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On fuzzy real valued asymptotically equivalent sequences and
lacunary ideal convergence
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Abstract. In this paper we present some definitions which are the natural combination of the
definition of asymptotic equivalence, statistical convergence, lacunary statistical convergence
of fuzzy real numbers and ideal. In addition, we also present asymptotically ideal equivalent

sequences of fuzzy real numbers and establish some relations related to this concept. Finally
we introduce the notion of Cesaro Orlicz asymptotically equivalent sequences of fuzzy real
numbers and establish their relationship with other classes.
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1. Introduction

The concept of fuzzy set and fuzzy set operations were first introduced by Zadeh [30]
and subsequently several authors have discussed various aspects of the theory and ap-
plications of fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy
orderings, fuzzy measures of fuzzy events, fuzzy mathematical programming. Mat-
loka [20] introduced bounded and convergent sequences of fuzzy numbers and studied
their some properties. Later on sequences of fuzzy numbers have been discussed by
Diamond and Kloeden [4], Mursaleen and Basarir [21], Altin et al. [1], Nanda [22]
and many others.

Actually the idea of statistical convergence was formerly given under the name
”almost convergence” by Zygmund in the first edition of his celebrated monograph
published in Warsaw in 1935 [31]. The concept was formally introduced by Fast
[6], Steinhaus [28] and later on it was reintroduced by Schoenberg [27]. A lot of

developments have been made in this areas after the works of S̆alát [26] and Fridy [8].
Over the years and under different names statistical convergence has been discussed
in the theory of Fourier analysis, ergodic theory and number theory. Fridy and Orhan
[9] introduced the concept of lacunary statistical convergence which is a generalization
of statistical convergence. Mursaleen and Mohiuddine [23], introduced the concept of
lacunary statistical convergence with respect to the intuitionistic fuzzy normed space.
For details related to lacunary statistical convergence, we refer to [3, 10].

Marouf [19] peresented definitions for asymptotically equivalent and asymptotic
regular matrices. Pobyvancts [25] introduced the concept of asymptotically regu-
lar matrices, which preserve the asymptotic equivalence of two nonnegative numbers
sequences. Patterson [24] extended these concepts by presenting an asymptotically
statistical equivalent analog of these definitions and natural regularity conditions for
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nonnegative summability matrices. Esi [5] introduced the concept of an asymptoti-
cally lacunary statistical equivalent sequences of interval numbers.

Kostyrko et. al [15] introduced the notion of I-convergence with the help of an ad-
missible ideal I denote the ideal of subsets of N, which is a generalization of statistical
convergence. Kumar and Sharma [18] introduced the lacunary equivalent sequences
of real numbers using ideals and studied some basic properties of this notion. More
applications of ideals can be found in the works of [2, 11, 12, 13, 14, 29].

A family of sets I ⊂ P (N) (power sets of N) is called an ideal if and only if for each
A,B ∈ I, we have A ∪ B ∈ I and for each A ∈ I and each B ⊂ A, we have B ∈ I.
A non-empty family of sets F ⊂ P (N) is a filter on N if and only if ϕ /∈ F , for each
A,B ∈ F , we have A ∩B ∈ F and each A ∈ F and each B ⊃ A, we have B ∈ F . An
ideal I is called non-trivial ideal if I ̸= ϕ and N /∈ I. Clearly I ⊂ P (N) is a non-trivial
ideal if and only if F = F(I) = {N − A : A ∈ I} is a filter on N. A non-trivial ideal
I ⊂ P (N) is called admissible if and only if {{x} : x ∈ N} ⊂ I. A non-trivial ideal I
is maximal if there cannot exists any non-trivial ideal J ̸= I containing I as a subset.
Recall from [15] that, a sequence x = (xk) of points in R is said to be I-convergent
to a real number L if {k ∈ N : |xk −L| ≥ ε} ∈ I for every ε > 0. In this case we write
I − limxk = L.

Let D denote the set of all closed and bounded intervals X = [x1, x2] on the real
line R. For X = [x1, x2] and Y = [y1, y2] in D, we define

X ≤ Y if and only if x1 ≤ y1 and x2 ≤ y2.

Define a metric d̄ on D by

d̄(X,Y ) = max{|x1 − y1|, |x2 − y2|}.
It can be easily proved that d̄ is a metric on D and (D, d̄) is a complete metric space.
Also the relation ≤ is a partial order on D.

A fuzzy number X is a fuzzy subset of the real line R i.e. a mapping X : R → J(=
[0, 1]) associating each real number t with its grade of membership X(t).

Let L(R) denote the set of all fuzzy numbers. The linear structure of L(R) induces
the addition X + Y and the scalar multiplication λX in terms of α-level sets, by

[X + Y ]α = [X]α + [Y ]α

and

[λX]α = λ[X]α for each 0 ≤ α ≤ 1.

The set R of real numbers can be embedded in L(R) if we define r ∈ L(R) by

r(t) =

{
1, if t = r;
0, if t ̸= r

The additive identity and multiplicative identity of L(R) are denoted by 0 and 1,
respectively.

For r in R and X in L(R), the product rX is defined as follows:

rX(t) =

{
X(r−1t), if r ̸= 0;

0, if r = 0

Define a map d : L(R)× L(R) → R by

d(X,Y ) = sup
0≤α≤1

d̄(Xα, Y α).

For X,Y ∈ L(R) define X ≤ Y if and only if Xα ≤ Y α for any α ∈ [0, 1]. It is
known that (L(R), d) is complete metric space (see [20]).
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A sequence u = (uk) of fuzzy numbers is a function X from the set N of natural
numbers into L(R). The fuzzy number uk denotes the value of the function at k ∈ N
(see [20]). We denote by wF the set of all sequences u = (uk) of fuzzy numbers.

A sequence u = (uk) of fuzzy numbers is said to be bounded if the set {uk : k ∈ N}
of fuzzy numbers is bounded. We denote by ℓF∞ the set of all bounded sequences
u = (uk) of fuzzy numbers.

A sequence u = (uk) of fuzzy numbers is said to be convergent to a fuzzy number
u0 if for every ε > 0 there is a positive integer k0 such that d(uk, u0) < ε for k > k0.
We denote by cF the set of all convergent sequences u = (uk) of fuzzy numbers. It is
straightforward to see that cF ⊂ ℓF∞ ⊂ wF .

2. Definitions and Notations

Throughout the paper, we denote I is an admissible ideal of subsets of N, unless
otherwise stated.

Now we recall the definitions which are using throughout the article.

Definition 2.1. A real or complex number sequence x = (xk) is said to be statistically
convergent to L if for every ε > 0

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write S − limx = L or xk → L(S) and S denotes the set of all
statistically convergent sequences.

A lacunary sequence θ = (kr) is an increasing sequence of non-negative integers
where k0 = 0, kr − kr−1 → ∞ as r → ∞. The intervals determined by θ will be
denoted by Jr = (kr−1, kr] and we let hr = kr − kr−1. The space of lacunary strongly
convergent sequences Nθ was defined by Freedman et al., [7] as follows.

Nθ =

{
x = (xk) : lim

r

1

hr

∑
k∈Jr

|xk − L| = 0, for some L

}
.

Definition 2.2. [9] A sequence x = (xk) is said to be lacunary statistically convergent
to the number L if for every ε > 0

lim
r→∞

1

hr
|{k ∈ Jr : |xk − L| ≥ ε}| = 0.

Let Sθ denote the set of all lacunary statistically convergent sequences. If θ = (2r),
then Sθ is the same as S.

Definition 2.3. [19] Two nonnegative sequences x = (xk) and y = (yk) are said to
be asymptotically equivalent if

lim
k

xk

yk
= 1,

denoted by x ∼ y.

Definition 2.4. [24] Two nonnegative sequences x = (xk) and y = (yk) are said to
be asymptotically statistical equivalent of multiple L provided that for every ε > 0

lim
n

1

n

∣∣∣∣{k ≤ n :

∣∣∣∣xk

yk
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0,

denoted by x
SL

∼ y and simply asymptotically statistical equivalent if L = 1.
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Definition 2.5. Two non-negative sequences x = (xk) and y = (yk) are said to be
asymptotically lacunary statistical equivalent of multiple L provided that for every
ε > 0

lim
r

1

hr

∣∣∣∣{k ∈ Jr :

∣∣∣∣xk

yk
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0,

denoted by x
SL
θ∼ y and simply asymptotically lacunary statistical equivalent if L = 1.

If we take θ = (2r), then we get the definition 4.

Definition 2.6. [18] Two non-negative sequences x = (xk) and y = (yk) are said to
be strongly asymptotically I-equivalent of multiple L provided that for each ε > 0{

n ∈ N :
1

n

n∑
k=1

∣∣∣∣xk

yk
− L

∣∣∣∣ ≥ ε

}
∈ I

denoted by x
I[C1]

L

∼ y and simply strongly asymptotically I-equivalent if L = 1.

Definition 2.7. [18] Two non-negative sequences x = (xk) and y = (yk) are said
to be asymptotically I-lacunary statistical equivalent of multiple L provided that for
each ε > 0 and δ > 0,{

r ∈ N :
1

hr

∣∣∣∣{k ∈ Jr :

∣∣∣∣xk

yk
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ δ

}
∈ I

denoted by x
I(Sθ)

L

∼ y and simply asymptotically I-lacunary statistical equivalent if
L = 1.

3. Asymptotically lacunary statistical equivalent sequences using ideals

In this section, we define I-statistical convergence, asymptotically I-equivalent,
asymptotically I-statistical equivalent and asymptotically I-lacunary statistical equiv-
alent sequences of fuzzy real numbers and obtain some analogous results from these
new definitions point of views.

Definition 3.1. Two sequences u = (uk) and v = (vk) of fuzzy real numbers are said
to be asymptotically statistical equivalent of multiple L provided that for every ε > 0

lim
n

1

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ = 0,

denoted by x
SL

∼ y and simply asymptotically statistical equivalent if L = 1.

Definition 3.2. [17] A sequence u = (uk) of fuzzy numbers is said to be I-convergent
to a fuzzy number u0 if for each ϵ > 0

A = {k ∈ N : d(uk, u0) ≥ ε} ∈ I.

Definition 3.3. A sequence (uk) of fuzzy real numbers is said to be I-statistically
convergent to a fuzzy real number u0 if for each ε > 0 and δ > 0,{

n ∈ N :
1

n
|{k ≤ n : d(uk, u0) ≥ ε}| ≥ δ

}
∈ I.

In this case we write I(S)− limuk = u0.
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Definition 3.4. Two nonnegative sequences (uk) and (vk) of fuzzy real numbers are
said to be asymptotically I-equivalent of multiple L provided that for every ε > 0{

k ∈ N : d

(
uk

vk
, L

)
≥ ε

}
∈ I,

denoted by (uk)
IL

∼ (vk) and simply asymptotically I-equivalent if L = 1.

Lemma 3.1. Let I ⊂ P (N) be an admissible ideal. Let (uk), (vk) ∈ ℓF∞ with I −
limk uk = 0̄ = I − limk vk such that (uk)

IL

∼ (vk). Then there exists a sequence (wk) ∈
ℓF∞ with I − limk wk = 0̄ such that (uk)

IL

∼ (wk)
IL

∼ (vk).

Definition 3.5. Two sequences (uk) and (vk) of fuzzy numbers are said to be asymp-
totically I-statistical equivalent of multiple L provided that for every ε > 0 and for
every δ > 0, {

n ∈ N :
1

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ

}
∈ I,

denoted by (uk)
I(S)L∼ (vk) and simply asymptotically I-statistical equivalent if L = 1.

Definition 3.6. Two sequences (uk) and (vk) of fuzzy real numbers are said to
be strongly asymptotically Cesàro I-equivalent (or I([C1])-equivalent) of multiple L
provided that for every δ > 0,{

n ∈ N :
1

n

n∑
k=1

d

(
uk

vk
, L

)
≥ δ

}
∈ I

denoted by (uk)
I([C1])

L

∼ (vk) and simply strongly asymptotically Cesàro I-equivalent
if L = 1.

Theorem 3.2. Let (uk), (vk) be two sequences of fuzzy real numbers. If (uk) , (vk) ∈

ℓF∞ and (uk)
I(S)L∼ (vk). Then (uk)

I([C1])
L

∼ (vk).

Proof. Suppose that (uk) , (vk) ∈ ℓF∞ and (uk)
I(S)L∼ (vk). Then we can assume that

d

(
uk

vk
, L

)
≤ M for almost all k.

Let ε > 0. Then we have∣∣∣∣∣ 1n
n∑

k=1

d

(
uk

vk
, L

)∣∣∣∣∣ ≤ 1

n

n∑
k=1

d

(
uk

vk
, L

)

≤ 1

n

n∑
k=1

d
(

uk
vk

,L
)
≥ε

d

(
uk

vk
, L

)
+

1

n

n∑
k=1

d
(

uk
vk

,L
)
<ε

d

(
uk

vk
, L

)

≤ M.
1

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣+ 1

n
.n.ε.

Consequently for any δ > ε > 0, δ and ε are independent, put δ1 = δ− ε > 0 we have{
n ∈ N :

1

n

n∑
k=1

d

(
uk

vk
, L

)
≥ δ

}
⊆

{
n ∈ N :

1

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ1
M

}
∈ I.

This shows that (uk)
I([C1])

L

∼ (vk). �
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Definition 3.7. Two sequences (uk) and (vk) of fuzzy real numbers are said to be
strongly asymptotically I-lacunary equivalent (or I([Nθ])-equivalent) of multiple L
provided that for every δ > 0,{

r ∈ N :
1

hr

∑
k∈Jr

d

(
uk

vk
, L

)
≥ δ

}
∈ I

denoted by (uk)
I([Nθ])

L

∼ (vk) and simply strongly asymptotically I-lacunary equivalent
if L = 1.

Definition 3.8. Two sequences (uk) and (vk) of fuzzy real numbers are said to be
asymptotically I-lacunary statistical equivalent (or I(Sθ)-equivalent) of multiple L
provided that for every ε > 0, for every δ > 0,{

r ∈ N :
1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ

}
∈ I

denoted by (uk)
I(Sθ)

L

∼ (vk) and simply asymptotically I-lacunary statistical equivalent
if L = 1.

Remark 3.1. If we take I = Ifin = {A ⊂ N : A is finite set}, then the asymptotically
I-statistical equivalent, I([Nθ])-equivalent and I(Sθ)-equivalent of sequences, respec-
tively coincides with their statistically equivalent, lacunary-equivalent and lacunary
statistically equivalent.

Theorem 3.3. Let (uk), (vk) be two sequences of fuzzy real numbers. Then

(a) (uk)
I([Nθ])

L

∼ (vk) ⇒ (uk)
I(Sθ)

L

∼ (vk).

(b) Let (uk) ∈ ℓF∞ and (uk)
I(Sθ)

L

∼ (vk), then (uk)
I([Nθ])

L

∼ (vk).
(c) I(Sθ)

L ∩ ℓF∞ = I([Nθ])
L ∩ ℓF∞.

Proof. (a) Let ε > 0 and (uk)
I([Nθ])

L

∼ (vk). Then we can write∑
k∈Jr

d

(
uk

vk
, L

)
≥

∑
k∈Jr

d

(
uk
vk

,L

)
≥ε

d

(
uk

vk
, L

)
≥ ε

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
⇒ 1

ε.hr

∑
k∈Jr

d

(
uk

vk
, L

)
≥ 1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ .
Thus for any δ > 0,

1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ

implies that
1

hr

∑
k∈Jr

d

(
uk

vk
, L

)
≥ εδ.

Therefore we have{
r ∈ N :

1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ

}
⊂

{
r ∈ N :

1

hr

∑
k∈Jr

d

(
uk

vk
, L

)
≥ εδ

}
.

Since (uk)
I([Nθ])

L

∼ (vk), so that



ASYMPTOTICALLY EQUIVALENT SEQUENCES OF FUZZY REAL NUMBERS ... 215

{
r ∈ N :

1

hr

∑
k∈Jr

d

(
uk

vk
, L

)
≥ εδ

}
∈ I

which implies that{
r ∈ N :

1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ

}
∈ I.

This shows that (uk)
I(Sθ)

L

∼ (vk).

(b) Suppose that (uk)
I(Sθ)

L

∼ (vk) and (uk) , (vk) ∈ ℓF∞.We assume that d
(

uk

vk
, L

)
≤ M

for all k ∈ N. Given ε > 0, we get

1

hh

∑
k∈Jr

d

(
uk

vk
, L

)
=

1

hr

∑
k∈Jr

d

(
uk
vk

,L

)
≥ε

d

(
uk

vk
, L

)
+

1

hr

∑
k∈Jr

d

(
uk
vk

,L

)
<ε

d

(
uk

vk
, L

)

≤ M

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣+ ε.

If we put

A(ε) =

{
r ∈ N :

1

hr

∑
k∈Jr

d

(
uk

vk
, L

)
≥ ε

}
and

B(ε1) =

{
r ∈ N :

1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ ε1
M

}
,

where ε1 = δ − ε > 0 (δ and ε are independent), then we have A(ε) ⊂ B(ε1) and so

A(ε) ∈ I. This shows that (uk)
I([Nθ])

L

∼ (vk).

(c) It follows from (a)and (b).
�

If we let θ = (2r) in Theorem 3.3, then we have the following corollary.

Corollary 3.4. Let (uk), (vk) be two sequences of fuzzy real numbers. Then

(a) (uk)
I([C1])

L

∼ (vk) ⇒ (uk)
I(S)L∼ (vk).

(b) Let (uk) ∈ ℓF∞ and (uk)
I(S)L∼ (vk), then (uk)

I([C1])
L

∼ (vk).
(c) I(S)L ∩ ℓF∞ = I([C1])

L ∩ ℓF∞.

Theorem 3.5. Let I be a non-trivial admissible ideal. Suppose for given δ > 0 and
every ε > 0 {

n ∈ N :
1

n

∣∣∣∣{0 ≤ k ≤ n− 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ < δ

}
∈ F

then (uk)
I(S)L∼ (vk).

Proof. Let δ > 0 be given. For every ε > 0, choose n1 such that

1

n

∣∣∣∣{0 ≤ k ≤ n− 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ < δ

2
, for all n ≥ n1. (1)

It is sufficient to show that there exists n2 such that for n ≥ n2
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1

n

∣∣∣∣{0 ≤ k ≤ n− 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ < δ

2
.

Let n0 = max{n1, n2}. The relation (3.1) will be true for n > n0. If m0 chosen fixed,
then we get ∣∣∣∣{0 ≤ k ≤ m0 − 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ = M.

Now for n > m0 we have

1

n

∣∣∣∣{0 ≤ k ≤ n− 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≤ 1

n

∣∣∣∣{0 ≤ k ≤ m0 − 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
+

1

n

∣∣∣∣{m0 ≤ k ≤ n− 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
≤ M

n
+

1

n

∣∣∣∣{m0 ≤ k ≤ n− 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≤ M

n
+

δ

2
.

Thus for sufficiently large n

1

n

∣∣∣∣{m0 ≤ k ≤ n− 1 : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≤ M

n
+

δ

2
< δ.

This established the result. �

Theorem 3.6. Let (uk) and (vk) be two sequences of fuzzy real numbers. Let θ = (kr)

be a lacunary sequence with lim infr qr > 1. Then (uk)
I(S)L∼ (vk) ⇒ (uk)

I(Sθ)
L

∼ (vk).

Proof. Suppose that lim infr qr > 1 then there exists an a > 0 such that qr ≥ 1 + a
for sufficiently large r, which implies that

hr

kr
≥ a

1 + a
.

Suppose that (uk)
I(S)L∼ (vk). For a given ε > 0 and sufficiently large r, we have

1

kr

∣∣∣∣{k ≤ kr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ 1

kr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
≥

(
a

1 + a

)
.
1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ .
and for any δ > 0 we have{

r ∈ N :
1

kr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ

}
⊆

{
r ∈ N :

1

kr

∣∣∣∣{k ≤ kr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ aδ

1 + a

}
∈ I.

This shows that (uk)
I(Sθ)

L

∼ (vk). �

Theorem 3.7. Let I = Ifin = {A ⊂ N : A is a finite set} be a non trivial ideal. Let
(uk), (vk) be two sequences of fuzzy real numbers and θ = (kr) be a lacunary sequence

with lim supr qr < ∞, then (uk)
I(Sθ)

L

∼ (vk) ⇒ (uk)
I(S)L∼ (vk).



ASYMPTOTICALLY EQUIVALENT SEQUENCES OF FUZZY REAL NUMBERS ... 217

Proof. Suppose that lim supr qr < ∞, then there exists a H > 0 such that qr < H for

all r. Suppose that (uk)
I(Sθ)

L

∼ (vk) and for every ε > 0, we put

Nr =

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ .
Since (uk)

I(Sθ)
L

∼ (vk) it follws that for every ε > 0 and δ > 0{
r ∈ N :

1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ δ

}
=

{
r ∈ N :

Nr

hr
≥ δ

}
∈ I

and therefore it is a finite set. We can choose an integer r0 ∈ N such that

Nr

hr
< δ for all r > r0. (2)

Let M = max{Nr : 1 ≤ r ≤ r0} and n be any integer satisfying kr−1 < n ≤ kr, then
we have

1

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≤ 1

kr−1

∣∣∣∣{k ≤ kr : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
=

1

kr−1
{N1 +N2 + ...+Nr0 +Nr0+1 + ...+Nr}

≤ M

kr−1
.r0 +

1

kr−1

{
hr0+1

(
Nr0+1

hr0+1

)
+ ...+ hr

(
Nr

hr

)}
≤ M

kr−1
.r0 +

1

kr−1

(
sup
r>r0

(
Nr

hr

))
{Hr0+1 + ...+ hr}

≤ M

kr−1
.r0 + δ

(
kr − kr0
kr−1

)
≤ M

kr−1
.r0 + δqr ≤ M

kr−1
.r0 + δ.H

This completes the proof of the theorem. �
Definition 3.9. Let p ∈ (0,∞). Two sequences (uk) and (vk) of fuzzy real numbers
are said to be asymptotically lacunary p-equivalent provided that for every ε > 0

lim
r

1

hr

∑
k∈Jr

d

(
uk

vk
, L

)p

= 0

denoted by (uk)
[Nθp ]

L

∼ (vk) and simply asymptotically lacunary p-equivalent if L = 1.

Definition 3.10. Let p ∈ (0,∞). Two sequences (uk) and (vk) of fuzzy real numbers
are said to be asymptotically lacunary statistical p-equivalent provided that for every
ε > 0

lim
r

1

hr

∣∣∣∣{k ∈ Jr : d

(
uk

vk
, L

)p

≥ ε

}∣∣∣∣ = 0

denoted by (uk)
SL
θp∼ (vk) and simply asymptotically lacunary statistical p-equivalent if

L = 1.

The proof of the following theorem is similar to Theorem 3.3 for I = Ifin.

Theorem 3.8. Let (uk), (vk) be two sequences of fuzzy real numbers. Then

(a) (uk)
[Nθp ]

L

∼ (vk) ⇒ (uk)
SL
θp∼ (vk).
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(b) Let (uk) ∈ ℓF∞ and (uk)
SL
θp∼ (vk), then (uk) ∼[Nθp ]

L

(vk).
(c) SL

θp
∩ ℓF∞ = [Nθp ]

L ∩ ℓF∞.

Definition 3.11. Let p ∈ (0,∞). Two sequences (uk) and (vk) of fuzzy real numbers
are said to be asymptotically I-lacunary p-equivalent (or I([Nθp ])-equivalent) provided
that for every ε > 0 {

r ∈ N :
1

hr

∑
k∈Jr

d

(
uk

vk
, L

)p

≥ ε

}
∈ I

denoted by (uk)
I([Nθp ])

L

∼ (vk) and simply asymptotically I-lacunary p-equivalent if
L = 1.

Definition 3.12. Let p ∈ (0,∞). Two sequences (uk) and (vk) of fuzzy real numbers
are said to be asymptotically I-lacunary statistical p-equivalent provided that for every
ε > 0, for every δ > 0{

r ∈ N :
1

hr

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)p

≥ ε

}∣∣∣∣ ≥ δ

}
∈ I

denoted by (uk)
I(Sθp )

L

∼ (vk) and simply asymptotically I-statistical p-equivalent if
L = 1.

The proof of the following theorem follows from Theorems 3.3 and 3.8.

Theorem 3.9. Let (uk), (vk) be two sequences of fuzzy real numbers. Then

(a) (uk)
I([Nθp ])

L

∼ (vk) ⇒ (uk)
I(Sθp )

L

∼ (vk).

(b) Let (uk) ∈ ℓF∞ and (uk)
I(Sθp )

L

∼ (vk), then (uk)
I([Nθp ])

L

∼ (vk).
(c) I(Sθp)

L ∩ ℓF∞ = I([Nθp ])
L ∩ ℓF∞.

4. Cesàro Orlicz asymptotically ϕ-statistical equivalent sequences

In this section we define the notion of Cesàro Orlicz asymptotically ϕ-statistical
equivalent sequences of fuzzy real numbers.

Let P denote the space whose elements are finite sets of distinct positive integers.
Given any element σ of P, we denote by p(σ) the sequence {pn(σ)} such that pn(σ) = 1
for n ∈ σ and pn(σ) = 0 otherwise. Further

Ps =

{
σ ∈ P :

∞∑
n=1

pn(σ) ≤ s

}
,

i.e. Ps is the set of those σ whose support has cardinality at most s, and we get

Φ = {ϕ = (ϕn) : 0 < ϕ1 ≤ ϕn ≤ ϕn+1 and nϕn+1 ≤ (n+ 1)ϕn} .

We define

τs =
1

ϕs

∑
k∈σ,σ∈Ps

xk.

Now we give the following definitions.

Definition 4.1. A sequence x = (xk) is said to be ϕ-summable to ℓ if lims τs = ℓ.
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Definition 4.2. A sequence x = (xk) is said to be strongly ϕ-summable to ℓ if

lim
s→∞

1

ϕs

∑
k∈σ,σ∈Ps

|xk − ℓ| = 0.

In this case we write xk
[ϕ]→ ℓ and [ϕ] denote the set of all strongly ϕ-summable

sequences.

Definition 4.3. Let E ⊆ N. The number

δϕ(E) = lim
s→∞

1

ϕs
|{k ∈ σ, σ ∈ Ps : k ∈ E}|

is said to be the ϕ-density of E.

Definition 4.4. A sequence x = (xk) is said to be ϕ-statistical convergent to ℓ ∈ R
if for each ε > 0

lim
s→∞

1

ϕs
|{k ∈ σ, σ ∈ Ps : |xk − ℓ| ≥ ε}| = 0.

In this case we write Sϕ − limk xk = ℓ or xk
Sϕ→ ℓ and Sϕ denote the set of all

ϕ-statisticallly convergent sequences.

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-
decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞ as
x → ∞. An Orlicz function M is said to satisfy the ∆2 − condition for all values of
u, if there exists a constant K > 0 such that M(2u) ≤ KM(u), u ≥ 0. Note that, if
0 < λ < 1,then M (λx) ≤ λM (x) , for all x ≥ 0(see [16]).

Now we define the following asymptotic ϕ-statistical equivalence sequences of fuzzy
real numbers.

Definition 4.5. Two sequences (uk) and (vk) of fuzzy real numbers are said to be
Cesàro Orlicz asymptotically equivalent of multiple L provided that

lim
n

1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
= 0

denoted by (uk)
[C1]

L(M)∼ (vk) and simply Cesàro Orlicz asymptotically equivalent if
L = 1.

Definition 4.6. Two sequences (uk) and (vk) of fuzzy real numbers are said to be
Cesàro Orlicz asymptotically I-equivalent of multiple L provided that for every δ > 0{

n ∈ N :
1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
≥ δ

}
∈ I

denoted by (uk)
I[C1]

L(M)∼ (vk) and simply Cesàro Orlicz asymptotically I-equivalent
if L = 1.

Definition 4.7. Two sequences (uk) and (vk) of fuzzy real numbers are said to be
Orlicz asymptotically ϕ-equivalent of multiple L provided that

lim
s

1

ϕs

∑
k∈σ,σ∈Ps

M

(
d

(
uk

vk
, L

))
= 0

denoted by (uk)
[ϕ]L(M)∼ (vk) and simply Orlicz asymptotically ϕ-equivalent if L = 1.
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Definition 4.8. Two sequences (uk) and (vk) of fuzzy real numbers are said to be
asymptotically ϕ-statistical equivalent of multiple L provided that for every ε > 0

lim
s

1

ϕs

∣∣∣∣{k ∈ σ, σ ∈ Ps : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ = 0

denoted by (uk)
SL
ϕ∼ (vk) and simply asymptotically ϕ-statistical equivalent if L = 1.

Definition 4.9. Two sequences (uk) and (vk) of fuzzy real numbers are said to be
Orlicz asymptotically ϕ-statistical equivalent of multiple L provided that for every
ε > 0

lim
s

1

ϕs

∣∣∣∣{k ∈ σ, σ ∈ Ps : M

(
d

(
uk

vk
, L

))
≥ ε

}∣∣∣∣ = 0

denoted by (uk)
SL
ϕ (M)
∼ (vk) and simply Orlicz asymptotically ϕ-statistical equivalent

if L = 1.

Theorem 4.1. Let (uk), (vk) be two sequences of fuzzy real numbers and M be an
Orlicz function. Then

(a) (uk)
I[C1]

L(M)∼ (vk) ⇒ (uk)
I(S)L∼ (vk).

(b) (uk)
I(S)L∼ (vk) implies (uk)

I[C1]
L(M)∼ (vk), if M is bounded.

Proof. (a) Suppose that (uk)
I[C1]

L(M)∼ (vk) and let ε > 0 be given, then we can write

1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
≥ 1

n

n∑
k=1

d
(

uk
vk

,L
)
≥ε

M

(
d

(
uk

vk
, L

))

≥ M(ε)

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ .
Consequently for any η > 0, we have{

n ∈ N :
1

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≥ η

M(ε)

}
⊆

{
n ∈ N :

1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
≥ η

}
∈ I.

Hence (uk)
I(S)L∼ (vk).

(b) Suppose that M is bounded and (uk)
I(S)L∼ (vk). Since M is bounded then there

exists a real number K > 0 such that supt M(t) ≤ K. Moreover for any ε > 0 we can
write

1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
=

1

n


n∑

k=1

d
(

uk
vk

,L
)
≥ε

M

(
d

(
uk

vk
, L

))
+

n∑
k=1

d
(

uk
vk

,L
)
<ε

M

(
d

(
uk

vk
, L

))
≤ K

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣+M(ε).

Now applying ε → 0, then the result follows. �
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Theorem 4.2. Let (uk), (vk) be two sequences of fuzzy real numbers and (ϕs) be a
nondecreasing sequence of positive real numbers such that ϕs → ∞ as s → ∞ and

ϕs ≤ s for every s ∈ N. Then (uk)
SL

∼ (vk) ⇒ (uk)
SL
ϕ∼ (vk).

Proof. By the definition of the sequences ϕs it follows that infs
s

s−ϕs
≥ 1. Then there

exists a a > 0 such that
s

ϕs
≤ 1 + a

a
.

Suppose that (uk)
SL

∼ (vk), then for every ε > 0 and sufficiently large s we have

1

ϕs

∣∣∣∣{k ∈ σ, σ ∈ Ps : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ = 1

s
.
s

ϕs

∣∣∣∣{k ≤ s : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
− 1

ϕs

∣∣∣∣{k ∈ {1, 2, ...s} − σ, σ ∈ Ps : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
≤ 1 + a

a

1

s

∣∣∣∣{k ≤ s : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣
− 1

ϕs

∣∣∣∣{k0 ∈ {1, 2, ...s} − σ, σ ∈ Ps : d

(
uk0

vk0

, L

)
≥ ε

}∣∣∣∣ .
This completes the proof of the theorem. �

Theorem 4.3. Let (uk), (vk) be two sequences of fuzzy real numbers and let M be an

Orlicz function satifies the ∆2-conditions. Then (uk)
SL

∼ (vk) ⇒ (uk)
SL
ϕ (M)
∼ (vk).

Proof. By the definition of the sequences ϕs it follows that infs
s

s−ϕs
≥ 1. Then there

exists an a > 0 such that
s

ϕs
≤ 1 + a

a
.

Suppose that (uk)
SL

∼ (vk), then for every ε > 0 and sufficiently large s we have

1

ϕs

∣∣∣∣{k ∈ σ, σ ∈ Ps : M

(
d

(
uk

vk
, L

))
≥ ε

}∣∣∣∣ = 1

s
.
s

ϕs

∣∣∣∣{k ≤ s : M

(
d

(
uk

vk
, L

))
≥ ε

}∣∣∣∣
− 1

ϕs

∣∣∣∣{k ∈ {1, 2, ...s} − σ, σ ∈ Ps : M

(
d

(
uk

vk
, L

))
≥ ε

}∣∣∣∣
≤ 1 + a

a

1

s

∣∣∣∣{k ≤ s : M

(
d

(
uk

vk
, L

))
≥ ε

}∣∣∣∣ (3)

− 1

ϕs

∣∣∣∣{k0 ∈ {1, 2, ...s} − σ, σ ∈ Ps : M

(
d

(
uk0

vk0

, L

))
≥ ε

}∣∣∣∣ .
Since M satisfies the ∆2-conditions, it follows that

M

(
d

(
uk

vk
, L

))
≤ K.d

(
uk

vk
, L

)
for some constant K > 0 in both the cases where d

(
uk

vk
, L

)
≤ 1 and d

(
uk

vk
, L

)
≥ 1.

In first case it follows from the definition of Orlicz function and for the second case
we have

d

(
uk

vk
, L

)
= 2.L(1) = 22.L(2) = ... = 2s.L(s)
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such that L(s) ≤ 1. Using the ∆2-conditions of Orlicz functions we get the following
estimation

M

(
d

(
uk

vk
, L

))
≤ T.L(s).M(1) = K.d

(
uk

vk
, L

)
, (4)

where K and T are constants. The proof of the theorem follows from the relations
(4.1) and (4.2). �

Remark 4.1. From the Theorems 4.2 and 4.3, we can concluded that (uk)
SL

∼ (vk) ⇔

(uk)
SL
ϕ (M)
∼ (vk).

Theorem 4.4. Let (uk), (vk) be two sequences of fuzzy real numbers. Let M be

an Orlicz function and k ∈ Z such that ϕs ≤ [ϕs] + k, sups
[ϕs]+k
ϕs−1

< ∞. Then

(uk)
SL
ϕ (M)
∼ (vk) ⇒ (uk)

SL

∼ (vk).

Proof. If sups
[ϕs]+k
ϕs−1

< ∞, then there exists K > 0 such that [ϕs]+k
ϕs−1

< K for all s ≥ 1.

Let n be an integer such that ϕs−1 < n ≤ ϕs. Then for every ε > 0, we have

1

n

∣∣∣∣{k ≤ n : d

(
uk

vk
, L

)
≥ ε

}∣∣∣∣ ≤ 1

n

∣∣∣∣{k ≤ n : M

(
d

(
uk

vk
, L

))
≥ M(ε)

}∣∣∣∣
≤ 1

[ϕs] + k
.
[ϕs] + k

ϕs−1

∣∣∣∣{k ≤ ϕs : M

(
d

(
uk

vk
, L

))
≥ M(ε)

}∣∣∣∣
≤ 1

[ϕs] + k
.
[ϕs] + k

ϕs−1

∣∣∣∣{k ∈ σ, σ ∈ P[ϕs]+k : M

(
d

(
uk

vk
, L

))
≥ M(ε)

}∣∣∣∣
≤ K

[ϕs] + k

∣∣∣∣{k ∈ σ, σ ∈ P[ϕs]+k : M

(
d

(
uk

vk
, L

))
≥ M(ε)

}∣∣∣∣ .
This established the result. �

Theorem 4.5. Let (uk), (vk) be two sequences of fuzzy real numbers. Let M be an
Orlicz function. Then

(a) (uk)
[C1]

L(M)∼ (vk) ⇒ (uk)
[ϕ]L(M)∼ (vk).

(b) sups
ϕs

ϕs−1
< ∞ for every s ∈ N, then (uk)

[ϕ]L(M)∼ (vk) ⇒ (uk)
[C1]

L(M)∼ (vk).

Proof. (a) From definition of the sequence (ϕs) it follows that infs
s

s−ϕs
≥ 1. Then

there exists a > 0 such that
s

ϕs
≤ 1 + a

a
.

Then we get the following relation

1

ϕs

∑
k∈σ,σ∈Ps

M

(
d

(
uk

vk
, L

))

=
s

ϕs
.
1

s

n∑
k=1

M

(
d

(
uk

vk
, L

))
− 1

ϕs

∑
k∈{1,2,...s}−σ,σ∈Ps

M

(
d

(
uk

vk
, L

))

≤ 1 + a

a

1

s

s∑
k=1

M

(
d

(
uk

vk
, L

))
− 1

ϕs

∑
k0∈{1,2,...s}−σ,σ∈Ps

M

(
d

(
uk0

vk0

, L

))
.

Since (uk)
[C1]

L(M)∼ (vk) andM is continuous, letting s → ∞ on the last relation we get
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1

ϕs

∑
k∈σ,σ∈Ps

M

(
d

(
uk

vk
, L

))
→ 0.

Hence (uk)
[ϕ]L(M)∼ (vk).

(b) Suppose that sups
ϕs

ϕs−1
< ∞ then there exists A > 0 such that ϕs

ϕs−1
< A for all

s ≥ 1. Suppose (uk)
[ϕ]L(M)∼ (vk). Then for every ε > 0 there exists R > 0 such that

for every s ≥ R
1

ϕs

∑
k∈σ,σ∈Ps

M

(
d

(
uk

vk
, L

))
< ε.

We can also find a constant K > 0 such that

1

ϕs

∑
k∈σ,σ∈Ps

M

(
d

(
uk

vk
, L

))
< K for all s ∈ N.

Let n be any integer with ϕs−1 < n ≤ [ϕs] for every s > R. Then we have

1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
≤ 1

ϕs−1

[ϕs]∑
k=1

M

(
d

(
uk

vk
, L

))

=
1

ϕs−1

[ϕ1]∑
k=1

M

(
d

(
uk

vk
, L

))
+

[ϕ2]∑
[ϕ1]

M

(
d

(
uk

vk
, L

))
+ ...+

[ϕs]∑
[ϕs−1]

M

(
d

(
uk

vk
, L

))
≤ ϕ1

ϕs−1

 1

ϕ1

∑
k∈σ,σ∈P (1)

M

(
d

(
uk

vk
, L

))+
ϕ2

ϕs−1

 1

ϕ2

∑
k∈σ,σ∈P (2)

M

(
d

(
uk

vk
, L

))+ ...

+
ϕR

ϕs−1

 1

ϕR

∑
k∈σ,σ∈P (R)

M

(
d

(
uk

vk
, L

))+ ...+
ϕs

ϕs−1

 1

ϕs

∑
k∈σ,σ∈P (s)

M

(
d

(
uk

vk
, L

)) ,

where P (t) are sets of integer which have more than [ϕt] elements for t ∈ {1, 2, ...s}.
By taking limit as n → ∞ on the last relation we get

1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
→ 0.

It follows that (uk)
[C1]

L(M)∼ (vk). �

Theorem 4.6. Let (uk), (vk) be two sequences of fuzzy real numbers. Let M be an
Orlicz function. Then

(a) (uk)
[C1]

L(M)∼ (vk) ⇒ (uk)
SL

∼ (vk).

(b) If M satisfies the ∆2-condition and (uk) ∈ ℓF∞(M) such that (uk)
SL

∼ (vk) then

(uk)
[C1]

L(M)∼ (vk).
(c) If M satisfies the ∆2-condition, then [C1]

L(M) ∩ ℓF∞(M) = SL ∩ ℓF∞(M), where
ℓF∞(M) = {(uk) ∈ wF : M(uk) ∈ ℓF∞}.

Proof. (a) Suppose that (uk)
[C1]

L(M)∼ (vk). Then for every ε > 0 we have

1

n

∣∣∣∣{k ≤ n : M

(
d

(
uk

vk
, L

))
≥ M(ε)

}∣∣∣∣
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≤ 1

n

n∑
k=1

M
(
d
(

uk
vk

,L
))

≥M(ε)

M

(
d

(
uk

vk
, L

))
≤ 1

n

n∑
k=1

M

(
d

(
uk

vk
, L

))
.

This established the result.
(b) The proof of this part follows from the same techniques used in the proofs of the
Theorems 3.3 and 4.3.
(c) It follows from (a) and (b). �

Theorem 4.7. Let (uk), (vk) be two sequences of fuzzy real numbers. Let M be an
Orlicz function. Then

(a) (uk)
[ϕ]L(M)∼ (vk) ⇒ (uk)

SL
ϕ∼ (vk).

(b) If M satisfies the ∆2-condition and (uk) ∈ ℓF∞(M) such that (uk)
SL
ϕ∼ (vk) then

(uk)
[ϕ]L(M)∼ (vk).

(c) If M satisfies the ∆2-condition, then [ϕ]L(M) ∩ ℓF∞(M) = SL
ϕ ∩ ℓF∞(M).

Proof. The proof of this theorem follows from the same techniques used in the proofs
of the Theorems 3.3, 4.3 and 4.6. �
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