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A new variable shape parameter strategy for Gaussian radial
basis function approximation methods

Mojtaba Ranjbar

Abstract. In this article, we introduce a new variable shape parameter is called symmetric
variable shape parameter (SVSP) for Gaussian radial basis functions (GRBFs). The GRBF

has the shape parameter c, which plays an important role in the accuracy of the approximation.

In this work, we will use it to interpolate functions and solve linear boundary value problems
(LBVP). Some numerical experiments are presented to show accuracy and robustness of the

GRBF with SVSP strategy. These results have the best accuracy for the one- and two-

dimensional interpolations and LBVP. Besides, the numerical results show that the SVSP for
GRBF often outperforms constant shape parameter strategy.
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1. Introduction

During the last two decades, radial basis functions (RBFs) have become a well
established tool for interpolating multivariate data and solving linear boundary value
problems. Approximating the solution of PDEs with RBF methods has drawn many
researchers in science and engieering [1, 2, 3, 4, 5, 6, 7, 8]. In genral form, RBFs can
be sorted into two types: the globally supported RBF (GSRBF) and the compactly
supported RBF (CSRBF). The GSRBFs mainly include multi-quadric (MQ), inverse
multi-quadric (IMQ), thin-plate spline and Gaussian. It is clear that some of the
functions (GA, MQ, IMQ, IQ ), are globally supported, infinity differentiable and
depend on a free parameter c. Some of the most general fundamental functions that
generate is RBFs listed in Table 1. In all numerical examples, we have used the GA
which is representative of this class and popular application.

These functions have shape parameter that plays an important role in the accuracy
of the approximation. However, it is still a challenge to find the best shape parameter
of GSRBF. The choice of the optimal shape parameters has been studied by Carlson
and Foley [9], Rippa [10], Wang and Liu [11], Wang [12], Cheng et al. [13], and
Ferreira et al. [14]. Kansa et al. [15] noted the shape parameter must be adjusted
with the number of centers in order to produce equation systems that are sufficiently
well conditioned to be solved with standard finite precision arithmetic.

The RBFs is an efficient tool in multivariate approximation, but it usually suffers
from an ill-conditioned interpolation matrix when interpolation points are very dense
or irregularly spaced. To guarantee the robust of the interpolation many researchers
have sought for the theoretical results about the convergence and stability of the RBF
interpolation [16]-[20].
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So far, many methods have been proposed, such as compactly supported RBF,
multilevel method, precondition method, domain decomposition method, truncated
RBF method, RBF with variable shape parameter and knot optimization method [21].
The advantage of using variable shape parameter lies in the fact that the RBFs with
variable shape parameters can usually improve the interpolation matrix condition
number. The concept of variable shape parameters in the RBF interpolation has
been proposed by many researchers, e.g. Kansa and Carlson [22].

The main idea is to determine the shape parameter of a RBF in terms of the local
density of its corresponding interpolation point. Thus the columns of the interpola-
tion matrix elements are more distinct and the condition number becomes smaller.
However, new problems may be caused by the shape parameter variation such as a
singular interpolation matrix, lower convergence rate and difficulties to choose the
variation schemes [23].

In many cases for multi-quadric RBF and inverse multi-quadric RBF with variable
shape parameter produced more accurate results than if a CSP had been used [24, 25].
Towards the singular interpolation matrix that may appear in the new interpolation
method, Bozzini et al.[26] proposed some criterions for the variable shape parameter,
which guarantee the unique solvability of the interpolation. Sarra and Sturgill [24]
have investigated a random variation scheme and Li et al. [27] have implemented a
linear scheme successfully. Xiang et al. [25] for generalized MQ-RBF presented a
trigonometric variable shape parameter and exponent strategy. The paper is orga-
nized as follows : first, in section 2 we briefly review the RBF method for interpolation
problem. In section 3, we describe the idea of variable shape parameters and propose
the SVSP. In section 4, we study the validity and effectiveness of the proposed strat-
egy which , is called symmetric variable shape parameter (SVSP). It is applied to four
examples in one and two dimensional problems. The paper ends with conclusions and
discussions on future work is section 5.

Name of RBF Abbreviations Definition

Gaussian (GA) ϕ(r) = e−c
2r2

Multi-Quadric (MQ) ϕ(r) =
√

1 + c2r2

Inverse Multi-Quadric (IMQ) ϕ(r) = 1/
√

1 + c2r2

Inverse Quadric (IQ) ϕ(r) = 1/(1 + c2r2)

Table 1. Globally Support RBFs

2. Gaussian RBF interpolation

RBFs were introduced by Hardy in 1971 [28]. The RBF known as a truly mesh
free computational method, does not require the mesh generation of a regular grid
as in the traditional finite difference or a mesh as in the finite element and boundary
element methods. In fact, the mesh generation of high dimensional problems costs a
great deal in terms of computer resources. Accordingly the recent motivation is to
cut down modeling costs by avoiding the mesh generation. Overall, RBFs method
aims to eliminate the structure of the mesh and approximate the solution using a set
of quasi random points rather than points from a grid discretization.

In this section, the RBFs method is defined as a technique for interpolation of
the scattered data. Let r be the Euclidean distance between two points i.e., r =



262 M. RANJBAR

‖x − x∗‖2 =
√

(x1 − x∗1)2 + (x2 − x∗2)2 + ...+ (xd − x∗d)2 for x ∈ Rd and fixed point

x∗ ∈ Rd. The RBF interpolation method uses linear combinations of translates of
one function ϕ(r) of a single real variable. Given a set ofcenters x∗1, ...,x

∗
N in Rd, the

RBF interpolate takes the form

P(x) =

N∑
i=1

λiϕi(r) =

N∑
i=1

λiϕ(‖x− x∗i ‖2). (1)

Many different basis functions ϕ(r) have been used, but we concentrate on the Gauss-
ian RBF

ϕi(r) = e−c
2r2 , (2)

where c > 0 is a free shape parameter. The coefficients λ, are chosen by enforcing the
interpolation condition

P(x∗j ) = f(x∗j ), j = 1, 2, ...N. (3)

at a set of nodes that typically coincide with the centers. Collocation with the inter-
polation conditions at the N nodes leads to a N ×N linear system

Aλ = f . (4)

Solving this linear system, the solution of the interpolation problem is obtained.

λ = A−1f . (5)

The matrix A with entries

aji = ϕ(‖x∗j − x∗i ‖2), i, j = 1, ..., N. (6)

is an interpolation matrix . For distinct center locations, the system matrix for the
GARBF is known to be nonsingular [29] if a CSP is used. For given a square matrix
A , the condition number κs(A) is defined as:

κs(A) = ‖A‖s‖A−1‖s, s = 1, 2,∞, (7)

if the inverse of exists. If the inverse does not exist, then we say that the condition
number is infinite. The condition number of A depends directly on the shape param-
eter c. Theoretically, RBF methods are most accurate when the shape parameter is
small. However, the use of small shape parameters results in system matrices that
are very poorly conditioned.

3. Variable shape strategies

One of the key issues when applying RBF to interpolation or to the numerical
solution of PDEs is the choice of a suitable value for shape parameters of RBF.
A large shape parameter results in a well conditioned system matrix; however, the
approximation using the RBF is poor. If one chooses to use a small shape parameter
this results in a very accurate RBF approximation, but now the system matrix is
ill-conditioned. So, chooses the shape parameter of RBF is an important factor that
affects the interpolation error and stability. A variable shape parameter strategy
refers to use a possibly different value of the shape parameter at each center. This
results in shape parameters that are the same in each column of the interpolation
matrix or the evaluation matrix.

One positive aspect of a variable shape parameter is that it creates distinct entries
in the RBF matrices which lead to lower condition numbers [30]. To the authors’
knowledge, there is not yet any paper that implements GARBF methods with variable
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shape parameter for improving the accuracy of the interpolation and boundary value
problems. In most papers, variable shape parameter methods have been successfully
used in MQ-RBF or IMQ-RBF approximation methods [23, 24, 25].

In order to solve the scattered data interpolation problem, one can consider the
GARBF interpolation in the following form

P(x) =

N∑
j=1

λj exp−c
2
j (x−x

∗
j )

2

, (8)

where N is the total number of nodes, λj is unknown coefficients, cj is the vari-
able shape parameters. The coefficients λ are chosen by Enforcing the interpolation
condition (3) at N centers results in the equations

exp−c
2
1(x

∗
1−x

∗
1)

2

exp−c
2
2(x

∗
1−x

∗
2)

2 · · · exp−c
2
N (x∗

1−x
∗
N )2

exp−c
2
1(x

∗
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∗
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2

exp−c
2
2(x
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∗
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N (x∗
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∗
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...

exp−c
2
1(x
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2(x
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N−x
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N (x∗
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λ1
λ2
...
λN

 =


f(x∗1)
f(x∗2)

...
f(x∗N )

 .
(9)

where f(x) is used to generate the data to be interpolated. The matrix form Eq.(9)
can be written as

Aλ = f. (10)

The system (10) contain N equation in N unknowns λj which can be easily solved by

λ = A−1f, (11)

where A is the interpolation matrix and nonsingular matrix. Steady PDE problems
are discretized by the RBF method in the following manner. Consider the linear
boundary value problem {

Lu(x) = f(x), x ∈ Ω,
Bu(x) = g(x), x ∈ ∂Ω.

(12)

Where ∂Ω is the boundary of the domain Ω, L is a linear elliptic partial differential
operator, B is a linear boundary operator,f(X) and g(X) are the known functions.
The solution of Eq.(12)can be approximated in the following form

u(x) =

N∑
j=1

λjϕj(r) =

N∑
j=1

λj exp−c
2
j (x−x

∗
j )

2

(13)

The set of N distinct center centers are divided into two part. Assume that there are
NI centers in the interior of the domain Ω and NB centers on the boundary ∂ΩX.
For the interior centers, we have

Lu(x∗i ) =

N∑
j=1

λjLϕ(‖x∗i − x∗j‖) = f(x∗i ), i = 1, 2, . . . NI . (14)

For the boundary centers, we apply the operator B to the RBF interpolation as

Bu(x∗i ) =

N∑
j=1

λjBϕ(‖x∗i − x∗j‖) = g(x∗i ) i = NI + 1, 2, . . . N. (15)

In matrix form, Eqs. (14) and (15) can be expressed as[
Lϕ
Bϕ

] [
λ
]

=

[
f
g

]
(16)
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Figure 1. Plot of SVSP (with N = 40 and c∗ = 6 ) for one dimensional
problems.

SVSP
CSP

 

  Condition number for 1D Interpolation 

20

40

60

80

100

120

C
on

di
tio

n 
nu

m
be

r 
(L

og
)

0 10 20 30 40 50 60
Number of interpolation points

Figure 2. Condition number versus the density of the 1D interpolation
points for the GA.

Then [
λ
]

=

[
Lϕ
Bϕ

]−1 [
f
g

]
(17)
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Number of Centers Condition Number CSP (c∗ = 6) Condition Number SVSP

N=20 5.756e+8 6.527e+8
N=30 1.983e+18 5.923e+16
N=40 3.462e+29 4.966e+25
N=50 9.653e+41 2.133e+35

Table 2. Compare Condition Number 1 D Interpolation with CSP (c∗ =
6) SVSP with d = 50 (the number of floating point arithmetics)

As can be seen from Eq.(9), the shape parameter cj is different at each column of the
coefficient matrix.

In this work, we propose a new variable shape parameter c strategy for GARBF,
that it is called symmetric variable shape parameter (SVSP), as follows

cj = c∗ exp(
1

2
(
j − µ
σ

)2), (18)

where c∗ is a arbitrary shape parameter such that c∗ ∈ [cmin, cmax]. We define values
µ and σ as follows

µ =

{
0.5N, 1D,
0.5N2, 2D,

(19)

and

σ =

{
0.5N, 1D,

0.25N2, 2D,
(20)

Note that, the shape parameter values cj are controlled around c∗ by µ and σ. The
symmetric variable shape parameter cj is shown in Figure 1. In the one dimensional
problems N is the total number of centers and in the two dimensional N is the centers
number of each coordinate axis.

In Table. 2, some values of condition number of 1D interpolation matrix, the
corresponding number of centers, for CSP and SVSP are listed.

4. Numerical results and comparison with explicit solutions

In this section, we apply numerical comparisons of the SVSP to that of the CSP.
The formula for the root-mean-square(RMS) error is given by

RMSE =

√√√√ 1

N

N∑
j=0

(ue(xj)− ua(xj))2, (21)

The L∞ and L2 error norms of the solution are defined by

L∞ = ‖ue − ua‖∞ = max
j=0,...N

|ue(xj)− ua(xj)|, (22)

and

L2 = ‖ue − ua‖2 =

√∫ 1

0

(ue(x)− ua(x))2dx. (23)

Where ue and ua are the exact and approximate solutions of the problems, respec-
tively. In each case, we calculate errors of the RMS, the L∞ and the L2. We use L∞
and L2 error norms to measure the difference between the approximation and exact
solutions that they are applied to one dimensional problems. Also, the error norm
L∞ and RMS error are used for two dimensional problems. The numerical result
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obtained, are in excellent agreement with the exact solution, as shown in figures and
tables. Here we try to reduce the error by using SVSP strategy. Now we present
the results for four test examples. We have taken these problems from the literature
[25, 24].

4.1. One-dimensional interpolation. Three one-dimensional functions are used
to examine the numerical accuracy of the present symmetric variable shape param-
eter strategy in the one-dimensional interpolation. The domain is discretized by the
uniformly spaced centers. The function f1 is an exponential and trigonometric com-
bination:

f1 = exp(−x) + sin(2x); x ∈ [0, 1]

The function f2 is a third degree polynomial:

f2 = x3 + x2 + x; x ∈ [0, 1]

The function f3 is a rational function:

f3 =
1

1 + 25x2
; x ∈ [0, 1]

In Fig 3. and Fig 4. the point-wise error functins fi(x) − f̃i(x) for i = 1, 2, 3 are
plotted using GRBF with CSP and SVSP respectively. Table 3, lists the L2 and
L∞ errors of GARBFs interpolating functions f1, f2 and f3 by CSP (c=6) and SVSP
strategies. According to the Table 3, GARBFs with SVSP results in the best accuracy
for interpolating functions f1, f2 and f3.

4.2. Two-dimensional interpolation. Our secant numerical experiment of the
present SVSP strategy, involves interpolating two functions in two dimensional. The
functions f4 and f5 are

f4 = e(x+y); (x, y) ∈ [0, 1]× [0, 1],

f5 = x2 + 2y3; (x, y) ∈ [0, 1]× [0, 1].

In Fig 5. the point-wise error functins fi(x) − f̃i(x) for i = 4, 5 are plotted using
GRBF with CSP and SVSP. The L∞ and RMS errors of GARBFs interpolating
functions f4 and f5 using CSP (c=0.95) and SVSP strategies are listed in Table 4. It
is found from Table 4 that SVSP strategy produces the best accuracy for interpolating
functions f4 and f5.

4.3. One-dimensional boundary value problem. Consider the one-dimensional
linear boundary value problem

−uxx + π2u = 2π2sin(πx); (x, y) ∈ [0, 1],

u(0) = u(1) = 0.

with the exact solution u(x) = sin(πx). The set of collocation centers (uniformly
spaced) have been used to solve the one-dimensional boundary value problem for
N = 40, 60, 80. The L∞ and L2 errors of GARBFs solving one dimensional linear
elliptic boundary problem above by CSP (c=0.95) and SVSP strategies are listed in
Table 5. According to the Table 5, the SVSP strategy produces the best accuracy for
solving the one-dimensional boundary value problem.
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Number of Centers Function Error CSP (c∗ = 6) SVSP

f1 L2 1.189398e-2 2.756890e-3
L∞ 3.280115e-2 8.938321e-3

N=10 f2 L2 3.429439e-2 7.552350e-3
L∞ 1.253790e-1 2.910077e-2

f3 L2 2.938253e-2 2.893205e-3
L∞ 9.003832e-3 1.128364e-2

f1 L2 6.080262e-5 1.901896e-6
L∞ 3.133009e-4 1.366943e-5

N=20 f2 L2 1.988121e-4 5.567550e-6
L∞ 1.398668e-3 4.697162e-5

f3 L2 4.246478e-5 3.036971e-5
L∞ 2.957292e-4 2.027269e-4

f1 L2 6.751047e-9 2.870895e-11
L∞ 7.786065e-7 4.985295e-9

N=30 f2 L2 2.643284e-8 8.600925e-11
L∞ 4.332845e-6 1.713434e-8

f3 L2 2.994808e-8 3.433226e-8
L∞ 4.059901e-6 6.969993e-6

f1 L2 1.151938e-11 7.427225e-15
L∞ 6.500154e-10 6.363788e-13

N=40 f2 L2 5.500126e-11 2.162779e-14
L∞ 4.156552e-9 2.113284e-12

f3 L2 2.994808e-8 4.654414e-9
L∞ 4.059901e-6 5.376785e-7

f1 L2 6.339441e-10 1.057222e-16
L∞ 1.360138e-9 2.006284e-16

N=50 f2 L2 5.619426e-10 1.104614e-16
L∞ 1.165221e-9 1.980058e-16

f3 L2 2.624138e-11 5.591093e-11
L∞ 2.573009e-8 1.644512e-8

Table 3. 1 D Interpolation Error Results with (d = 50)

4.4. Two-dimensional boundary value problem. We use the two dimensional
linear elliptic boundary problem

uxx + uyy = −2π2sin(πx)sin(πy); (x, y) ∈ [0, 1]× [0, 1]

u(x, y) = 0; (x, y) ∈ ∂([0, 1]× [0, 1])

as a steady PDE test problem for the shape parameter strategies. The exact solution
of above boundary value problem is u(x, y) = sin(πx)sin(πy). The L∞ and RMS
errors of GARBFs solving two dimensional linear elliptic boundary problem above
with CSP (c = 2.5) and SVSP strategies are listed in Table 6. It is found from Table
6. that the SVSP strategy produces the best accuracy for solving the two-dimensional
boundary value problem.

These test problems are chosen such that their exact solutions are known. But the
GARBF method with SVSP strategy developed in this research can be applied to more
complicated problems. Obtained Tables, show that under a new shape parameter
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Number of Centers Function Error CSP (c∗ = 6) SVSP

f4 RMSE 7.864511e-3 1.118120e-2

N2 = 16 L∞ 9.152483e-3 2.136528e-2
f5 RMSE 2.758493e-3 2.868528e-3

L∞ 1.102749e-2 6.130106e-3
f4 RMSE 9.961191e-7 1.860040e-6

N2 = 64 L∞ 1.879069e-6 3.681840e-6
f5 RMSE 7.808936e-7 3.727625e-10

L∞ 1.512060e-6 1.684241e-10
f4 RMSE 1.033037e-8 2.201717e-9

N2 = 100 L∞ 2.306630e-8 5.379347e-9
f5 RMSE 6.397018e-9 3.549075e-15

L∞ 1.519658e-8 8.793413e-15
f4 RMSE 9.230352e-11 4.112013e-12

N2 = 144 L∞ 2.591107e-10 1.071311e-11
f5 RMSE 4.519395e-11 8.128081e-21

L∞ 1.339111e-10 2.118603e-20
f4 RMSE 6.006413e-14 1.159306e-15

N2 = 225 L∞ 2.121976e-13 3.663498e-15
f5 RMSE 8.613981e-14 8.314440e-28

L∞ 2.720643e-13 2.694277e-26

Table 4. 2 D Interpolation Error Results with (d = 50)

Number of Centers Error CSP (c∗ = 0.95) SVSP

L2 1.076395e-23 1.4037386-28
N=40 L∞ 1.186638e-23 2.496621e-28

RMSE 3.446426e-23 1.559586e-28
L2 2.489795e-24 5.742747e-31

N=60 L∞ 5.111960e-24 1.156160e-30
RMSE 2.377938e-24 3.293193e-31
L2 2.295270e-24 4.960491e-31

N=80 L∞ 4.176405e-24 7.284569e-31
RMSE 1.725887e-24 2.606880e-31

Table 5. Error Results 1 D Boundary Value Problem with (d = 50)

variation scheme the same accuracy level, the interpolation matrix condition number
by our scheme grows much slower than that of the constant shaped RBF interpolation
matrix with increase in the number of interpolation points.

5. Conclusion

In this study, we present a symmetric variable shape parameter strategy for GARBF,
and apply it to interpolations and linear elliptic boundary value problems for verify-
ing the numerical accuracy of present method. Comparison studies showed that the
symmetric variable shaped Gaussian with the proposed scheme out performed the
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Number of Centers Error CSP (c∗ = 2.5) SVSP

L∞ 3.783330e-2 2.206133e-2
N2 = 25 RMSE 2.195807e-2 1.109765e-2

L∞ 3.910419e-3 6.203643e-4
N2 = 64 RMSE 5.744870e-3 2.693574e-4

L∞ 9.6399669e-4 3.226619e-5
N2 = 100 RMSE 7.4621224e-4 1.302579e-5

L∞ 1.356141e-4 2.066263e-6
N2 = 144 RMSE 1.085606e-4 9.3973580e-7

L∞ 2.160298e-6 4.015188e-9
N2 = 225 RMSE 1.768520e-6 1.709078e-9

Table 6. Error Results 2 D Boundary Value Problem with (d = 50)

constant shaped Gaussian on the accuracy. Several numerical experiments with the
uniformly spaced centers show that the GARBF with the symmetric variable shape
parameter c strategy produces the best accuracy for the one and two-dimensional
interpolations and linear boundary value problems.

Acknowledgements: The author sincerely acknowledge the Research Vice Chan-
cellor of Azarbaijan Shahid Madani University for financial support.
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Figure 3. Plot of point-wise errors for the one dimensional interpolation
of fi(x) for i = 1, 2, 3 using GRBF with CSP with N = 40 and d = 50.
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Figure 4. Plot of point-wise errors for the one dimensional interpolation
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Figure 5. Plot of point-wise errors for the two dimensional interpolation
of fi(x) for i = 4, 5 with N = 40 and d = 50.
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