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Discrete Emden-Fowler problems driven by nonhomogeneous
differential operators
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Abstract. In this paper, we prove the existence of positive homoclinic solutions for the p(·)-
Laplacian difference equation with periodic coefficients on the set of integers. The proof of
the main result is obtained by using critical point theory combined with adequate variational

techniques, which are mainly based on the mountain pass theorem.
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1. Introduction and main result

This paper is concerned with the study of the difference non-homogeneous equation
of type{

−∆ϕp(k−1)(∆u(k − 1)) + a(k)ϕp(k)(u(k)) = f(k, u(k)) for all k ∈ Z
u(k) → 0 as |k| → ∞.

(1)

Here p(·) : Z → (1,∞), a(·) : Z → R is two T -periodic functions, where T > 0 is a
given natural number, ϕp(k)(t) = |t|p(k)−2t for all t ∈ R and for each k ∈ Z, while
f(k, t) : Z × R → R is a continuous function in t ∈ R and T -periodic in k. We have
denoted by ∆ the difference operator, which is defined by

∆u(k − 1) = u(k)− u(k − 1) for each k ∈ Z.
Moreover,

∆ϕp(k−1)(∆u(k − 1)) = |∆u(k)|p(k)−2∆u(k)− |∆u(k − 1)|p(k−1)−2∆u(k − 1) (2)

for each k ∈ Z.
In the present paper, our goal is to establish the existence of positive homoclinic

solutions for problem (1).
The presence of the nonconstant potential p(·) is an important feature of this paper.

The study of difference equations involving non-homogeneous difference operators of
type (2) was initiated by M. Mihăilescu, V. Rădulescu and S. Tersian in [11], where
some eigenvalue problems were investigated.

The study of discrete boundary value problems has captured special attention in
the last decade. In this context we point out the results obtained in the papers of R.
P. Agarwal, K. Perera and D. O’Regan [1], A. Cabada, A. Iannizzotto and S. Tersian
[3], H. Fang and D. Zhao [5], M. Ma and Z. Guo [10], A. Kristály, M. Mihăilescu,
V. Rădulescu and S. Tersian [9]. The studies regarding such type of problems can
be placed at the interface of certain mathematical fields such as nonlinear partial
differential equations and numerical analysis.
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Throughout this paper we will use the notation

p+ := sup
k∈Z

p(k), p− := inf
k∈Z

p(k).

We assume that

1 < p− 6 p(·) < p+ < ∞. (3)

We also assume that the T -periodic function a(·) : Z → R and the continuous function
f = f(k, t) : Z× R → R which is assumed to be T -periodic in k satisfy the following
hypotheses:
(A1) a(k) > a0 := min{a(0), . . . , a(T − 1)} > 0 for all k ∈ Z;
(A2) a0 < p+;

(F1) lim
|t|→0

f(k, t)

|t|p+−1
= 0 uniformly for all k ∈ Z;

(F2) there exist α > p+ and r > 0 such that 0 < αF (k, t) 6 f(k, t)t for all k ∈ Z,
t > r > 0, where F : Z × R → R is defined by F (k, t) =

∫ t

0
f(k, s)ds for all

k ∈ Z, t ∈ R;
(F3) f(k, t) > 0 for any t < 0 and all k ∈ Z.

The main result of this paper is the following.

Theorem 1.1. Assume hypotheses (3), (A1) − (A2) and (F1) − (F3) are satisfied.
Then problem (1) admits at least a positive homoclinic solution.

The rest of the paper is organized as follows: in Section 2 we collect some prelim-
inary results and in Section 3 we prove Theorem 1.1, employing the mountain pass
theorem of Ambrosetti & Rabinowitz [2].

2. Preliminaries

In this section we define the functional spaces and some of their useful properties
which will be used later.

We introduce for each p(·) : Z → (1,∞) the space

lp(·) :=

{
u : Z → R; ρp(·)(u) :=

∑
k∈Z

|u(k)|p(k) < ∞

}
.

On lp(·) we introduce the Luxemburg norm

|u|p(·) := inf

{
λ > 0 :

∑
k∈Z

∣∣∣∣u(k)λ

∣∣∣∣p(k) 6 1

}
.

We also consider the space

l∞ =

{
u : Z → R; |u|∞ := sup

k∈Z
|u(k)| < ∞

}
.

We recall some useful properties of the space lp(·). Firstly, by clasical results of
functional analysis we know that, for all 1 < p− 6 p+ < ∞, (lp(·), | · |p(·)) is a reflexive

Banach space whose dual is (lp
∗(·), | · |∗) with 1

p(x) +
1

p∗(x) = 1.

Proposition 2.1. [6, Proposition 2.3] If u ∈ lp(·), (un) ⊂ lp(·) and p+ < +∞, then
the following properties hold:

|u|p(·) > 1 implies |u|p
−

p(·) 6 ρp(·)(u) 6 |u|p
+

p(·); (4)
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|u|p(·) < 1 implies |u|p
+

p(·) 6 ρp(·)(u) 6 |u|p
−

p(·); (5)

|un|p(·) → 0 if and only if ρp(·)(un) → 0 as n → ∞; (6)

We denote by l
p(·)
0 the set of compact support functions. Consider u ∈ lp(·) has

compact support, hence there exist a, b ∈ Z, a < b such that u(k) = 0 if k ∈ Z \ [a, b]
and u(k) ̸= 0 if k ∈ {a+ 1, b− 1}.

Remark 2.1. The space l
p(·)
0 is dense in lp(·).

Indeed, for each u ∈ lp(·) we can define un ∈ l
p(·)
0 by un(j) = 0, if |j| > n + 1 and

un(j) = u(j), if |j| ̸= n and we have∑
j∈Z

|u(j)− un(j)| → 0 as n → ∞,

or, by relation (6), |u− un|p(·) → 0 as n → ∞.

On the other hand, in order to facilitate further computations, it is useful to
introduce other norm on lp(·), namely

∥u∥p(·) := inf

{
λ > 0 :

∑
k∈Z

a(k)

p(k)

∣∣∣∣u(k)λ

∣∣∣∣p(k) 6 1

}
.

We point out that ∥ · ∥p(·) is an equivalent norm with | · |p(·). Moreover, we have the
following properties of the above norm, which are similarly to the properties of the
norm | · |p(·).

Proposition 2.2. Let u ∈ lp(·), (un) ⊂ lp(·) and p+ < +∞. Then the following
properties hold:

∥u∥p(·) > 1 implies ∥u∥p
−

p(·) 6
∑
k∈Z

a(k)

p(k)
|u(k)|p(k) 6 ∥u∥p

+

p(·); (7)

∥u∥p(·) < 1 implies ∥u∥p
+

p(·) 6
∑
k∈Z

a(k)

p(k)
|u(k)|p(k) 6 ∥u∥p

−

p(·); (8)

∥un∥p(·) → 0 if and only if
∑
k∈Z

a(k)

p(k)
|un(k)|p(k) → 0 as n → ∞. (9)

Proof. (7) Let ∥u∥p(·) > 1. Then

∑
k∈Z

a(k)

p(k)
|u(k)|p(k) =

∑
k∈Z

a(k)

p(k)

∣∣∣∣ u(k)

∥u∥p(·)
× ∥u∥p(·)

∣∣∣∣p(k)

> ∥u∥p
−

p(·)

∑
k∈Z

a(k)

p(k)

∣∣∣∣ u(k)

∥u∥p(·)

∣∣∣∣p(k) = ∥u∥p
−

p(·).

On the other hand, we have∑
k∈Z

a(k)

p(k)
|u(k)|p(k) =

∑
k∈Z

a(k)

p(k)

∣∣∣∣ u(k)

∥u∥p(·)
× ∥u∥p(·)

∣∣∣∣p(k)

6 ∥u∥p
+

p(·)

∑
k∈Z

a(k)

p(k)

∣∣∣∣ u(k)

∥u∥p(·)

∣∣∣∣p(k) = ∥u∥p
+

p(·).
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Thus,

∥u∥p
−

p(·) 6
∑
k∈Z

a(k)

p(k)
|u(k)|p(k) 6 ∥u∥p

+

p(·);

(8) The proof is similar to that for (7).
(9)Case 1. ∥un∥p(·) → 0 as n → ∞, then∑

k∈Z

a(k)

p(k)
|un(k)|p(k) =

∑
k∈Z

a(k)

p(k)

∣∣∣∣ un(k)

∥un∥p(·)
× ∥un∥p(·)

∣∣∣∣p(k)

6 ∥un∥αp(·)
∑
k∈Z

a(k)

p(k)

∣∣∣∣ un(k)

∥un∥p(·)

∣∣∣∣p(k) = ∥un∥αp(·),

where α =

{
p+ if ∥un∥p(·) > 1
p− if ∥un∥p(·) < 1.

So,
∑
k∈Z

a(k)

p(k)
|un(k)|p(k) → 0 as n → ∞.

Case 2.
∑
k∈Z

a(k)

p(k)
|un(k)|p(k) → 0 as n → ∞, then

∑
k∈Z

a(k)

p(k)
|un(k)|p(k) =

∑
k∈Z

a(k)

p(k)

∣∣∣∣ un(k)

∥un∥p(·)
× ∥un∥p(·)

∣∣∣∣p(k)

> ∥un∥αp(·)
∑
k∈Z

a(k)

p(k)

∣∣∣∣ un(k)

∥un∥p(·)

∣∣∣∣p(k) = ∥un∥αp(·),

where α =

{
p− if ∥un∥p(·) > 1
p+ if ∥un∥p(·) < 1.

So, ∥un∥p(·) → 0 as n → ∞. �

Next, if X is a real Banach space and X∗ is its dual, we recall that a functional
J ∈ C1(X,R), is said to satisfies the Palais-Smale condition at the level c, where
c is a given real number, ((PS)c for short) if every sequence (un) in X satisfying
J(un) → c and J ′(un) → 0 in X∗ contains a convergent subsequence. Such condition
is an essential hypothesis in the following mountain pass theorem, due to Ambrosetti
& Rabinowitz [2].

Theorem 2.3. Let X be a real Banach space and J ∈ C1(X,R) satisfies the following
geometric conditions:
(H1) there exist two numbers R > 0 and c0 > 0 such that J(u) > c0 for all u ∈ X

with ∥u∥ = R;
(H2) J(0) < c0 and J(e) < 0 for some e ∈ X with ∥e∥ > R.
With an additional compactness condition of Palais-Smale type it then follows that the
functional J has a critical point u0 ∈ X\{0, e} with critical value c := inf

γ∈Γ
max
t∈[0,1]

J(γ(t)),

c > c0, where Γ := {γ ∈ C([0, 1], X); γ(0) = 0, γ(1) = e}.

3. Existence of positive homoclinic solutions

In this section, we are interested in finding homoclinic solutions for problem of
type (1).

Definition 3.1. We say that a function u ∈ lp(·) is a weak homoclinic solution for
the problem (1) if∑
k∈Z

ϕp(k−1)(∆u(k − 1))∆v(k − 1) +
∑
k∈Z

a(k)ϕp(k)(u(k))v(k)−
∑
k∈Z

f(k, u(k))v(k) = 0,
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for all v ∈ lp(·) and lim
|k|→∞

u(k) = 0.

The basic idea in proving Theorem 1.1 is to consider the associate energetic func-
tional of problem (1) and to show that it possesses a nontrivial critical point by using
Theorem 2.3.

Note that f : Z×R → R is continuous as f(k, 0) = 0 for all k ∈ Z (by (F1)). Next,
we introduce an energetic functional corresponding to problem (1), J : lp(·) → R
defined by

J(u) :=
∑
k∈Z

1

p(k − 1)
|∆u(k − 1)|p(k−1) +

∑
k∈Z

1

p(k)
a(k)|u(k)|p(k) −

∑
k∈Z

F (k, u(k)).

Standard arguments assure that J is well-defined on the space lp(·) and is of class
C1(lp(·),R), with the derivative given by

⟨J ′(u), v⟩ =
∑
k∈Z

ϕp(k−1)(∆u(k − 1))∆v(k − 1) +
∑
k∈Z

a(k)ϕp(k)(u(k))v(k)

−
∑
k∈Z

f(k, u(k))v(k), for all u, v ∈ lp(·). (10)

Remark 3.1. [6, Remark 2.1] If u ∈ lp(·), then lim
|k|→+∞

u(k) = 0.

Proposition 3.1. Suppose that the functions a : Z → R and f : Z × R → R satisfy
hypotheses of Theorem 1.1 and u ∈ lp(·) is a critical point of J . Then u is a homoclinic
solution of (1) and u(k) > 0 for all k ∈ Z.

Proof. We know that the critical points of J correspond to the weak homoclinic
solutions of problem (1) (see (10)). Fix h ∈ Z and define eh ∈ lp(·) by setting
eh(k) = δh,k (where δh,k = 1 if h = k and δh,k = 0 if h ̸= k) for all k ∈ Z. Taking
v = eh in (10) we obtain

−∆ϕp(h−1)(∆u(h− 1)) + a(h)ϕp(h)(u(h)) = f(h, u(h)).

Moreover, u(h) → 0 as |h| → +∞ (see Remark 3.1). So, u is in fact a solution of
problem (1).

Now, arguing by contradiction, suppose that u(k0) < 0 for some k0 ∈ Z and let k1
be such that u(k1) = min{u(k), k ∈ Z} < 0. In consequence ∆ϕp(k1−1)(∆u(k1−1)) >
0, which by equation (1) implies that

f(k1, u(k1)) = −∆ϕp(k1−1)(∆u(k1 − 1)) + a(k1)ϕp(k1)(u(k1)) < 0,

a contradiction with (F3). So, u(k) > 0 for all k ∈ Z. �

Proposition 3.2. If the hypotheses of Theorem 1.1 are satisfied and u ∈ lp(·) is a
homoclinic solution of (1) such that u(k) > 0 for all k ∈ Z and u ̸= 0, then u(k) > 0
for all k ∈ Z.

Proof. Arguing by contradiction, assume that u(k2) = 0 for some k2 ∈ Z. By (1) we
have

ϕp(k2)(∆u(k2)) = ϕp(k2−1)(∆u(k2 − 1))

(recall that f(k, 0) = 0). Note that if u(k2 + 1) = 0 or u(k2 − 1) = 0, the solution is
identically zero by a recursion, which is a contradiction with u ̸= 0. So, u(k) > 0 for
all k ∈ Z. �
Proposition 3.3. If (3), (A1) − (A2) and (F1) − (F3) are satisfied, then J satisfies
(PS)c.
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Proof. We follow [12]. Let (un) be a sequence in lp(·) such that

J(un) → c > 0 and J ′(un) → 0 in lp
∗(·), as n → ∞. (11)

The existence of such a sequence is given in the proof of Theorem 1.1.
Firstly, we prove that (un) is bounded in lp(·). Assume that ∥un∥p(·) > 1 for each

n and by condition (F2) and relations (3) and (7) we deduce that

αJ(un)− ⟨J ′(un), un⟩ =
∑
k∈Z

(
α

p(k − 1)
− 1

)
|∆un(k − 1)|p(k−1)

+
∑
k∈Z

(
α

p(k)
− 1

)
a(k)|un(k)|p(k)

−
∑
k∈Z

[αF (k, un(k))− f(k, un(k))un(k)]

>
∑
k∈Z

[
α

p(k)
a(k)|un(k)|p(k) −

1

p(k)
a(k)|un(k)|p(k)p(k)

]
(see (F2))

> α∥un∥p
−

p(·) − p+∥un∥p
−

p(·) (see (7) and (3))

= (α− p+)∥un∥p
−

p(·),

for all n. The above estimates and condition (11) implies that (un) is bounded in
lp(·). This information combined with the fact that lp(·) is a reflexive Banach space
guarantees that, up to a subsequence, (un) is weakly convergent in lp(·).

So, for each n ∈ N the sequence (|un(k)|)k∈Z ⊂ lp(·) is bounded and |un(k)| → 0 as
|k| → ∞. Suppose that (|un(k)|)k∈Z achieves its maximum in kn ∈ Z. Hence, there
exists jn ∈ Z such that

jnT 6 kn < (jn + 1)T.

Define wn(k) := un(k − jnT ). Then (|wn(k)|)k∈Z attains its maximum in in :=
kn − jnT ∈ [0, T ]. The T -periodicity of p(·) and a(·) implies∑

k∈Z

a(k)

p(k)
|un(k)|p(k) =

∑
k∈Z

a(k)

p(k)
|wn(k)|p(k) and J(un) = J(wn). (12)

Since (un)n∈N is bounded in lp(·) the relations (7), (8) and (12) yield that (wn)n∈N
is bounded in lp(·), too. Then, passing if necessary to a subsequence, there exists
w ∈ lp(·) such that wn converges weakly to w in lp(·) as n → ∞.

Now, we verify that wn(k) → w(k) as n → ∞ for all k ∈ Z. Indeed, defining the

test function vm ∈ lp(·) by vm(j) =

{
1, if j = m
0, if j ̸= m

and taking into account the weak

convergence of wn to w in lp(·) we find

lim
n→∞

wn(k) = lim
n→∞

⟨wn, vk⟩ = ⟨w, vk⟩ = w(k), for all k ∈ Z.

We point out that for each v ∈ lp(·) we have

|⟨J ′(wn), v⟩| = |⟨J ′(un), v(·+ jnT )⟩| 6 ∥J ′(un)∥∗∥v∥p(·).

So, by above relation and relations (11) and (12) we obtain

J(wn) → c > 0 and J ′(wn) → 0 in lp
∗(·), as n → ∞. (13)
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Hence, for each v ∈ lp(·), we have∑
k∈Z

[
ϕp(k−1)(∆wn(k − 1))∆v(k − 1) + a(k)ϕp(k)(wn(k))v(k)

−f(k,wn(k))v(k)] → 0, as n → ∞. (14)

By Remark 2.1 we know that the space l
p(·)
0 is dense in lp(·). So, for each v ∈ l

p(·)
0

in (14) taking into account the finite sums and the continuity of f(k, ·) we obtain by
passing to the limit as n → ∞ that∑

k∈Z

[
ϕp(k−1)(∆w(k − 1))∆v(k − 1) + a(k)ϕp(k)(w(k))v(k)− f(k,w(k))v(k)

]
→ 0.

Therefore, w is a critical point of J and consequently a solution of (1).
Next, we show that w is a nontrivial solution of problem (1). Arguing by contra-

diction, assume that w = 0. Then we have

|un|∞ = |wn|∞ = max{|wn(k)|; k ∈ Z} → 0, as n → ∞.

Fix ε > 0. By (F1), there exists δ ∈ (0, 1) such that{
|f(k, t)t| 6 ε|t|p+

,

|F (k, t)| 6 ε
p+ |t|p

+

.
(15)

for all k ∈ {0, . . . , T − 1} and all |t| < δ. The above inequalities show that for every
k ∈ {0, . . . , T − 1} there exists Mk such that for n > Mk we have |wn(k)| < δ.

Since in ∈ {0, . . . , T−1} it follows that, for n > M := max{Mn; n ∈ {0, . . . , T−1}}
and every k ∈ Z, we have

|wn(k)| 6 |wn(in)| < δ < 1.

That fact and relation (15) imply{
|f(k,wn(k))wn(k)| 6 ε|wn(k)|p

+ 6 ε|wn(k)|p(k),
|F (k,wn(k))| 6 ε

p+ |wn(k)|p
+ 6 ε

p(k) |wn(k)|p(k).
(16)

Finally, it follows that for each n > M and every k ∈ Z we obtain the following
estimates

0 < p−J(wn) = p−
∑
k∈Z

1

p(k − 1)
|∆wn(k − 1)|p(k−1)

+p−
∑
k∈Z

1

p(k)
a(k)|wn(k)|p(k) − p−

∑
k∈Z

F (k,wn(k))

6
∑
k∈Z

|∆wn(k − 1)|p(k−1) +
∑
k∈Z

a(k)|wn(k)|p(k) −
∑
k∈Z

f(k,wn(k))wn(k)

−
∑
k∈Z

[
p−F (k,wn(k))− f(k,wn(k))wn(k)

]
(see (3))

6 ⟨J ′(wn), wn⟩+ p−
∑
k∈Z

|F (k,wn(k))|+
∑
k∈Z

|f(k,wn(k))wn(k)|
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6 ⟨J ′(wn), wn⟩+ p−ε
∑
k∈Z

|wn(k)|p(k)

p(k)
+ ε

∑
k∈Z

|wn(k)|p(k) (see (16))

6 ⟨J ′(wn), wn⟩+
p−

a0
ε
∑
k∈Z

a(k)

p(k)
|wn(k)|p(k) +

p+

a0
ε
∑
k∈Z

a(k)

p(k)
|wn(k)|p(k)

6 ∥J ′(wn)∥∗∥wn∥p(·) + ε
p− + p+

a0
∥wn∥p

−

p(·) (see (8)).

We know that ∥wn∥p(·) is bounded and ε > 0 is arbitrary. Taking into account this
informations and relations (12) and (13) we find by the above estimates a contradiction
with J(wn) → c > 0 as n → ∞. So, we have that w is a nontrivial solution of problem
(1).

Finally, taking into account that ∥un∥p(·) is bounded and wn(k) = un(k−jnT ) and

relations (12) and (13) holds, it follows that there exists u in lp(·) such that un → u
as n → ∞. �

Now we are in a suitable position to do the proof of our main result.
Proof of Theorem 1.1.

We are going to apply Theorem 2.3. Firstly, we show that J satisfies the geometric
conditions (H1) and (H2) of Theorem 2.3.

(H1) there exist two numbers R > 0 and c0 > 0 such that J(u) > c0 for all u ∈ lp(·)

with ∥u∥p(·) = R;
Indeed, fix 0 < ε < a0

2 . By (F1), there exists δ ∈ (0, 1) such that

F (k, t) 6 ε

p+
|t|p

+ 6 a0
2p+

|t|p
+ 6 a0

2p+
|t|p(k), (17)

for all k ∈ Z and all |t| 6 δ. Define

R :=

(
a0
p+

) 1

p−

δ
p+

p− .

By condition (A2) we deduce that R ∈ (0, 1). Then for all u ∈ lp(·) with ∥u∥p(·) = R
relation (8) implies

Rp−
=

a0
p+

δp
+

= ∥u∥p
−

p(·)

>
∑
k∈Z

a(k)

p(k)
|u(k)|p(k)

> a0
p+

|u(k)|p(k),

for all k ∈ Z. It follows that

1 > δp
+ > |u(k)|p(k), for all k ∈ Z.

Therefore, |u(k)| < 1 for every k ∈ Z and thus

|u(k)|p(k) > |u(k)|p
+

, for all k ∈ Z.

The above inequalities show that δ > |u(k)|, for all k ∈ Z. Next, by (17) we deduce∑
k∈Z

F (k, u(k)) 6 a0
2p+

∑
k∈Z

|u(k)|p(k) 6 1

2

∑
k∈Z

a(k)

p(k)
|u(k)|p(k), with ∥u∥p(·) = R. (18)
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Define c0 := Rp+

2 and for each u with ∥u∥p(·) = R, by (8) and (18) we deduce

J(u) =
∑
k∈Z

1

p(k − 1)
|∆u(k − 1)|p(k−1) +

∑
k∈Z

1

p(k)
a(k)|u(k)|p(k) −

∑
k∈Z

F (k, u(k))

>
∑
k∈Z

1

p(k)
a(k)|u(k)|p(k) −

∑
k∈Z

F (k, u(k))

>
∑
k∈Z

1

p(k)
a(k)|u(k)|p(k) − 1

2

∑
k∈Z

a(k)

p(k)
|u(k)|p(k)

=
1

2

∑
k∈Z

a(k)

p(k)
|u(k)|p(k)

> 1

2
∥u∥p

+

p(·) =
Rp+

2
= c0.

(H2) J(0) < c0 and J(e) < 0 for some e ∈ lp(·) with ∥e∥p(·) > R.
Indeed, clearly J(0) = 0 < c0. By standard integration, (F2) implies that there

exist two constants c1 > 0 and c2 > 0 such that

F (k, t) > c1|t|α − c2, for all k ∈ Z and all t ∈ R, α > p+. (19)

Defining v ∈ lp(·) by v(k) =

{
a > 0 if k = 0
0 if k ̸= 0

and using (19), for each η > 0 we

obtain

J(ηv) =
∑
k∈Z

1

p(k − 1)
|∆(ηv)(k − 1)|p(k−1) +

∑
k∈Z

1

p(k)
a(k)|ηv(k)|p(k) −

∑
k∈Z

F (k, ηv(k))

6 (2 + a(0))
ηp(0)ap(0)

p(0)
− c1η

αaα + c2,

which goes to −∞ as η → +∞ (since by relation (3) we have α > p+ > p(0)). So, we
can choose η > 0 big enough and set e = ηv, such that ∥e∥p(·) > c0 and J(e) < 0.

Hence, J satisfies the geometric conditions (H1) and (H2).
By the above informations and the mountain pass theorem, namely Theorem 2.3,

we deduce the existence of a sequence (un) ⊂ lp(·) such that

J(un) → c > 0 and J ′(un) → 0 in lp
∗(·), as n → ∞.

We also know by Proposition 3.3 that J satisfies (PS)c condition. Then there exists
a subsequence, still denoted by (un), and u0 ∈ lp(·) such that (un) converges to u0 in
lp(·). So, we have J(u0) = c > 0 and J ′(u0) = 0 and we conclude that u0 is a critical
point of J . From Proposition 3.1 we have that u0 is a homoclinic solution of (1) and
u0(k) > 0 for all k ∈ Z. Moreover, since J(u0) > 0 we also have u0 ̸= 0, which, by
Proposition 3.2, it follows that u0(k) > 0 for all k ∈ Z. �
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