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A Note on Jensen’s inequality for 2D-convex functions

Khuram Ali Khan, Constantin P. Niculescu, and Josip Pečarić

Abstract. Recently, M. Bencze, C. P. Niculescu and F. Popovici [2] have introduced a notion
of 2-dimensional convexity for functions of several variables, together with an analogue of
Jensen’s inequality. We present here an alternative argument, based on a result due to D. D.

Adamović and P. M. Vasić [1].
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In 1965, T. Popoviciu [8] (see also [4], [7, p.171]) proved the following characteri-
zation of convex functions:

Theorem 1. Suppose that f is a real-valued continuous function defined on a
nondegenerate interval and n and k are two positive integers such that n ≥ 3 and
2 ≤ k ≤ n− 1. Then f is convex if and only if
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for all x1, ..., xn ∈ I.

Corollary 1. Let f : I → R be a continuous function. Then f is convex if, and only
if,
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for all x1, x2, x3 ∈ I.

A refinement of Corollary 1 was obtained in 2006 by C. P. Niculescu and F. Popovici
[5] and in 2009, C. P. Niculescu [3] established the integral form of this corollary.

In 1974, J. C. Burkill gave the weighted version of Corollary 1, under the assump-
tion of twice differentiability of the function f . In 1976, P. M. Vasić, Lj. R. Stanković
and V. J. Baston replaced the assumption of twice differentiability by that of conti-
nuity. In 1982, A. Lupas provided another proof of Burkill’s inequality, while in 1986,
J. Pečarić noticed that the weighted case is actually covered by the original argument
of Popoviciu.

Motivated by Hlawka’s inequality (see [4], p. 100), M. Bencze, C. P. Niculescu
and F. Popovici [2] extended Popoviciu’s inequality for functions of several variables.
For this purpose they introduced a new concept of convex function, that proves to be
stronger than the usual one:
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Definition 1. Let U be a convex subset of a real linear space L. A function f : U → R
is called 2D-convex (that is, 2 dimensional convex ) if it verifies the inequality

p1f(x1) + p2f(x2) + p3f(x3)
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for all x1, x2, x3 ∈ U and all p1, p2, p3 ≥ 0, with p1 + p2 + p3 > 0.

Every 2D-convex function is convex in the usual sense. The converse works in the
case of continuous functions defined on intervals, but not in general. The norm of
every 2-dimensional Banach space is 2D-convex. Also, the absolute value of every
affine function and all functions of the form

f(x1, x2) = (ax1 + bx2)
2
, (x1, x2) ∈ R2,

are 2D-convex. Among the many nice features of 2D-convex functions is the existence
of a 2D analogue of Jensen’s inequality:

Theorem 2. (See [2]). Let U be a convex subset of a real linear space L. If f is a
2D-convex function defined on U , then f verifies the following family of inequalities,
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and x = (x1, ..., xn) ∈ Un, n ≥ 3, k ∈ {2, ..., n}, and p = (p1, ..., pn) is a positive
n-tuple.

In [2], Theorem 2 is proved by mathematical induction. The aim of the present
paper is to provide an alternative argument, via a general result of Adamović and
Vasić [1], which we recall here in the variant given in [6] (see also [7, p.176]).

We assume that E is a nonempty subset of a commutative additive semigroup D
that verifies the following condition:

If ai ∈ E for i = 1, ..., n and
n∑

i=1

ai ∈ E, then
∑
i∈F

ai ∈ E for every F ⊂ {1, ..., n} ,

F ̸= ∅.
In addition, we consider a commutative additive group G endowed with a total

ordering ≤ such that

a < b in G implies a+ c < b+ c for every c ∈ G.

Theorem 3. Given a function g : E → G and integers 2 ≤ k ≤ n, we consider the
condition

(Qk,n) : gk,n(a) ≤
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k − 1
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where

gk,n(a) = gk,n(a1, ..., an) :=
1

Cn−1
k−1

∑
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and a ∈ En is an n-tuple such that
n∑

i=1

ai ∈ E. Then:

a) (Q2,3) ⇒ (Qk,n) ;

b) (Qk,n) ⇒ (Q2,3) if 2 ≤ k < n and D admits a neutral element 0, 0 ∈ E and
f(0) = 0.

In order to apply Theorem 3, we shall need to turn the linear space L (that appears
in Theorem 2) into a weighted space, D = L×R+. A point X = (x, p) of D is a point
located at x and having mass p. Archimedes’ Law of the Lever (from Statics) makes
D a commutative semigroup with respect to the following rule of addition:

X + Y = (x, p) + (y, p) =

(
px+ qy

p+ q
, p+ q

)
for X,Y ∈ D.

Here px+qy
p+q is precisely the position of the equilibrium of the two mass points (x, p)

and (y, p).
If we apply Theorem 3 to D = L× R+, E = U × R+ and the function g : E → R

defined by g(x, p) = pf(x), the condition (Qk,n) becomes (Ck,n) .
Under these circumstances, it is clear that Theorem 3 (a) yields the conclusion of

Theorem 2. But we can prove more. Assuming that 0 ∈ U, we obtain that the neutral
element (0,0) of D belongs to E. According to Theorem 3 (b), (Ck,n) ⇒ (C2,3) , which
represents the converse of Theorem 2.
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