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1. Introduction

We deal with the following boundary value problems

%7; — div(a(m,t,u, Vu)) +g(z,t,u,Vu) + H(z,t,Vu) = f in Q,
u(z,t) =0 on 90 x(0,7),
u(z,0) = ug(x) on €

(1)

where the cylinder Q = Q x [0, T] with a given real number T > 0 and 2 is a bounded
domain of RV, a : Q x [0,T] x R x RY — R is a Carathéodory function (that is,
measurable with respect to 2 in € for every (,s, &) in [0,T] x R x R, and continuous
with respect to (s,¢) in R x RY for almost every x in ) such that for all £, n in RV,

§E#n,

ala. 5,9 < B|k(.t) + s + 1677 (2)
[a(x’t757€)_a(x7t’3777)](§_77) > 07 (3)
a(x,t,5,6)€ > al¢]?, (4)

where the function k(z,t) € L”/(Q) and 3, a are positives constants.

Furthermore, let g(z,t,5,&) : Qx [0,T] x Rx RY — R, and H(z,t,£) : Qx [0,T] x
RY — R be two Carathéodory functions which satisfy, for all (z,t) € Q and for all
s € R, & € RY, the following conditions

90, ,5,6)] < Lu(lsl) (La(a,t) + [¢lP).

()

g($7 t’ 87 5)8 2 07 (6)
(7)

)

|H(x,t,&)| < h(z,t)|E[P~, 7
where L; : Rt — R¥ is a continuous increasing function in L!(R), while Lo(z,t
belongs to L'(Q), and h(z,t) € L"(Q) with r > max(N,p).

u(z,0) = ug € L*(Q). (8)
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Our purpose in this paper is to prove the existence of solutions for the initial-
boundary value problems (1) in the setting Sobolev space, in the case where H # 0
and f belongs to L? (0, T; W—1#'(2)), where the principal part —div (a(a:, t,u, Vu)),
the nonlinearity g and H satisfying some general growth conditions. Note that, a
little information is known for the parabolic case.

The study of the nonlinear partial differential equations in this type of spaces is
strongly motivated by numerous phenomena of physics, namely the problems related
to non-Newtonian fluids of strongly inhomogeneous behavior with a high ability of
increasing their viscosity under a different stimulus, like the shear rate, magnetic or
electric field.

For some classical and recent results on parabolic problems in Orlicz and Sobolev
spaces see Dall’Aglio-Orsina [11] and Porretta [18] who proved the existence of so-
lutions for the following Cauchy-Dirichlet problem (1) where H = 0 and the right
hand side f is assumed to belong to L'(Q). This result generalizes analogous one
of Boccardo-Gallouét [7], J. L. Lions [17], Landes [14] with ¢ = 0, and of Landes-
Mustonen [15, 16] with g = g(z,t,u). See also [8] and [2, 4, 9, 10, 12, 19, 20, 21, 22]
for related topics. In all of these results, the function a is supposed to satisfy a
polynomial growth condition with respect to v and Vu.

2. Main result

Firstly, we give the following lemma which will be used in our main result.

Lemma 2.1. Given the functions A\, v, @, p defined on [a,+o0|, suppose that a > 0,
A >0, v >0 and that Ay, \p and \p belong to L (a,+00). If for a.e., t > 0 we have

+o0
o(t) < p(t) + 'y(t)/75 XT)e(T)dT, then for a.e., t >0

o(0) < plt) +00) [ o) ( | A(r)w(r)dr) dr.

t

For the proof of this Lemma see [3]. Now we shall prove the following existence
theorem:

Theorem 2.2. Let f € LP (0,T; W=7 (Q)) and assume that (2)-(8) hold. Then

there exists at least one solution of the problem (1), in the following sense:
/ Sp(u — v)(T) dz + <@7Tk(u —0))+ / a(z,t,u, Va) VT (u — v) de dt
—|—/ g(z,t,u, Vu) Ty (u — v) de dt + / H(z,t,Vu)Ti(u —v)drdt (9)
Q Q
= / fTp(u—v)dadt +/ Sk (ug — v(0)) dz,
Q Q

for all v € LP(0,T; Wy *()) N L>®(Q), where Si(s) = / Ty (r) dr.
0
Proof. We divide the proof of this Theorem in four steps.

Step 1: Approximate problem and Energy estimate. For n > 0, let us define
the following approximation of ug, g and H. Set

g(z,t,s,8)
1+ Lg(z,t,5,8)|

H(x,t,
and Hn(x»té):%’

g’ﬂ (x7 t? 87 5) =
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and {ug,} be a sequence in L?(Q) such that ug, — ug in L(Q).
Let us now consider the following regularized problems:

% — div(a(x,t,un, Vun)) + gn(m,t, U, Vuy,) + Hy(z,t, Vu,) = f in D'(Q),
Up(z,t =0) =0 in Q,
Un(x,t) =0 on 90 x (0,7).

(10)

Note that g, (x,t,s,£) and H,(z,t,£) are satisfying the following conditions
g0 (@5, )| < max{|g(a,t,5,€)| ; n} and [Hy(w,t,€)] < max { |H(z,1,8)| ; n .

Moreover, since f € LP' (0, T; W1 ?'(Q)), proving existence of a weak solution
u, € LP(0,T; Wy P(Q)) of (10) is an easy task (see e.g. [17)).
For £ > 0 and s > 0, we define

sign(r) it |r| >s+e,
we(r) = w if s<|r|<s+e,
0 otherwise.

We choose v = . (u,,) as test function in (10), we have

{/Q BZE(Un)dth—i—/Qa(m,t, Un, V) - V(pe(uy)) da dt

—|—/gn(m,t,un,Vun)goE(un)dxdt+/ H, (z,t, Vu,)pe(uy,) dx dt
Q Q

- / o))

T
where By (r) =

0
Holder’s inequality, we obtain

1
/ a(z, t,un, Vi) Vu, dedt
€ J{s<|un|<s+e}

» %
|V“”|> dz dt)

(/ |fp’dxdt> (/ (
{s<]un|<s+e} {s<|un|<s+e} €

+ h(x,t)|Vu,|P~ de dt.
{5<|un|}

IN

Observe that,

/ h(x, )|V, [P~ dz dt
{S<|un|}

1
7

+oo —d % _d P
</ —/ hP dx dt —/ [V, |P de dt do.
s do Jio<lunl} Ao J{o<lun}

¢e(s)ds. Using BY_(r) > 0, gn(2,t, un, Vn)@e(un) > 0, (7) and
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Because,
+oo —d
/ h(x,t)|Vun|p71dzdt:/ — / h(z,t)|Vu, [P~ dedt | do
{s<unl} s 4o \Jo<unly
+oo 1
:/ lim h(x,t)|Vu, [P~  dzdt | do
s 506 {o<|un|<c+é}

1
7

1
+00 1 D P
< / lim — / hP dz dt / |Vu,|?P dz dt do
s 500 {o<|un|<oc+d} {o<|un|<o+4}

1
7

“+o0 1 P 1 P
= / lim — hP dx dt lim — / |V, |P dz dt do
s 600 (o< un|<o+5} 500 {o<|un|<o+6}

+oo 7d P 7d P
:/ —/ hP dx dt —/ |V, |? de dt do.
s Ao J{o<lunl} Ao Ji{o<iunl}

By (4) and (11), we deduce that

-

1
7/ a|Vuy|P dz dt
€ Js<lunl<se) 1

1 / 1
<] 1 awae) (L] VP o
€ J{s<|un|<s+e} € J{s<|un|<s+e}

1 1
7

—+oo 7d y4 7d 2
+ — h? dz dt — |Vu,|P d dt do.
s Ao J{o<lunl} Ao Jio<iua}

Letting € go to zero, we obtain
—d

s J{s<lunl) 1

—d/ , Ly »
< (= P da:dt) (/ |Vunpdxdt> .
<ds {s<lunl} ds Jis<punl} (12)

1
D v

+oo _ P _ P
+/ —d/ h? dz dt —d/ [Vuy,|? de dt do,
s Ao J{o<iunl} Ao J{o<iun|}

where {s < |u,|} denotes the set {(z,t) € Q, s < |un(x,t)|} and p(s) stands for the
distribution function of u,, that is u(s) = [{(z,t) € Q, |un(x,t)| < s}| for all s > 0.

Now, we recall the following inequality (see for example [13]), we have for almost
every s > 0

1
P

a|Vu,|P dzdt

RN 1 1 d ’
1< (NGR) T R o) T (g [ Puapdsar) (3
5./ {s<funl}
Using (13), we have

—d
—/ a|Vuy|P dz dt
ds J{s<lunl} N

—d v _d
=a|— |Vun|P dz dt — |V |P de dt
ds J{s<junl} ds J{s<funl}

1
P
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< (‘Cl/ Fid dxdt) <_d/ |Vun|pdxdt>
ds {s<|un|} ds {s<unl}

+ (NCﬁ)f1 ()% =1 (=4t (5)) <;§ /{s<|un} |V, |P do dt)

1
7

—+oo 7d P 7d 2
X — hP dzx dt — |Vu,|P dx dt do.
s Ao J{o<lunl} Ao Jio<iua}

Which implies that,

s

1

_d »’ _d , v’ 1N -1
a (/ Vun|pdzdt> < </ T dxdt) + (NC&IV) (u(s)) ¥
5 J{s<lunl} ds {s<lunl}

o

, 1 +o0 —d P _d P
X (—p'(s)) 7 — hP dx dt — |V, |P d dt do.
s Ao J{o<lun} Ao Jio<lun}

(14)
Now, we consider two functions B(s) and F(s) (see Lemma 2.2 of [1]) defined by

n(s)
/ WP (@, ) dadt = / B(0)do, (15)
{s<]unl|} 0

, w(s)
/ \f|P dedt = / F (0)do. (16)
{s<|u”|} 0

HBHLI’(O,T;WOLP(Q)) < ||h||LP(0,T;W01’p(Q)) and ||F||LP’(O,T;W*LP’(Q)) < |‘f”LP/(O,T;W*LP’(Q))'
(17)
From (14), (15) and (16) we get

1
7

a(d /{ } }wwdxdt) < Fu(s)) (4! (5))

L 1 1 oo 1 d P
VORI () F 1 (4 (5)) P Bw(u))(—u'(v))p( / |Vun|pdxdt> v

s dv v<lupl|}

From Lemma 2.1, we obtain

-

* <d/{ Vg |? dee dt) "< Flu() (i ()7 + (NCF) L) R ()

s<|un|}

~—

+o0 1 .
< [ Plulo)) Blu(o)) (- (@))exp ( JG B(u(r»(u(r»N—1<—u’<r>>dr) do.

Raising to the power p’, integrating between 0 and +o0o and by a variable change we
have

QI

’

ap’/ |V, [Pdedt <co | FP(\)dA
Q

0
(] I o A ) . P
+CO/ A —bp /F(z)B(z)exp (/ (NC]Q’)lB(v)ledv> dz] dA.
0 0 z

Using Holder’s inequality and (17), then we get

’

lunllLoorwin@) = e (18)
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where ¢; is some positive constant not depending of n. Then there exists u €
LP(0,T; W,y P (€2)) such that, for some subsequence

U, — u weakly in LP(0,T; W, *(2)), (19)

we conclude that

||Tk(un)‘|2p(O,T;W&‘p(Q)) < k. (20)

Then for each k, the sequence T} (u,,) converges almost everywhere in (), which implies
that wu,, converges almost everywhere to some measurable function u in . Thus by
using the same argument as in [5, 6], we can show that

Uy — U a.e. in Q, (21)
and we can deduce from (20) that
Tio(uy) — T (u) weakly in LP(0,T; WyP (). (22)

Which implies, by using (2), for all k£ > 0 that there exists a function @ € (L*' (Q))Y,
such that

a(z,t, Ty(tn), VT (uy)) — @ weakly in (L (Q))N. (23)
Finally, denoting u,, = f + div(a(m,t, Up,, Vun)) — gn(x,t,Uup, Vu,) — Hy(x,t, Vuy,)

we observe that, f + div(a(%t,un,Vun)) is bounded in L? (0,T; W~1#(Q)) and
—gn (@, t, Uy, V) — Hy(2,t, Vuy,) is bounded in L'(Q). Then we can conclude that

(wp)n is relatively compact in LT (Q), thus we can deduce u,, — w in L} (Q), and
u, — u strongly in L(Q).

Step 2: Almost everywhere convergence of the gradients. This step is de-
voted to introduce for k& > 0 fixed a time regularization of the function T (u) in order
to perform the monotonicity method. This kind of regularization has been first in-
troduced by R. Landes (see Lemma 6 and Proposition 3, p. 230, and Proposition 4,
p. 231, in [14]). For k > 0 fixed, and let o(t) = te?*, v > 0. It is well known that

2
when v > (M) , one has

2a

¢ (5) — (225) o(s)| > L, for all 5 € R. (24)

[

Let ¢; € D(Q) be a sequence which converges strongly to ug in L(Q).
Set w!, = (Tx(u)), + e’“tTk (v;) where (Tj(u)), is the mollification with respect
to time of Ty (u). Note that wj, is a smooth function having the following properties:

o', . . .
M p(Dalw) — ). w0 (0) = T, || <k (25)
w!, = Ty (u) strongly in LP(0,T; WyP(Q)), as p — oo. (26)

We introduce the following function:
1 if |s| < m,
hm(s) =<0 if |s] >m+1,
m+1—|s| ifm<|s|<m+1,

where m > k. Let 04" = Ty (uy,) — w}, and 2877, = @01 ) ().
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Using in (10) the test function z//,, we obtain

T
Ouy, i
/ <ﬁ ; @(Tk(un) - wu)hm(un» dt
0

+ / (@, t, tn, Vg ) [V (un) — V), @' (08" i (un) da dt
Q

+ / a(x, t, Un, Vi) Va0 h! (uy,) d dt
Q

—|—/ (gn(m,t,un,Vun) —&—Hn(sc,t,Vun))z,’f:in dx dt
Q

T .
= [y
0
which implies since gy, (2, t, un, Vi) @(Tr (un) — W}, ) (un) > 0 on {|u,| > k}
T
Oun, i
| s el = wi () de
0
+ / 02,1, i, Vi) VT (1) — Vi (08 o (11,) i
Q

+ / a(, t, U, Vg ) V(080! (u,) do dt (27)
Q

+ / In (@, t, Un, Vg )o(Tk(un) — w;)hm(un) dz dt
{lun|<k}

T
< / (f 5 2Vt + / (a1, V) 228 | da .
0 Q

In the sequel and throughout the paper, we will omit for simplicity the denote
e(n, p, i, m) all quantities (possibly different) such that

lim lim lim lim e(n,p,i,m) =0,
M—>00 {—00 [4—+00 N—+00

and this will be the order in which the parameters we use will tend to infinity, that
is, first n, then p,¢ and finally m. Similarly we will write only e(n), or e(n, u),... to
mean that the limits are made only on the specified parameters.

We will deal with each term of (27). First of all, observe that

T
/ (f 3 2bn)dt+ / |Hp (2, t, Vug)zlor, | do dt = e(n, ), (28)
0 Q

since @(Ty(un) — w,)hm (up) converges to o(Th(w) — (Ti(u)), + € * Ty (1h;)) hm ()
strongly in LP(Q) and weakly—x in L*°(Q) as n — oo and finally ¢ (T} (u) — (T (u)) .+
e M Ty (13)) ham (w) converges to 0 strongly in LP(Q) and weakly—x in L>(Q) as pu —
0.

On the one hand, the definition of the sequence wz makes it possible to establish
the following Lemma 2.3.

Lemma 2.3. For k > 0 we have

ot
Proof. (see Blanchard, Murat and Redwane [6]). O

T ou ,
/0 (2 (T un) — w05 o () > e, 1 ). (29)
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Then, the second term of the left hand side of (27) can be written

/Qa(x7t,un, V) (VT (tn) — Vw!,) @ (T (tn) — w}, ) () da dt

B /{| [<k} a(@,t tn, Vi) (VT (n) = Vw/i)W(Tk(un) —w;, ) hm (un) d dt
s V) (V) = V) (Tul) = o 0) e
- /Q( bt V) (VT (un) = V)¢ (Ti(un) = w},) dr dit
+ /{l | k}a(x,t,un,Vun)(VTk(un) — Vi)@' (T (un) — w},) hm (un) dz dt,
wn|>
since m > k and hp,(un) = 1 on {|un| < k}, we deduce that
/Qa(x,t,un, Vun ) (VT (uy) — VwZ)QO/(Tk(un) _ w;)hm(un) d di

- /Q(a(x,t,Tk(un),VTk(un)) ~ (a1, Ti (). VT (w))
(VT3 (un) = VTi(u)@' (Tr (un) — wi,) da dt
—|—/Qa(:v,t,Tk(un), VT(u)(VTk(urn) — VTx (1)@ (T (ug) — wL)hm(un) dx dt
Jr/Qa(m,t,Tk(un), VT (un)) VT ()@ (T (un,) — wz)hm(un) dz dt
/Qa(gv,t,un7 Vun)Vngal(Tk(un) - wﬁ)hm(un) dx dt

=K+ Ky + K3 + Ky.

Using (2), (23) and Lebesgue theorem we have a(x,t, Ty (uy), VI (u)) converges to
a(z,t, Ty (u), VTi(u)) strongly in (L' (Q))N and VT (u,) converges to VT (u) weakly

in (LP(Q))", then Ky = e(n). Using (23) and (26) we have K3 = /6 VT (u) de dt +

g(n, ). For what concerns K, can be written, since A, (un,) = 0 on {|u,| > m + 1}

Ky— / a2, t, Ty (1), V1 (1)) V0 (T () — w0 e (1)
Q
__ / A, t, Ty (1), VT (1)) V00! (T () — w0V (1) v
{lun|<k}
—/ a(@,t, Trng1 (Un), Va1 (un)) V), @ (T () — W), ) (1) daz dit,
{h<lun|<m 1}

and, as above, by letting n to +o0o we get
K, = —/ avVw,,' (Tr(u) — w},) dz dt
{lul<k}
—/ aVw, ' (T (u) — w), ) (u) dz dt + (n),
{k<|u|<m+1}

so that, by letting p to +o0o0 we get

Ky = —/EVTk(u)dxdt—l—s(n,u).
Q
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We conclude then that

/Qa(%t,un, V) (VT (tun) — Vw!,) @ (T (tn) — w),) han () da dt

= [ (060, Tul00), 9Ti0)) — a8, (), 9T6(0) (30)
(VT (un) — VT(u)g (Ti(un) — wi,) dz dt + £(n, o).

To deal with the third term of the left hand side of (27), observe that

'/ a(x, t, U, Vi) Vunp(08) 0! (u,) de dt’
Q

< p(2k) a(x,t, tp, Vi, )Vu, dz dt.
{m<|un|<m+1}
By (2) and (18), we obtain
’/a(x,t,un,Vun)Vungo(Qﬁl"i)h;n(un)dxdt‘ < e(n,m). (31)
Q

We now turn to fourth term of the left hand side of (27), can be written

/ g, tyun, Vup) (T (uy) — wz)hm(un)dxdt
{lun|<k}

< L (k) (La(2,t) + VT (un) [Pl (Ti (un) — w),) b (un ) dae dt
{lunl <k} (32)
<L) [ Lala)p(Tiun) - w))| do
L) ,
+17 /Q a(w,t, Ty (un ), VT (un)) VT (un)[o(Tk(un) — w,,)| dz dt,

since Lo(x,t) belong to L*(Q) it is easy to see that
L) [ Lol Olp(Tulun) — wi)ldodt = (),
Q

On the other hand, the second term of the right hand side of (32), can be written

Lu(k)

” / a(x, t, Ty (un), VI (un)) VT (un)|o(Tk (un) — wa)| dx dt

Q
- Ll(k)/@(a(ac,t,Tk(unLVTk(un)) — a(x7t,Tk(un)7VTk(u)))

(VT (un) — VT (w)|o(Te(un) — wi‘)| dx dt

+L1T(k) / al(x, t, Tk (un), VT (w) (VIk(un) — VIg(w))|o(Tk(un) — wz)\ dz dt
Lk /Qa(:c,t,Tk(un),VTk(u))VTk(u)@(Tk(un) — )| da dt,

(07

and, as above, by letting first n then finally p to infinity, we can easily see, that each
one of last two integrals is of the form e(n, u). This implies that
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/ g, t, un, Vup) (T (uy) — w,i)hm(un)dxdt
{lun|<k}

<t /Q (@, t, Ty(n), VTi(un)) = ale, £, Ti(un), VTi(w)))

(VT (un) = VTi(u)o(Th (un) — wi,)| da dt + (n, ).
(33)

Combining (27), (29), (30), (31) and (33), we get

/Q (a(x, £, T (), VT (un)) — alz, t, Ty (un), VTk(u))>

(VTk(un) = VT(w) (' (Th(w) = wi) = 228 Ty () — wi)|) dvdt

«

S 6(”? M?i7m)7

and so, thanks to (24), we have

/ (@, t, Th(un), FTk(wn)) = alw,t, Tylun), V() ) (VTi(un) = VTk(w) de dt < =(n).
Q

(34)
Hence by passing to the limit sup over n, we get

lim sup /Q (a(:c, £, Ti (un), Vi () — al, T (un), VTk(u))> (VT (un) — VTi(w)) dzdt = 0

n—oo

This implies that
T (un) — Ti(u) strongly in LP(0, T; W, P(£2)) for all k. (35)
Now, observe that for every o > 0,
meas {(x,t) €Q: |Vu, — Vu| > cr}
< meas{(x,t) €Q: |[Vuy| > k} +meas{(x,t) €Q: |ul> k;}
+ meas {(m,t) €Q: |VTi(un) — VTi(u)| > a}

then as a consequence of (35) we have that Vu, converges to Vu in measure and
therefore, always reasoning for a subsequence,

Vu, - Vu a. e. in Q. (36)
Which implies

a(x,t, Ty(un), Vi (un)) = a(z, t, Ti(u), VT;(u)) weakly in (L¥ (Q))N. (37)

Step 3: Equi-integrability of H, and g,. We shall now prove that H,,(z,t, Vu,,)
converges to H(x,t, Vu) and g,(x,t, u,, Vu,) converges to g(x,t,u, Vu) strongly in
L'(Q) by using Vitali’s theorem. Since H,(z,t,Vu,) — H(x,t,Vu) a.e. @ and
gn(T, t,up, Vu,) = g(x,t,u, Vu) a.e. @, thanks to (5) and (7), it suffices to prove
that H,(x,t, Vu,) and g,(z,t, u,, Vu,) are uniformly equi-integrable in Q. We will
now prove that H,(x, Vu,) is uniformly equi-integrable, we use Holder’s inequality
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and (18), we have
1

( /E WP (2, ) da dt)é ( /Q vunv’) ’ -

1

e </Ehp(z,t) d:cdt) "

which is small uniformly in n when the measure of F is small.
To prove the uniform equi-integrability of g, (z,t, un, Vu,). For any measurable
subset £ C @ and m > 0,

IN

/ \H, (2, V)|
E

IN

/ lg(x, t, un, Vuy,)| dedt = / lg(x, t, un, Vuy,)| dz dtJr/ lg(x, t, upn, Vuy,)| dx dt
E E

En{|un|<m} N{|un|>m}
§L1(m)/ [L2(x,t) + |Vuy|?] dzdt +/ lg(x, t, un, Vuy,)| dxdt (39)
En{|un|<m} En{|un|>m}
<Li(m) / Loz, ) + VT () |?] da dt + / 19(@,t, wn, V)| dar dt
BO{|un|<m} BO{lun|>m}
—K, + K>,

For fixed m, we get

K1 < Li(m) / (Lo (@, 1) + [V (un)[?] dadt,
E

which is thus small uniformly in n for m fixed when the measure of E is small (recall

that T}, (u,) tends to T),(u) strongly in L?(0,T; Wy*(€2))). We now discuss the

behavior of the second integral of the right hand side of (39), let ¢, be a function

such that

VY (s) =0 if s <m—1,
Ym(s) =sign(s) if |[s| >m, (40)
Y (s) =1 if m—1<|s| <m.

We choose 9., (uy,) as a test function for m > 1 in (10), we obtain
T
[ le(un)dx} —I—/ a(z,t, un, Vu,)Vug i, (u,) dz dt
Q 0 Q
+ / In (T, Up, Vg ) (uy,) de dt + / H,(x,t, Vg )om (uy,) dx dt
Q Q
T
= [ttt a
0

where B (1) = / Ym(s)ds, which implies, since B]},(r) > 0 and using (4), Holder’s
0

inequality
/ |gn (2, t, 0, Vuy,)| de dt S/ |H,, (x,t, Vuy,)| dx dt
{m—1<]un|} E

+ ”f”LP’(O,T;W_l'p/(Q))(/

{m—1<|up|<m}

1
|Vt |P d dt) v
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By (18), we have

lim sup/ |gn (2, t, U, Vuy,)| dedt = 0.
m—00 peN {|tn|>m—1}
Thus we proved that the second term of the right hand side of (39) is also small, uni-
formly in n and in E' when m is sufficiently large. Which shows that g, (x,t, u,, Vu,)
and H,(x,t, Vu,) are uniformly equi-integrable in Q) as required, we conclude that
{ H,(z,t,Vu,) = H(x,t,Vu) strongly in  L1(Q),

Gn (T, t, U, Vuy,) — g(x,t,u, Vu) strongly in  L1(Q). (41)

Step 4: Passing to the limit. Going back to approximate equations (10) and using
v € LP(0,T; ng(Q)) N L>(Q) as the test function, one has

/ Sk (up —0)(T) dx + <%,Tk(un - v)> + / a(z, t,un, Vg ) VT (u, —v)dedt
Q
—|—/ g(x, t, upn, V) Tk (uy —v)daedt + | H(z,t, Vu,)Tk(u, —v) dzdt

Q Q
:/ ka(un—v)dzdt—F/Sk(uno—v(O))d:E,
Q Q

in which we can pass to the limit thanks to the previous results, we prove the existence
of a solution u of the nonlinear parabolic problems (9). This completes the proof of
Theorem 2.2. O
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