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1. Introduction and main results

In this paper, we assume that the reader is familiar with the fundamental results and
standard notations of the Nevanlinna theory [4, 13] . In addition, we will use ρ (f) to
denote the order and ρ2 (f) to denote the hyper-order of f. See, [4, 6, 13] for notations
and definitions.
We consider the differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A0 (z) f = 0, (1)

where Aj (z) (j = 0, · · · , k − 1) are entire functions. Suppose that {f1, f2, · · · , fk} is
the set of fundamental solutions of (1). It is clear that f = c1f1 + c2f2 + · · · + ckfk
where ci (i = 1, · · · , k) are complex numbers is a solution of (1), but what about the
properties of f = c1f1 + c2f2 + · · ·+ ckfk if ci (i = 1, · · · , k) are non-constant entire
functions? In [7] , the authors gave answer to this question for the case k = 2, and
obtained the following results.

Theorem 1.1. [7] Let A (z) be transcendental entire function of finite order. Let
dj (z) (j = 1, 2) be finite order entire functions that are not all vanishing identically
such that max {ρ (d1) , ρ (d2)} < ρ (A). If f1 and f2 are two linearly independent
solutions of

f ′′ +A (z) f = 0, (2)

then the polynomial of solutions gf = d1f1 + d2f2satisfies

ρ (gf ) = ρ (fj) = ∞ (j = 1, 2)

and

ρ2 (gf ) = ρ2 (fj) = ρ (A) (j = 1, 2) .
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Theorem 1.2. [7] Let A (z) be a polynomial of degA = n. Let dj (z) (j = 1, 2) be
finite order entire functions that are not all vanishing identically such that
max{ρ (d1) , ρ (d2)} < n+2

2 and h ̸≡ 0, where

h =

∣∣∣∣∣∣∣∣
d1 0 d2 0
d′1 d1 d′2 d2

d′′1 − d1A 2d′1 d′′2 − d2A 2d′2
d′′′1 − 3d′1A− d1A

′ d′′1 − d1A+ 2d′′1 d′′′2 − 3d′2A− d2A
′ d′′2 − d2A+ 2d′′2

∣∣∣∣∣∣∣∣ .
If f1 and f2 are two linearly independent solutions of (2), then the polynomial of
solutions gf = d1f1 + d2f2 satisfies

ρ (gf ) = ρ (fj) =
n+ 2

2
(j = 1, 2) .

The aim of this paper is to study the growth of

gk = d1f1 + d2f2 + · · ·+ dkfk,

where {f1, f2, · · · , fk} is any set of fundamental solutions of (1) and dj (z) (j =
1, 2, · · · , k) are finite order entire functions that are not all vanishing identically. In
fact, we give sufficient conditions on Aj (z) (j = 0, · · · , k − 1) and dj (z) (j = 1, 2) to
prove that for any two solutions f1 and f2 of (1), the growth of g2 = d1f1 + d2f2 is
the same as the growth of fj (j = 1, 2) , and we obtain the following results.

Theorem 1.3. Let Aj (z) (j = 0, · · · , k − 1) be entire functions of finite order such
that max {ρ (Aj) : j = 1, · · · , k − 1} < ρ (A0). Let dj (z) (j = 1, 2) be finite order
entire functions that are not all vanishing identically such that max {ρ (d1) , ρ (d2)} <
ρ (A0). If f1 and f2 are any two linearly independent solutions of (1), then the
combination of solutions g2 = d1f1 + d2f2 satisfies

ρ (g2) = ρ (fj) = ∞ (j = 1, 2)

and
ρ2 (gf ) = ρ2 (fj) = ρ (A) (j = 1, 2) .

Theorem 1.4. Let A0 (z) be transcendental entire function with ρ (A0) = 0, and
let A1, · · · , Ak−1 be polynomials. Let dj (z) (j = 1, 2) be finite order entire functions
that are not all vanishing identically. If f1 and f2 are any two linearly independent
solutions of (1), then the combination of solutions g2 = d1f1 + d2f2 satisfies

ρ (g2) = ρ (fj) = ∞ (j = 1, 2) .

Return now to the differential equation

f (k) + pk−1 (z) f
(k−1) + · · ·+ p0 (z) f = 0, (3)

where pj (z) (j = 0, · · · , k − 1) are polynomials with p0 (z) ̸≡ 0. It is well-known that
every solution f of (3) is an entire function of finite rational order; see, [10], [11], [5,
pp. 199− 209], [9, pp. 106− 108], [12, pp. 65− 67]. For equation (3), set

λ = 1 + max
0≤j≤k−1

deg pj
k − j

. (4)

It is known [6, p. 127] that for any solution f of (3), we have

ρ (f) ≤ λ.

As we have seen in Theorem 1.3 and [7], it is clear that the study of the growth of
gk where k > 2, is more difficult than the case where k = 2. For that, we give in the
following result some sufficient conditions to prove that gk keeps the same order of
growth of solutions of (3) for k ≥ 2, and we obtain the following result.
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Theorem 1.5. Let pj (z) (j = 0, · · · , k − 1) be polynomials, and let di (z) (1 ≤ i ≤ k)
be entire functions that are not all vanishing identically such that max{ρ (di) : 1 ≤
i ≤ k} < λ. If {f1, f2, · · · , fk} is any set of fundamental solutions of (3), then the
combination of solutions gk satisfies

ρ (gk) = 1 + max
0≤j≤k−1

deg pj
k − j

.

Remark 1.1. The proof of Theorems 1.3-1.5 is quite different from that in the proof
of Theorems 1.1-1.2 (see, [7]) . The main ingredient in the proof is Lemma 2.1. By the
proof of Theorem 1.5, we can deduce that Theorem 1.2 holds without the additional
condition h ̸≡ 0.

Corollary 1.6. Let A (z) be a nonconstant polynomial and let di (z) (1 ≤ i ≤ k) be
entire functions that are not all vanishing identically such that

max {ρ (di) : 1 ≤ i ≤ k} <
deg (A) + k

k
.

If {f1, f2, · · · , fk} is any set of fundamental solutions of

f (k) +A (z) f = 0, (5)

then the combination of solutions gk satisfies

ρ (gk) =
deg (A) + k

k
.

2. Preliminary lemmas

Lemma 2.1. [8] (i) Let f (z) be an entire function with ρ2 (f) = α > 0, and let
L (f) = akf

(k) + ak−1f
(k−1) + · · · + a0f, where a0, a1, · · · , ak are entire functions

which are not all equal zero and satisfy b = max {ρ (aj) : j = 0, · · · , k} < α. Then
ρ2 (L (f)) = α.
(ii) Let f (z) be an entire function with ρ (f) = α ≤ ∞, and let L (f) = akf

(k) +
ak−1f

(k−1) + · · ·+ a0f, where a0, a1, · · · , ak are entire functions which are not all
equal zero and satisfy b = max {ρ (aj) : j = 0, · · · , k} < α. Then ρ (L (f)) = α.

Lemma 2.2. [3] For any given equation of the form (3), there must exists a solution
of (3) that satisfies ρ (f) = λ, where λ is the constant in (4).

Lemma 2.3. [1] Let Aj (z) (j = 0, · · · , k − 1) be entire functions of finite order such
that

max {ρ (Aj) : j = 1, · · · , k − 1} < ρ (A0) .

Then every solution f ̸≡ 0 of (1) satisfies ρ (f) = ∞ and ρ2 (f) = ρ (A0) .

Lemma 2.4. [2] Let A0 (z) be transcendental entire function with ρ (A0) = 0, and let
A1, · · · , Ak−1 be polynomials. Then every solution f ̸≡ 0 of (1) satisfies ρ (f) = ∞.

By using similar proofs as in the proofs of Proposition 1.5 and Proposition 5.5 in [6] ,
we easily obtain the following lemma.

Lemma 2.5. For all non-trivial solutions f of (5). If A is a polynomial with
degA = n ≥ 1, then we have

ρ (f) =
n+ k

k
.
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Lemma 2.6. Let f be any nontrivial solution of (1). Then the following identity
holds

k∑
j=0

(
Aj

j∑
i=0

Ci
j

(
d1
d2

)(i)

f (j−i)

)
=

k∑
j=1

(
Aj

j∑
i=1

Ci
j

(
d1
d2

)(i)

f (j−i)

)
,

where Ak (z) ≡ 1 and Ci
j =

j!

i! (j − i)!
.

Proof. We have

k∑
j=0

(
Aj

j∑
i=0

Ci
j

(
d1
d2

)(i)

f (j−i)

)
= A0

d1
d2

f +
k∑

j=1

(
Aj

j∑
i=0

Ci
j

(
d1
d2

)(i)

f (j−i)

)

= A0
d1
d2

f +
k∑

j=1

(
AjC

0
j

(
d1
d2

)
f (j) +Aj

j∑
i=1

Ci
j

(
d1
d2

)(i)

f (j−i)

)

= A0
d1
d2

f +
k∑

j=1

Aj

(
d1
d2

)
f (j) +

k∑
j=1

(
Aj

j∑
i=1

Ci
j

(
d1
d2

)(i)

f (j−i)

)

=
d1
d2

(
f (k) +Ak−1f

(k−1) + · · ·+A0f
)
+

k∑
j=1

(
Aj

j∑
i=1

Ci
j

(
d1
d2

)(i)

f (j−i)

)

=
k∑

j=1

(
Aj

j∑
i=1

Ci
j

(
d1
d2

)(i)

f (j−i)

)
.

�

Lemma 2.7. Let f be any nontrivial solution of (1). Then the following identity
holds

k∑
j=0

(
Aj

j∑
i=0

Ci
j

(
d1
d2

)(i)

f (j−i)

)
=

k−1∑
i=0

Dif
(i)

d2
k

2

,

where Di (i = 0, · · · , k − 1) are entire functions depending on d1, d2 and Aj (j =
1, · · · , k − 1), Ak (z) ≡ 1.

Proof. It is clear that we can express the double sum

k∑
j=0

(
Aj

j∑
i=0

Ci
j

(
d1
d2

)(i)

f (j−i)

)
=

k∑
j=1

Aj

(
j∑

i=1

Ci
j

(
d1
d2

)(i)

f (j−i)

)
in the form of differential polynomial in f of order k− 1. By mathematical induction
we can prove that

k∑
j=1

Aj

(
j∑

i=1

Ci
j

(
d1
d2

)(i)

f (j−i)

)
=

k−1∑
i=0

αif
(i), (6)

where

αi =
k∑

p=i+1

ApC
p−i
p

(
d1
d2

)(p−i)

. (7)
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Also, we have (
d1
d2

)(j)

=
βj

d2
j

2

, (8)

where βj is entire function. Hence, we deduce from (6)-(8) that

k−1∑
i=0

αif
(i) =

k−1∑
i=0

Dif
(i)

d2
k

2

,

where Di (i = 0, · · · , k − 1) are entire functions depending on d1, d2 and Aj (j =
1, · · · , k − 1), Ak (z) ≡ 1. �

3. Proof of Theorem 1.3

Proof. In the case when d1 (z) ≡ 0 or d2 (z) ≡ 0, then the conclusions of Theorem 1.3
are trivial. Suppose that f1 and f2 are two nontrivial linearly independent solutions
of (1) such that di (z) ̸≡ 0 (i = 1, 2) and let

g2 = d1f1 + d2f2. (9)

Then, by Lemma 2.3 we have ρ (fj) = ∞ (j = 1, 2) and ρ2 (fj) = ρ (A0) (j = 1, 2).
Suppose that d1 = cd2, where c is a complex number. Then, by (9) we obtain

g2 = cd2f1 + d2f2 = (cf1 + f2) d2.

Since f = cf1 + f2 is a solution of (1) and ρ (d2) < ρ (A0) , then we have

ρ (g2) = ρ (cf1 + f2) = ∞

and

ρ2 (g2) = ρ2 (cf1 + f2) = ρ (A0) .

Suppose now that d1 ̸≡ cd2 where c is a complex number. Dividing both sides of (9)
by d2, we obtain

F2 =
g2
d2

= f2 +
d1
d2

f1. (10)

Differentiating both sides of equation (10), k times for all integers j = 1, · · · , k, we
get

F
(j)
2 = f

(j)
2 +

j∑
i=0

Ci
jf

(i)
1

(
d1
d2

)(j−i)

. (11)

Equations (10) and (11) are equivalent to

F2 = f2 +
d1

d2
f1,

F ′
2 = f ′

2 +
(

d1

d2

)
f ′
1 +

(
d1

d2

)′
f1,

F ′′
2 = f ′′

2 +
(

d1

d2

)
f ′′
1 + 2

(
d1

d2

)′
f ′
1 +

(
d1

d2

)′′
f1,

· · ·

F
(k−1)
2 = f

(k−1)
2 +

k−1∑
i=0

Ci
k−1

(
d1

d2

)(k−1−i)

f
(i)
1 ,

F
(k)
2 = f

(k)
2 +

k∑
i=0

Ci
k

(
d1

d2

)(k−i)

f
(i)
1

which is also equivalent to
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

A0F2 = A0f2 +A0
d1

d2
f1,

A1F
′
2 = A1f

′
2 +A1

((
d1

d2

)
f ′
1 +

(
d1

d2

)′
f1

)
,

A2F
′′
2 = A2f

′′
2 +A2

((
d1

d2

)
f ′′
1 + 2

(
d1

d2

)′
f ′
1 +

(
d1

d2

)′′
f1

)
,

· · ·

Ak−1F
(k−1)
2 = Ak−1f

(k−1)
2 +Ak−1

k−1∑
i=0

Ci
k−1

(
d1

d2

)(k−1−i)

f
(i)
1 ,

F
(k)
2 = f

(k)
2 +

k∑
i=0

Ci
k

(
d1

d2

)(k−i)

f
(i)
1 .

(12)

By (12) we can obtain

F
(k)
2 +Ak−1 (z)F

(k−1)
2 + · · ·+A0 (z)F2 =

(
f
(k)
2 +Ak−1 (z) f

(k−1)
2 + · · ·+A0 (z) f2

)
+

k∑
j=0

(
Aj

j∑
i=0

Ci
j

(
d1
d2

)(i)

f
(j−i)
1

)
=

k∑
j=0

(
Aj

j∑
i=0

Ci
j

(
d1
d2

)(i)

f
(j−i)
1

)
, (13)

where Ak (z) ≡ 1. By using Lemma 2.6, we have

F
(k)
2 +Ak−1 (z)F

(k−1)
2 + · · ·+A0 (z)F2 =

k∑
j=1

Aj

(
j∑

i=1

Ci
j

(
d1
d2

)(i)

f
(j−i)
1

)
. (14)

By Lemma 2.7, we get

k∑
j=1

Aj

(
j∑

i=1

Ci
j

(
d1
d2

)(i)

f
(j−i)
1

)
= k

(d′1d2 − d′2d1) d

k−1∑
n=0

2n−1

2

d2
k

2

f
(k−1)
1 +

1

d2
k

2

k−2∑
i=0

Dif
(i)
1 ,

(15)
where Di (i = 0, · · · , k − 2) are entire functions depending on d1, d2 and Aj (j =
1, · · · , k − 1), Ak (z) ≡ 1. By using (14) and (15), we obtain

F
(k)
2 +Ak−1 (z)F

(k−1)
2 + · · ·+A0 (z)F2 =

Lk−1 (f1)

d2
k

2

,

where

Lk−1 (f1) =

k−1∑
i=0

Dif
(i)
1

is differential polynomial with entire coefficientsDi (i = 0, · · · , k − 1) of order ρ (Di) <

ρ (A0) (i = 0, · · · , k − 1) and Dk−1 = k
(d′

1d2−d′
2d1)d

k−1∑
n=0

2n−1

2

d2k
2

̸≡ 0 because d1 ̸≡ cd2. By

Lemma 2.1 (i), we have

ρ2

(
F

(k)
2 +Ak−1 (z)F

(k−1)
2 + · · ·+A0 (z)F2

)
= ρ2 (Lk−1 (f1)) = ρ2 (f1) .

Since

ρ2 (f1) = ρ2

(
F

(k)
2 +Ak−1 (z)F

(k−1)
2 + · · ·+A0 (z)F2

)
≤ ρ2 (F2) = ρ2 (g2) ≤ ρ2 (f1) ,

then

ρ2 (g2) = ρ2 (f1) .

�
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4. Proof of Theorem 1.4

Proof. By using a similar reasoning as in the proof of Theorem 1.3, Lemma 2.4 and
Lemma 2.1 (ii) we obtain Theorem 1.4. �

5. Proof of Theorem 1.5

Proof. Without loss of generality, by using Lemma 2.2, we suppose that

max {ρ (fj) , j = 1, · · · , k} = ρ (f1) = λ = 1 + max
0≤j≤k−1

deg pj
k − j

and there exist at least two integers p and q such that dp ̸≡ cdq where c is a complex
number and 1 ≤ p ≤ q ≤ k. By the same proof as Theorem 1.3 we obtain

F
(k)
2 + pk−1 (z)F

(k−1)
2 + · · ·+ p0 (z)F2 =

k∑
j=1

(
pj

j∑
i=1

Ci
j

(
d1
d2

)(i)

f
(j−i)
1

)
(16)

and by Lemma 2.7, we get

k∑
j=1

(
pj

j∑
i=1

Ci
j

(
d1
d2

)(i)

f
(j−i)
1

)
= k

(d′1d2 − d′2d1) d

k−1∑
n=0

2n−1

2

d2
k

2

f
(k−1)
1 +

1

d2
k

2

k−2∑
i=0

Dif
(i)
1 ,

(17)
where pk (z) ≡ 1 and Di (i = 0, · · · , k − 2) are entire functions. By using (16) and
(17), we have

F
(k)
2 +Ak−1 (z)F

(k−1)
2 + · · ·+A0 (z)F2 =

Lk−1 (f1)

d2
k

2

,

where

Lk−1 (f1) =
k−1∑
i=0

Dif
(i)
1

is differential polynomial with entire coefficientsDi (i = 0, · · · , k − 1) of order ρ (Di) <
λ (i = 0, · · · , k − 1) and there exists 0 ≤ i ≤ k − 1 such that Di ̸≡ 0. By Lemma 2.1
(ii), we have

ρ
(
F

(k)
2 + pk−1 (z)F

(k−1)
2 + · · ·+ p0 (z)F2

)
= ρ (Lk−1 (f1)) = ρ (f1) .

Since

ρ (f1) = ρ
(
F

(k)
2 + pk−1 (z)F

(k−1)
2 + · · ·+ p0 (z)F2

)
≤ ρ (F2) = ρ (g2) ≤ ρ (f1) ,

then

ρ (g2) = ρ (f1) .

Now, we suppose that

ρ (gn) = ρ (f1)

is true for all n = 1, · · · , k − 1 and we show that

ρ (gk) = ρ (f1) .

We have

gk = d1f1 + d2f2 + · · ·+ dkfk = gk−1 + dkfk. (18)
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Suppose that dk ̸≡ 0, and dividing both sides of (18) by dk, we get

Fk =
gk
dk

=
gk−1

dk
+ fk.

By the same reasoning as before, we obtain

p0Fk = p0fk + p0
1
dk
gk−1,

p1F
′
k = p1f

′
k + p1

((
1
dk

)
g′k−1 +

(
1
dk

)′
gk−1

)
,

p2F
′′
k = p2f

′′
k + p2

((
1
dk

)
g′′k−1 + 2

(
1
dk

)′
g′k−1 +

(
1
dk

)′′
gk−1

)
,

· · ·

pk−1F
(k−1)
k = pk−1f

(k−1)
k + pk−1

k−1∑
i=0

Ci
k−1

(
1
dk

)(k−1−i)

g
(i)
k−1,

F
(k)
k = f

(k)
k +

k∑
i=0

Ci
k

(
1
dk

)(k−i)

g
(i)
k−1.

(19)

By (19) we can deduce

F
(k)
k + pk−1 (z)F

(k−1)
k + · · ·+ p0 (z)Fk =

(
f
(k)
k + pk−1 (z) f

(k−1)
k + · · ·+ p0 (z) fk

)
+

k∑
j=0

(
pj

j∑
i=0

Ci
j

(
1

dk

)(i)

g
(j−i)
k−1

)
=

k∑
j=0

(
pj

j∑
i=0

Ci
j

(
1

dk

)(i)

g
(j−i)
k−1

)
. (20)

By Lemma 2.6, we have

k∑
j=0

(
pj

j∑
i=0

Ci
j

(
1

dk

)(i)

g
(j−i)
k−1

)
=

k∑
j=1

(
pj

j∑
i=1

Ci
j

(
1

dk

)(i)

g
(j−i)
k−1

)

= −k
d′kd

k−1∑
n=0

2n−1

k

d2
k

k

g
(k−1)
k−1 +

1

d2
k

k

k−2∑
i=0

Big
(i)
k−1, (21)

where pk (z) ≡ 1 and Bi (i = 0, · · · , k − 1) are entire functions. By using (20) and
(21), we obtain

F
(k)
k +Ak−1 (z)F

(k−1)
k + · · ·+A0 (z)Fk =

Mk−1 (gk−1)

d2
k

k

,

where

Mk−1 (gk−1) =
k−1∑
i=0

Big
(i)
k−1

is differential polynomial with entire coefficientsBi (i = 0, · · · , k − 1) of order ρ (Bi) <
λ (i = 0, · · · , k − 1) . By Lemma 2.1 (ii), we have

ρ
(
F

(k)
k + pk−1 (z)F

(k−1)
k + · · ·+ p0 (z)Fk

)
= ρ (Mk−1 (gk−1)) = ρ (f1) .

Since

ρ (f1) ≤ ρ
(
F

(k)
k + pk−1 (z)F

(k−1)
k + · · ·+ p0 (z)Fk

)
≤ ρ (Fk) = ρ (gk−1) ≤ ρ (f1) ,

then
ρ (Fk) = ρ (gk−1) = ρ (f1) ,

which implies that
ρ (gk) = ρ (gk−1) = ρ (f1) = λ.

This completes the proof of Theorem 1.5. �



208 Z. LATREUCH AND B. BELAÏDI

References

[1] Z. X. Chen and C. C. Yang, Quantitative estimations on the zeros and growths of entire solutions
of linear differential equations, Complex Variables Theory Appl. 42 (2000), no. 2, 119–133.

[2] S. A. Gao and Z. X. Chen, The complex oscillation theory of certain nonhomogeneous linear
differential equations with transcendental entire coefficients, J. Math. Anal. Appl. 179 (1993),
no. 2, 403–416.

[3] G. G. Gundersen, E. M. Steinbart and S. Wang, The possible orders of solutions of linear

differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998), no. 3,
1225–1247.

[4] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
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[7] Z. Latreuch and B. Beläıdi, Some properties of solutions of second-order linear differential

equations, J. Complex Anal. (2013), Article ID 253168, 5 pages.

[8] J. Tu, H. Y. Xu and C. Y. Zhang, On the zeros of solutions of any order of derivative of second
order linear differential equations taking small functions, Electron. J. Qual. Theory Differ. Equ.
2011, no. 23, 1–17.

[9] G. Valiron, Lectures on the general theory of integral functions, translated by E. F. Collingwood,
Chelsea, New York, 1949.
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