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Solving nonlinear fractional differential equations using
multi-step homotopy analysis method

Hassan Al-Zou’bi and Mohammad Zurigat

Abstract. This paper presents a numerical technique for solving fractional differential equa-
tion by employing the multi-step homotopy analysis method (MHAM). It is known that the
corresponding numerical solution obtained using the HAM is valid only for a short time. On

the contrary, the results obtained using the MHAM are more valid and accurate during a long
time, and are highly agreement with the exact solutions in the case of integer-order systems.
The objective of the present paper is to modify the HAM to provide symbolic approximate

solution for linear and nonlinear of fractional differential equations. The efficient and accuracy
of the method used in this paper will be demonstrated by comparison with the known methods
and with the known exact solutions in the non fractional case. The fractional derivatives are
described in the Caputo sense.
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1. Introduction

The solutions of fractional differential equations are much involved. In general, there
exists no method that yields an exact solution for fractional differential equations.
Only approximate solution can be derived using linearization or perturbation meth-
ods. In recent years, many researchers have focused on the numerical solution of
ordinary differential equations of fractional order and some numerical methods have
been developed such as Fourier transform method [1], Adomian decomposition method
[2, 3] and Homotopy perturbation method [4, 5]. Recently, the Homotopy analysis
method (HAM) has been proposed by Liao [6, 7, 8, 9, 10, 11]. Based on homotopy
of topology, the validity of the HAM is independent of whether there exist small
parameters or not in the considered equation. The HAM has been used to investi-
gate a variety of mathematical and physical problems [7]. The homotopy analysis
method contains a certain auxiliary parameter h and auxiliary linear operator L
which provides us with a simple way to control and adjust the rate of convergence
of the series solution [12, 13]. The objective of the present paper is to modify the
HAM to provide approximate solution for linear and nonlinear fractional differential
equations. In this paper we investigate the applicability and effectiveness of the HAM
when treated as an algorithm in a sequence of intervals (i.e. time step) for finding
accurate approximate solutions to the fractional differential equation of the form

Dα
∗ u(t) + an u(n)(t) + an−1 u(n−1)(t) + ...+ a0 u(t) +N(u(t), u

′
(t)) = f(t),

t ≥ 0, n− 1 < α ≤ n, (1.1)
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subject to the initial conditions

u(i)(0) = bi, i = 0, 1, ..., n− 1. (1.2)

Here Dα
∗ is the fractional derivative in the Caputo sense. This modified method is

the multi-step homotopy analysis method. It can be found that the corresponding
numerical solutions obtained by using the HAM are valid only for a short time [13].
While the ones obtained by using the MHAM are more valid and accurate during a
long time and are highly agreement with the exact solutions in the case of integer-order
systems. Some examples are given to illustrate this method. The paper is organized
as follows. A brief review of the fractional calculus is given in Section 2. In Section
3, the proposed method is described. In Section 4, we investigate the applicability
and effectiveness of the multi-step homotopy analysis method for finding accurate
approximate solutions to the fractional differential equation and we will present a
comparison between our results with the exact solution by plotting the exact solution
and the approximate solution. Conclusions are presented in Section 5.

2. Fractional calculus

In this section, we introduce the linear operators of fractional integration and frac-
tional differentiation in the framework of the Riemann-Liouville and Caputo fractional
calculus [14, 15, 16, 17].

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cα, α ∈ R
if it can be written as f(x) = xpf1(x), for some p > α where f1(x) is continous in
[0,∞), and it is said to be in the space Cm

α if f (m) ∈ Cα, m ∈ N.

Definition 2.2. A function f(x), x > 0, is said to be in the space Cm
µ , m ∈ N∪{0}, if

fm ∈ Cµ .

Definition 2.3. The Riemann-Liouville fractional integral of order α > 0 is

Jαu(t) = uα(t) =
1

Γ(α)

t∫
0

(t− τ)α−1u(τ)dτ, t > 0, α ∈ R+,

J0u(t) = u(t).

Definition 2.4. The Caputo fractional derivative of u(t) is defined as:

Dα
∗ u(t) =


1

Γ(m− α)

t∫
0

u(m)(τ)

(t− τ)α+1−m
dτ, m− 1 < α < m,

dmu(t)

dtm
, α = m,

Hence, we have the following properties

1. JαJβu(t) = Jα+βu(t) = JαJβu(t), α, β ≥ 0, u ∈ Cµ,

2. Jαtγ =
Γ(γ + 1)

Γ(α+ γ + 1)
, α > 0, γ > −1, t > 0,

3. Dα
∗ J

αu(t) = u(t),

4. JαDα
∗ u(t) = u(t)−

m−1∑
k=0

u(k)(0+)
tk

k!
, t > 0, m− 1 < α ≤ m.
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3. Multi-step homotopy analysis method algorithm

The HAM has been extended by many authors to solve linear and nonlinear prob-
lems in terms of convergent series with easily computable components, it has some
drawbacks: the series solution always converges in a small region and it has slow con-
vergent rate or completely divergent in the wider region. In this section, we present
the basic ideas of the MHAM that have been developed for the numerical solution of
our problem (1.1), (1.2). It is only a simple modification of the standard HAM and
can ensure the validity of the approximate solution for large time t. To extend this
solution over the interval [0, t], we divide the interval I into r−subintervals of equal
length △t, [t0, t1), [t1, t2), ..., [tr−1, tr] with t0 = 0, tr = t. Let t∗ be the initial
value and uj(t) be approximate solutions in each subinterval [tj−1, tj), j = 1, 2, . . . , r,
then the equations (1.1), (1.2) can be transformed into the following system

Dα
∗ uj(t) + an u

(n)
j (t) + an−1 u

(n−1)
j (t) + ...+ a0 uj(t) +N(uj(t), u

′

j(t)) = f(t),

t ≥ 0, n− 1 < α ≤ n, , j = 1, 2, . . . , r, (3.1)

subject to the initial conditions

u
(i)
1 (t∗) = bi, u

(i)
j (t∗) = u

(i)
j−1(tj−1) = cj,i i = 0, 1, ..., n−1, , j = 1, 2, . . . , r. (3.2)

The zero-order deformation equation of system (3.1) has the form

(1− q)L[ϕj(t, q)− uj(t
∗)] = qh[Dα

∗ ϕj(t, q) + an
dn

dtn
ϕj(t, q) (3.3)

+an−1
dn−1

dtn−1
ϕj(t, q) + ...+ a0ϕj(t, q) +N(ϕj(t, q),

d

dt
ϕj(t, q))− f(t)].

Where q ∈ [0, 1] is an embedding parameter, L is an auxiliary linear operator, h ̸= 0
is an auxiliary parameter, ϕj(t; q) is unknown function, uj(t

∗) be the initial guess of
uj(t) which satisfy the initial condition and f(t) is known function. Obviously, when
q = 0 we have

ϕ1(t, 0) = u1(t
∗), ϕj(t, 0) = uj(t

∗), j = 2, 3, ..., r. (3.4)

When q = 1, we have

ϕj(t, 1) = uj(t), j = 1, 2, ..., r. (3.5)

Expanding ϕj(t, q), j = 1, 2, ..., r, in Taylor series with respect to q, we get

ϕj(t, q) = uj(t
∗) +

∞∑
m=1

uj,m(t)qm, j = 1, 2, ..., r, (3.6)

where

uj,m(t) =
1

m!

∂mϕj(t, q)

∂qm
|q=0. (3.7)

If the initial guess uj(t
∗), the auxiliary linear operator L and the nonzero auxiliary

parameter h are properly chosen so that the power series (3.6) converges at q = 1,
one has

uj(t) = ϕj(t; 1) = uj(t
∗) +

∞∑
m=1

uj,m(t).

For brevity, define the vector

−→u j,m(t) = {uj,0(t), uj,1(t), . . . , uj,m(t)},
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Differentiating the zero-order deformation equation (3.3) m times with respective to
q and then dividing by m! and finally setting q = 0, we have the so-called mth−order
deformation equations

L[uj,m(t)− χmuj,m−1(t)] = h ℜj,m(−→u j,m−1(t)), (3.8)

where

ℜj,m(−→u j,m−1(t)) = Dα
∗ uj,m−1(t) + an u

(n)
j,m−1(t) + an−1 u

(n−1)
j,m−1(t) + ...+ a0 uj,m−1(t)

+
1

(m− 1)!

∂m−1

∂qm−1
N(ϕj(t, q),

d

dt
ϕj(t, q))|q=0 − f(t)(1− χm), (3.9)

and

χm =

{
0, m ≤ 1
1, m > 1

. (3.10)

Select the auxiliary linear operator L = Dα
∗ , then the mth-order deformation equa-

tions (3.8) can be written in the form

uj,m(t) = χmuj,m−1(t) + h Jα[ ℜj,m(−→u j,m−1(t))], (3.11)

and a power series solution has the form

uj(t) =

∞∑
m=0

uj,m(t), j = 1, 2, ..., r.

Finally, the solutions of system (1.1) has the form

u(t) =


u1(t), t ∈ [t0, t1]
u2(t), t ∈ [t1, t2]

...
ur(t), t ∈ [tr−1, tr]

.

4. Numerical results

To demonstrate the effectiveness of the method for solving nonlinear fractional
differential equations, we consider here the following four examples.

4.1. Example 1. Consider the following simple harmonic fractional oscillator

Dα
∗ u(t) + (0.5)α u(t) = 0, t ≥ 0, 1 < α ≤ 2, (4.1)

subject to the initial condition

u(0) = 1, u
′
(0) = 0. (4.2)

The exact solutions of this equation when α = 2 is u(t) = cos 0.5t. Let uj(t) be the
approximate solutions in the subinterval [tj−1, tj), then equation (4.1), is transformed
into the following system

Dα
∗ uj(t) + (0.5)α uj(t) = 0, t ≥ 0, 1 < α ≤ 2, j = 1, 2, ..., r. (4.3)

Let uj(t
∗) = cj , with c1 = 1 are the initial guesses of uj(t), then we can construct the

MHAM (3.11) where

ℜj,m(−→u j,m−1(t)) = Dα
∗ uj,m−1(t) + (0.5)αuj,m−1(t). (4.4)

The series solution for equation (4.3) is given by,
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uj(t) = cj +
h(0.5)αcj(1 + (1 + h) + (1 + h)2)

Γ(α+ 1)
(t− t∗)α

+
h2(0.5)2αcj(1 + 2(1 + h))

Γ(2α+ 1)
(t− t∗)2α +

h3(0.5)3αcj
Γ(3α+ 1)

(t− t∗)3α + ...

To demonstrate the effectiveness of the proposed algorithm as an approximate tool
for solving the fractional differential equations (4.1), (4.2) for larger t, we apply the
proposed algorithm on the interval [0, 100]. We choose to divide the interval [0, 100]
to subintervals with time step △t = 0.1. Figure 1 shows the series solution exhibit the
periodic behavior which is the characteristic of the simple harmonic Equations (4.1),
(4.2) obtained for α = 2, 1.6, 1.5 and when h = −1. It can be seen that the results
obtained using the MHAM (when α = 2) match the results of the exact solution
(u(t) = cos 0.5t) very well, and are highly in agreement during a long time. It is clear
that the numerical results obtained using the MHAM has the same trajectories for
various values of α and all its solutions are expected to oscillate with decreasing to
zero when the value of α is decreasing.

Figure 1. The displacement for Example 1: Solid line: exact solution,
Dashed line: MHAM solution when α = 2, Dotted line: MHAM solution
when α = 1.6, Dashed dotted line: MHAM solution when α = 1.5.

4.2. Example 2. Consider the following nonlinear fractional Riccati equation

Dα
∗ u(t) + u2(t)− 1 = 0, t ≥ 0, 0 < α ≤ 1, (4.5)

subject to the initial condition

u(0) = 0. (4.6)
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The exact solutions of this equation when α = 1 is u(t) = e2t−1
e2t+1 . Let uj(t) be the

approximate solutions in the subinterval [tj−1, tj), then equation (4.5), is transformed
into the following system

Dα
∗ uj(t) + u2

j (t)− 1 = 0, t ≥ 0, 0 < α ≤ 1, j = 1, 2, ..., r. (4.7)

Let uj(t
∗) = cj , with c1 = 0 are the initial guesses of uj(t), then we can construct the

MHAM (3.11) where

ℜj,m(−→u j,m−1(t)) = Dα
∗ uj,m−1(t) +

m−1∑
i=0

uj,i(t)uj,m−i−1(t)− (1− χm). (4.8)

The series solution for equation (4.7) is given by

uj(t) = cj +
h(c2j − 1)(1 + (1 + h) + (1 + h)2)

Γ(α+ 1)
(t− t∗)α

+
2h2cj(c

2
j − 1)(1 + 2(1 + h))

Γ(2α+ 1)
(t− t∗)2α +

h3(c2j − 1)2Γ(2α+ 1)

Γ(3α+ 1)Γ2(α+ 1)
(t− t∗)3α + ...

In this example we apply the proposed algorithm on the interval [0, 20]. We choose
to divide the interval [0, 20] to subintervals with time step △t = 0.1. Figure 2 shows
the series solution of the MHAM of the nonlinear fractional Riccati equations (4.5),
(4.6) (when α = 1, 0.9, 0.7 and h = −1) and the displacement of the exact solution

(u(t) = e2t−1
e2t+1 ). From the graphical results it can be seen that the results obtained

using the MHAM (when α = 1) match the results of the exact solution very well.
Therefore, the proposed method is very effcient and accurate method that can be
used to provide analytical solutions for linear and nonlinear fractional differential
equations. Also as the previous example, the numerical results obtained using the
MHAM has the same trajectories for various values of α.

Figure 2. The displacement for Example 2: Solid line: exact solution,
Dashed line: MHAM solution when α = 1, Dotted line: MHAM solution
when α = 0.9, Dashed dotted line: MHAM solution when α = 0.7.

4.3. Example 3.

Dα
∗ u(t)− 2u(t) + u2(t)− 1 = 0, t ≥ 0, 0 < α ≤ 1, (4.9)

subject to the initial condition

u(0) = 0. (4.10)
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The exact solutions of this equation when α = 1 is u(t) = 1 +
√
2 tanh(

√
2 t +

1
2 log(

√
2−1√
2+1

)). Let uj(t) be the approximate solutions in the subinterval [tj−1, tj),

then equation (4.9), is transformed into the following system

Dα
∗ uj(t)− 2uj(t) + u2

j (t)− 1 = 0, t ≥ 0, 0 < α ≤ 1, j = 1, 2, ..., r. (4.11)

Let uj(t
∗) = cj , with c1 = 0 are the initial guesses of uj(t), then we can construct the

MHAM (3.11) where

ℜj,m(−→u j,m−1(t)) = Dα
∗ uj,m−1(t)− 2 uj,m−1(t) +

m−1∑
i=0

uj,i(t)uj,m−i−1(t)− (1− χm).

(4.12)
Then the analytic solution for system (4.11) is derived as followsis

uj(t) = cj +
h(c2j − 2cj − 1)(1 + (1 + h) + (1 + h)2)

Γ(α+ 1)
(t− t∗)α

+
2h2(c2j − 2cj − 1)(cj − 1)(1 + 2(1 + h))

Γ(2α+ 1)
(t− t∗)2α

+
h3(c2j − 2cj − 1)

Γ(3α+ 1)
(
(c2j − 2cj − 1)Γ(2α+ 1)

Γ2(α+ 1)
+ (2c2j − 6cj + 4))(t− t∗)3α + ...

In this example we apply the proposed algorithm on the interval [0, 20]. We choose
to divide the interval [0, 20] to subintervals with time step △t = 0.1. Figure 3 shows
the series solution of the MHAM of the nonlinear fractional Riccati equations (4.9),
(4.10) (when α = 1, 0.9, 0.7 and h = −1) and the displacement of the exact solution

(u(t) = 1+
√
2 tanh(

√
2 t+ 1

2 log(
√
2−1√
2+1

))). Also the results of our computations (when

α = 1) are in excellent agreement with the results obtained by the exact solution and
are highly in agreement during a long time. Therefore, the proposed method is very
efficient and accurate method that can be used to provide analytic solutions for linear
and nonlinear fractional differential equations. Also as example (2), the numerical
results obtained using the MHAM has the same trajectories for various values of α.

Figure 3. The displacement for Example 3: Solid line: exact solution,
Dashed line: MHAM solution when α = 1, Dotted line: MHAM solution
when α = 0.9, Dashed dotted line: MHAM solution when α = 0.7.
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4.4. Example 4. Consider the following nonlinear fractional equation

Dα
∗ u(t) + 2u(t) + u2(t) = 0, t ≥ 0, 1 < α ≤ 2, (4.13)

subject to the initial condition

u(0) = 0.1, u
′
(0) = 0. (4.14)

Let uj(t) be the approximate solutions in the subinterval [tj−1, tj), then equation
(4.13), is transformed into the following system

Dα
∗ uj(t) + 2 uj(t) + u2

j (t) = 0, t ≥ 0, 1 < α ≤ 2, j = 1, 2, ..., r. (4.15)

Let uj(t
∗) = cj , with c1 = 0 are the initial guesses of uj(t), then we can construct the

MHAM (3.11) where

ℜj,m(−→u j,m−1(t)) = Dα
∗ uj,m−1(t) + 2 uj,m−1(t) +

m−1∑
i=0

uj,i(t)uj,m−i−1(t). (4.16)

The analytic solutions for system (4.15) derived by

Figure 4. The displacement for Example 4: Solid line: MHAM solution
when α = 2, Dotted line: MHAM solution when α = 1.7, Dashed dotted
line: MHAM solution when α = 1.5.

uj(t) = cj +
h(c2j + 2cj)(1 + (1 + h) + (1 + h)2)

Γ(α+ 1)
(t− t∗)α

+
2h2(c2j + 2cj)(cj + 1)(1 + 2(1 + h))

Γ(2α+ 1)
(t− t∗)2α

+
h3(c2j + 2cj)

Γ(3α+ 1)
(
(c2j + 2cj)Γ(2α+ 1)

Γ2(α+ 1)
+ (2c2j + 6cj + 4))(t− t∗)3α + ...
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Let [0, 50] be the interval over which we want to find the solution of the initial value
problem (4.13), (4.14). Assume that the interval [0, 50] is divided into subintervals
of equal length △t = 0.1. Figure 4 shows the series solution exhibit the periodic
behavior which is the characteristic of the nonlinear fractional differential equations
(4.13), (4.14) obtained for α = 2, 1.7, 1.5 and when h = −1. It is clear that the
numerical results obtained using the MHAM have the same trajectories for various
values of α and all its solutions are expected to oscillate with decreasing to zero when
the value of α is decreasing.

5. Conclusions

The fundamental goal of this work has been to propose an efficient algorithm for
the solution of linear and nonlinear fractional differential equation. Based on some
numerical and analytical techniques, we discussed in this paper the MHAM. The
MHAM is an efficient modification of the HAM which introduces an efficient tool
for calculating approximate solution for linear and nonlinear fractional differential
equation. Our method is a direct method, further it is simple and accurate. It
is a practical method and can easily be implemented on computer to solve such
problems. We have used the method with four examples. The main advantage of
the method is a fast convergence to the solution. Moreover, it avoids amount of
calculations required by the other existing analytical methods. The new method
leads to higher accuracy and simplicity, and in all cases the solutions obtained are
easily programmable approximates to the analytic solution of the original problems
with the accuracy required. The proposed scheme can be applied for other nonlinear
equations. It can be found that the corresponding numerical solutions obtained by
using HAM are valid only for a short time. While the ones obtained by using MHAM
are more valid and accurate during a long time. A comparison between the graph of
the numerical result with the graph of the exact solution indicates that the MHAM
method is powerful analytic method for handling differential equations of fractional
order.
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