(y \diamond u) *(x *(y \diamond u))=1 .
\end{aligned}
$$

Hence $(y \diamond u) *(x * u) \in F$, because F is pseudo filter and $x * y \in F$. Thus $x * u \sim_{F} y \diamond u$. Finally, since $y \diamond u \sim_{F} y \diamond v$ and by a similar way, $y \diamond v \sim_{F} y * v$. By the transitivity $" \sim_{F} "$ we get $x * u \sim_{F} y * v$. By the same manner $x \diamond u \sim_{F} y \diamond v$. Therefore, $\sim_{F} \in p \operatorname{Con}(X)$.

Note. Now, let F be a pseudo filter of X. Denote the equivalence class of x by C_{x}. Then $F=C_{1}$. In fact, if $x \in F$, then $x * 1=x \diamond 1=1 \in F$ and $1 * x=1 \diamond x=x \in F$, i.e., $x \sim_{F} 1$. Hence $x \in C_{1}$.

Conversely, let $x \in C_{1}$. Then $x=1 * x=1 \diamond x \in F$, and so $x \in F$. Hence $F=C_{1}$. Denote $X / F=\left\{C_{x}: x \in X\right\}$ and define that $C_{x} * C_{y}=C_{x * y}$ and $C_{x} \diamond C_{y}=C_{x \diamond y}$. Since $" \sim_{F} "$ is a congruence relation on X, the operations "*" and " \diamond are well defined.

Example 4.1. Let $X=\{1, a, b, c, d\}$ and operations "*" and " \diamond defined as follows:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	c	c	1
b	1	d	1	1	d
c	1	d	1	1	d
d	1	1	c	c	1

\diamond	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	1
b	1	d	1	1	d
c	1	d	1	1	d
d	1	1	b	c	1

Then, $(X ; *, \diamond, 1)$ is a distributive pseudo $B E$-algebra. It can be easily seen that $F=\{1, a, d\}$ is a pseudo filter. We have
$\sim_{F}=\{(1,1),(a, a),(b, b),(c, c),(d, d),(1, a),(a, 1),(d, 1),(1, d)(a, d),(d, a),(b, c),(c, b)\}$
and so $\sim_{F} \in p \operatorname{Con}(X)$.
Theorem 4.2. Let $F \in p F(X)$. Then
(i) $\left(X / F ; *, C_{1}\right)=\left(X / F ; \diamond, C_{1}\right)$ is a BE-algebra (which is called quotient pseudo $B E$-algebra via F, and $C_{1}=F$.)
(ii) $(X / F ; \diamond, *, 1)$ is a distributive pseudo $B E$-algebra if and only if $(X / F ; *, 1)$ is a $B E$-algebra (i. e. $C_{x * y}=C_{x \diamond y}$, for all $x, y \in X$).

Proof. (i). By similar way of the proof of Proposition 3.5, $\left(X / F ; *, \diamond, C_{1}\right)$ is a distributive pseudeo $B E$-algebra. To prove X / F is a $B E$-algebra it is sufficient to prove, $C_{x} * C_{y}=C_{x} \diamond C_{y}$, for all $C_{x}, C_{y} \in X / F$. By Proposition $2.5(i i i), A(x * y)=A(x \diamond y)$ By definition of $A(x)$, it is obvious that $x * y \in A(x * y)$ and $x \diamond y \in A(x \diamond y)$. Thus $x * y \in A(x * y)=A(x \diamond y)$ and so $(x * y) *(x \diamond y)=1 \in F$. By similar way, $x \diamond y \in A(x \diamond y)=A(x * y)$ and so $(x \diamond y) *(x * y)=1 \in F$. Hence $x * y \sim_{F} x \diamond y$ and so $C_{x * y}=C_{x \diamond y}$, which means $C_{x} * C_{y}=C_{x} \diamond C_{y}$.
(ii). By (i) and Theorem 2.7, the proof is obvious.

Example 4.2. Let $X=\{1, a, b, c, d, e\}$. Define the operations "*" and " \diamond " on X as follows:

$*$	1	a	b	c	d	e
1	1	a	b	c	d	e
a	1	1	c	c	d	1
b	1	a	1	1	d	e
c	1	a	1	1	d	e
d	1	a	1	1	1	e
e	1	a	c	c	d	1

\diamond	1	a	b	c	d	e
1	1	a	b	c	d	e
a	1	1	b	c	d	1
b	1	a	1	1	d	e
c	1	a	1	1	d	e
d	1	a	1	1	1	e
e	1	a	c	c	d	1

Then $(X ; *, \diamond, 1)$ is a distributive pseudo $B E$-algebra. By consider pseudo filter $F=$ $\{1, e\}$, we have $X / F=\left\{C_{1}=C_{e}=F, C_{a}=\{a\}, C_{b}=C_{c}=\{b, c\}, C_{d}=\{d\}\right\}$ with the operations "*" and " \diamond " defined by following table is a pseudo $B E$-algebra.

$*=\diamond$	C_{1}	C_{a}	C_{b}	C_{d}
C_{1}	C_{1}	C_{a}	C_{b}	C_{d}
C_{a}	C_{1}	C_{1}	C_{b}	C_{d}
C_{b}	C_{1}	C_{a}	C_{1}	C_{d}
C_{d}	C_{1}	C_{a}	C_{1}	C_{1}

Proposition 4.3. Let $\theta \in p \operatorname{Con}(X)$. Then
(i) $F_{\theta} \in p F(X)$,
(ii) $F_{\theta}=\{x \mid(x, 1) \in \theta\}$.

Proof. (i). Since $(x, x) \in \theta$, we have $x * x=1 \in F_{\theta}$. Suppose that $x * y, x \in F_{\theta}$. There are $(u, v),(p, q) \in \theta$ such that $x * y=u * v$ and $x=p * q$. Since $(u, v) \in \theta \in$ $p C o n(X)$, we have $(u * v, v * v)=(x * y, 1) \in \theta$ and by a similar way $(x, 1) \in \theta$. Now, $(x * y, 1 * y)=(x * y, y) \in \theta$. Hence $(y, 1) \in \theta$. This yields that $y * 1=1,1 * y=y \in F_{\theta}$. That is F_{θ} is a pseudo filter of X. Furthermore, we can see that, F_{θ} is normal pseudo filter from Theorem 2.6.
(ii). Put $F:=\{x \mid(x, 1) \in \theta\}$. Let $x \in F_{\theta}$. There is $(u, v) \in \theta$ such that $x=u * v$. Since θ is a congruence, we have $(x, 1)=(u * v, 1)=(u * v, v * v) \in \theta$. Hence $F_{\theta} \subseteq F$.

Now, let $x \in F$. Hence $(x, 1) \in \theta$ and so $x * 1=1,1 * x=x \in F_{\theta}$. Hence $F \subseteq F_{\theta}$. Therefore, $F=F_{\theta}$.

In [8], M. Kondo proved that θ is a regular cogruence relation on $B C I$-algebra if and only if $\theta=\theta_{I_{\theta}}$. Now, it is natural to ask whether $\theta=\theta_{F_{\theta}}$ in pseudo $B E$-algebras, for all $\theta \in p \operatorname{Con}(X)$. We shall investigate the relation between the congruences θ and $\theta_{F_{\theta}}$.
Theorem 4.4. Let $\theta \in p \operatorname{Con}(X)$. Then $\theta_{F_{\theta}}=\theta$.
Proof. Let $(x, y) \in \theta$. Then $x * y, y * x \in F_{\theta}$. Since F_{θ} is a normal pseudo filter by Proposition $4.3(i)$, we have $(x, y) \in \theta_{F_{\theta}}$. Therefore $\theta \subseteq \theta_{F_{\theta}}$. Now, it is sufficient to show that $\theta_{F_{\theta}} \subseteq \theta$. Let $(x, y) \in \theta_{F_{\theta}}$. By definition, we have $x * y, y * x \in F_{\theta}$. Hence there are $(u, v),(p, q) \in \theta$ such that $x * y=u * v, y * x=p * q$. Since $\theta \in p C o n(X)$, we have

$$
(x * y, 1)=(u * v, 1)=(u * v, v * v) \in \theta
$$

By a similar way $(y * x, 1) \in \theta$. Using Proposition $4.3(i i), x * y, y * x \in F_{\theta}$. Hence $(x, y) \in \theta$ and so $\theta_{F_{\theta}} \subseteq \theta$. Therefore, $\theta_{F_{\theta}}=\theta$.

Proposition 4.5. Let $f: X \rightarrow Y$ be a homomorphism. Then
(i) f is epimorphic if and only if $\operatorname{Im}(f)=Y$,
(ii) f is monomorphic if and only if $\operatorname{ker}(f)=\{0\}$,
(iii) f is isomorphic if and only if the inverse mapping f^{-1} is isomorphic.
(iv) $\operatorname{ker}(f)$ is a closed pseudo filter of X,
(v) $\operatorname{Im}(f)$ is a pseudo subalgebra of Y.

Proof. (iv). By Proposition 3.7(i), $1 \in \operatorname{ker}(f)$. Let $x, x * y \in \operatorname{ker}(f)$, then $f(x)=$ $f(x * y)=1$, and so

$$
1=f(x * y)=f(x) * f(y)=1 * f(y)=f(y)
$$

Thus $y \in \operatorname{ker}(f)$. Now, let $x * y \in \operatorname{ker}(f)$. Then $f(x * y)=f(x) * f(y)=1$, and so by $(p B E 5)$ we have $f(x) \diamond f(y)=f(x \diamond y)=1$. Therefore, $x \diamond y \in F$. By a similar way we can prove if $x \diamond y \in F$, then $x * y \in F$. Hence $\operatorname{ker}(f)$ is a closed pseudo filter of X.
(v). Obviously, $\operatorname{Im}(f)$ is a non-vacuous set. If $y_{1}, y_{2} \in \operatorname{Im}(f)$, then there exist x_{1}, $x_{2} \in X$ such that $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$, thus

$$
y_{1} * y_{2}=f\left(x_{1}\right) * f\left(x_{2}\right)=f\left(x_{1} * x_{2}\right) \in \operatorname{Im}(f)
$$

and

$$
y_{1} \diamond y_{2}=f\left(x_{1}\right) \diamond f\left(x_{2}\right)=f\left(x_{1} \diamond x_{2}\right) \in \operatorname{Im}(f)
$$

Consequently, $\operatorname{Im}(f)$ is a pseudo subalgebra of Y.
Note. In general, $\operatorname{Im}(f)$ may not be a pseudo filter.
Example 4.3. Let $X=\{1, a, b, c\}$ and $Y=\{1, a, b, c, d\}$. Define operations " $*$ " and " \diamond " on X and Y as follows:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	a	1
b	1	1	1	1
c	1	a	a	1

\diamond	1	a	b	c
1	1	a	b	c
a	1	1	c	1
b	1	1	1	1
c	1	a	b	1

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	a	1	a
b	1	1	1	1	a
c	1	a	a	1	a
d	1	1	1	1	1

\diamond	1	a	b	c	d
1	1	a	b	c	d
a	1	1	c	1	c
b	1	1	1	1	c
c	1	a	b	1	d
d	1	1	1	1	1

Then $(X ; *, \diamond, 1)$ and $(Y ; *, \diamond, 1)$ are pseudo $B E$-algebras and $\{1, a, b, c\}$ is a pseudo filter of X. Now, if we consider $f: X \rightarrow Y$ as the identity map, then f is a homomorphism and $f(X)=X$. We can see that $X=\{1, a, b, c\}$ is a trivial pseudo filter of X, but $f(X)$ is not a pseudo filter of Y, because

$$
a * d=a \in f(X), a \in f(X) \text { but } d \notin f(X) .
$$

Proposition 4.6. Let $f: X \rightarrow Y$ be an epimorphism. If F is a pseudo filter of X, then $f(F)$ is a pseudo filter of Y.
Proof. $f(F)$ is nonempty subset of Y because $1 \in f(F)$. Let $y \in Y$ and $a \in f(F)$ such that $a * y, \in f(F)$. Then there exist $x \in X$ and $a_{1} \in F$ such that $f(x)=y$ and $f\left(a_{1}\right)=a$. Now, we have $a * y=f\left(a_{1}\right) * f(x)=f\left(a_{1} * x\right) \in f(F)$. Hence $a_{1} * x \in F$. Since F is a pseudo filter and $a_{1} \in F$, we have $x \in F$. Therefore, $y=f(x) \in f(F)$.

Theorem 4.7. Let F be a closed pseudo filter of X. Then there is a canonical surjective homomorphism $\varphi: X \rightarrow X / F$ by $\varphi(x)=C_{x}$, and $\operatorname{ker} \varphi=F$, where $\operatorname{ker} \varphi=\varphi^{-1}\left(C_{1}\right)$.

Proof. It is clear that φ is well-defined. Let $x, y \in X$. Then

$$
\varphi(x * y)=C_{x * y}=C_{x} * C_{y}=\varphi(x) * \varphi(y)
$$

and

$$
\varphi(x \diamond y)=C_{x \diamond y}=C_{x} \diamond C_{y}=\varphi(x) \diamond \varphi(y) .
$$

Hence φ is homomorphism.
Clearly φ is onto. Also, we have

$$
\begin{aligned}
\operatorname{ker} \varphi=\left\{x \in X: \varphi(x)=C_{1}\right\} & =\left\{x \in X: C_{x}=C_{1}\right\} \\
& =\{x \in X: x * 1,1 * x, x \diamond 1,1 \diamond x \in F\} \\
& =\{x \in X: x \in F\}=F .
\end{aligned}
$$

5. Conclusion

In this paper, we consider the relation between congruence relations on pseudo $B E-$ algebras and (normal) pseudo filters. Also, we show that the quotient of a pseudo $B E$-algebra via a congruence relation is a pseudo $B E$-algebra and prove that, if X is a distributive pseudo $B E$-algebra and F is a normal pseudo filter, then the quotient algebra via this filter is a $B E$-algebra.

Acknowledgements

The authors are highly grateful to the referee for his/her valuable comments and suggestions for improving the paper.

References

[1] R. A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar and R. Ameri, On pseudo BEalgebras, Discussiones Mathematica, General Algebra and Applications 33 (2013), 95-108.
[2] R. A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar and R. Ameri, On distributive pseudo BE-algebras, Fasciculi Mathematici (to appear).
[3] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras, Multiple Val. Logic 6 (2001), 95-135.
[4] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Combinatorics, Computability and logic, $97-114$, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 2001.
[5] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo-BCI algebras, Mate. Vesnik. 58 (2006), no. 1-2, 39-46.
[6] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007), no. 1, 113-117.
[7] Y. H. Kim and K. S. So, On minimality in pseudo-BCI algebras, Commun. Korean Math. Soc. 27 (2012), no. 1, 7-13.
[8] M. Kondo, Congruences and closed ideals in BCI-algebras, Math. Jpn. 48 (1997), no. 3, 491-496.
[9] A. D. Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebras, Part I, Multiple Val. Logic 8 (2002), no. 5-6, 673-714.
[10] A. D. Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebras, Part II, Multiple Val. Logic 8 (2002), no. 5-6, 715-750.
[11] J. Rachunek, A non commutative generalization of MV-algebras, Czehoslovak Math. J. 52(127) (2002), no. 2, 255-273.
[12] A. Walendziak, On axiom systems of pseudo-BCK algebras, Bull. Malays. Math. Sci. Soc. 34 (2011), no. 2, 287-293.
(Akbar Rezaei) Department of Mathematics, Payame Noor University, p.o.box. 19395-3697, Tehran, Iran
E-mail address: Rezaei@pnu.ac.ir
(Arsham Borumand Saeid) Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
E-mail address: arsham@uk.ac.ir
(Akefe Radfar) Department of Mathematics, Payame Noor University, p.o.box. 19395-3697, Tehran, Iran
E-mail address: ateferadfar@yahoo.com
(Rajab Ali Borzooei) Department of Mathematics, Shahid Beheshti University of Tehran, Tehran, Iran
E-mail address: borzooei@sbu.ac.ir

[^0]: Received December 3, 2013.

