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Renormalized solutions for a class of nonlinear parabolic
equations without sign condition involving nonstandard
growth
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Abstract. An existence result of a renormalized solution for a class of doubly nonlinear

parabolic equations with variable exponents is established. The main contribution of our
work is to prove the existence of a renormalized solution without the sign condition and
the coercivity condition on the nonlinearity H. The second term f belongs to L1(Q) and
b(u0) ∈ L1(Ω).
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1. Introduction

We consider a bounded open spatial domain Ω ⊂ IRN (N ≥ 2) with a Lipschitz
boundary denoted by ∂Ω. Fixing a final time T > 0, we set Q = Ω×]0, T [.

The operator Au = −div(a(x, t, u,∇u)) is a Leray-Lions operator defined from
the generalized Sobolev space V into its dual V ∗(the two functionals spaces will be
developed as bellow).

Our aim is to prove the existence of renormalized solutions u to the doubly non-
linear parabolic equation

∂b(u)
∂t +Au+H(x, t, u,∇u) = f in Q,

u = 0 on ∂Ω×]0, T [,
b(u)(t = 0) = b(u0) on Ω.

(1.1)

where f ∈ L1(Q), the function b is assumed to be strictly increasing C1-function, and
H is a nonlinear lower order term satisfying the growth condition of the form

|H(x, t, s, ξ)| ≤ b(s)
( N∑

i=1

|ξi|p(x) + c(x, t)
)
. (1.2)

Note that, the problem (1.1) was studied by Akdim et al. [3] in the framework of
weighted Sobolev spaces where the nonlinearityH is just verified the growth condition
with respect to ∇u, and in the case where H(x, t, u,∇u) = div(ϕ(x)) the author
proved the existence results in the classical Sobolev spaces and Orlicz spaces (see
[19, 20]). Besides, Akdim et al. in [2] proved the existence of renormalized solutions
in the weighted Sobolev spaces.

We recall that the notion of renormalized solutions was introduced in [13] by
Diperna and Lions in their study of the Boltzman equation. This notion then adapted
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to the study of some nonlinear elliptic or parabolic problems and evolution problems
in fluid mechanics. We refer to [10, 11, 16, 18] for more details.

In former paper (see [8]) we have already studied the corresponding unilateral
elliptic problem with variable exponents involving lower order terms. In particular,
we have established an existence result for entropy solutions of the stationary problem
with L1-data.

The aim of our paper is to extend the results in [7, 2] to the case of parabolic
equations. Besides, this paper can be seen as a continuous of [10] in the case where
b(u) = u, a(x, t, s, ξ) = |ξ|p(x)−2ξ and H = 0. As far as we know, there are no papers
concerned with the doubly nonlinear parabolic equations with variable exponents.
One of our motivations for studying (1.1) comes from applications to electrorheological
fluids (see [21]), other important applications are related to image processing (see [12])
and elasticity see ([24]), etc. For the interested reader, we refer to [4, 5, 6, 7, 9, 8, 10]
for the advances and the references in this area.

The paper is organized as follows. In section 2, we recall some basic notations and
properties of Sobolev spaces with variable exponents. In section 3, we make precise all
the assumptions on a, H, f and b, and we introduce the definition of a renormalized
solution. In section 4, we give some technical results. In section 5, we prove the main
result of this paper (Theorem 5.1) which is the existence of a renormalized solution.

2. Preliminaries

For each open bounded subset Ω of IRN (N ≥ 2) , we denote

C+(Ω) = {continuous function p : Ω −→ IR+ such that 1 < p− ≤ p+ <∞},

where p− = min
x∈Ω

p(x) and p+ = max
x∈Ω

p(x). We define the variable exponent Lebesgue

space for p ∈ C+(Ω) by:

Lp(x)(Ω) = {u : Ω −→ IR measurable /

∫
Ω

|u(x)|p(x) dx <∞},

endowed with the Luxemburg norm

∥u∥p(x) = inf

{
λ > 0,

∫
Ω

∣∣∣∣u(x)λ
∣∣∣∣p(x) ≤ 1

}
.

The variable exponent Lebesgue spaces resemble to the classical Lebesgue spaces in
many respects: they are Banach spaces ([15]; Theorem 2.5), the Hölder inequality
holds ([15]; Theorem 2.1), they are reflexive if and only if 1 < p− ≤ p+ < ∞ ([15];
Corollary 2.7) and continuous functions are dense, if p+ <∞ ([15]; Theorem 2.11).

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω) where 1
p(x) +

1
p′(x) = 1.

Proposition 2.1. (see [14]) If we denote

ρ(u) =

∫
Ω

|u|p(x) dx, ∀u ∈ Lp(x)(Ω),

then the following assertions holds true:
(i) ∥u∥p(x) < 1 (resp,= 1, > 1) ⇔ ρ(u) < 1 (resp, = 1, > 1),

(ii) ∥u∥p(x) > 1 ⇒ ∥u∥p−
p(x) ≤ ρ(u) ≤ ∥u∥p+

p(x) and ∥u∥p(x) < 1 ⇒ ∥u∥p+

p(x) ≤
ρ(u) ≤ ∥u∥p−

p(x),

(iii) ∥un∥p(x) → 0 ⇔ ρ(un) → 0 and ∥un∥p(x) → ∞ ⇔ ρ(un) → ∞.
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Extending a variable exponent p : Ω̄ → [1,∞) to Q̄ = Ω×[0, T ] by setting p(t, x) :=
p(x) for all (t, x) ∈ Q̄, we may also consider the generalized Lebesgue space

Lp(x)(Q) = {u : Q −→ IR measurable /

∫
Q

|u(t, x)|p(x) d(t, x) <∞},

endowed with the norm

∥u∥Lp(x)(Q) = inf

{
λ > 0,

∫ ∫
Q

∣∣∣∣u(t, x)λ

∣∣∣∣p(x) d(t, x) ≤ 1

}
which, of course, shares the same type of properties as Lp(x)(Ω).

We define the variable Sobolev space by

W 1,p(x)(Ω) = { u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)}.
It is endowed with the following norm,

∥u∥1,p(x) = ∥u∥p(x) + ∥∇u∥p(x) ∀u ∈W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) and p∗(x) = N p(x)
N−p(x)

for p(x) < N.

Proposition 2.2. (see [14]) (i) Assuming 1 < p− ≤ p+ < ∞, the spaces W 1,p(x)(Ω)

and W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

(ii) If q ∈ C+(Ω̄) and q(x) < p∗(x) for any x ∈ Ω, then the embeddingW
1,p(x)
0 (Ω) ↪→↪→

Lq(x)(Ω) is compact and continuous.
(iii) There is a constant C > 0, such that

∥u∥p(x) ≤ C ∥∇u∥p(x) ∀u ∈W
1,p(x)
0 (Ω).

We are naturally let introduce the functional space

V = {f ∈ Lp−
(0, T,W

1,p(x)
0 (Ω)) : |∇f | ∈ Lp(x)(Q)},

endowed with the norm

∥f∥V := ∥∇f∥Lp(x)(Q)

or

∥|f |∥V := ∥f∥
Lp− (0,T,W

1,p(x)
0 (Ω))

+ ∥∇f∥Lp(x)(Q)

We have used the standard notations for Bochner spaces, i.e. if X is a Banach
space and q ≥ 1, then Lq(0, T,X) denotes the space of strongly measurable function
u : (0, T ) → X for which t→ ||u(t)||X ∈ Lq(0, T ). Moreover, C([0, T ];X) denotes the
space of continuous functions u : [0, T ] → X endowed with the norm ||u||C([0,T ];X) :=
max
t∈[0,T ]

||u(t)||X .

Lemma 2.1. (1) In the preceding definition as well as in the following, we identify,
V and its dual by V ∗, then we have the following continuous embeddings

Lp+

(0, T,W
1,p(x)
0 (Ω)) ↪→ V ↪→ Lp−

(0, T,W
1,p(x)
0 (Ω)).

In particular, since D(Q) is dense in Lp+

(0, T,W
1,p(x)
0 (Ω)), it is dense in V and for

the corresponding dual spaces, we have

L(p−)
′

(0, T,W−1,p′(x)(Ω)) ↪→ V ∗ ↪→ L(p+)
′

(0, T,W−1,p′(x)(Ω)).

(2) One can represent the elements of V ∗ as follows: if T ∈ V ∗, then there exists

F = (f1, ..., fN ) ∈ (Lp′(x)(Q))N such that T = div F and
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< T, ζ >V ∗,V =

∫ T

0

∫
Ω

F.∇ζdxdt for any ζ ∈ V .

Moreover, we have

∥T∥V ∗ := max{∥fi∥Lp′(x)(Q), i = 1, ..., N}.

3. Basic assumptions

Throughout the paper, we assume that the following assumptions hold true:

Assumption (A1). b : IR→ IR is a strictly increasing C1 − function with b(0) = 0.
(3.1)

Assumption (A2). a : Q × IR × IRN → IRN is a Carathéodory function satisfying
the following conditions:
for almost every (x, t) ∈ Q, for every s ∈ IR,

|a(x, t, s, ξ)| ≤ β(k(x, t) + |s|p(x)−1 + |ξ|p(x)−1), (3.2)

[a(x, t, s, ξ)− a(x, t, s, η)](ξ − η) > 0, for all ξ ̸= η ∈ IRN , (3.3)

a(x, t, s, ξ)ξ ≥ α|ξ|p(x), (3.4)

where k(x, t) is a positive function lying in Lp′(x)(Q) and α, β > 0.
Assumption (A3). H : Ω× [0, T ]× IR× IRN → IR is a Carathéodory function such
that for a.e. (x, t) ∈ Q and for all s ∈ IR, ξ ∈ IRN , the growth condition

|H(x, t, s, ξ)| ≤ γ(x, t) + g(s)
N∑
i=1

|ξi|p(x), (3.5)

is satisfied, where g : IR → IR+ is a continuous positive function that belongs to
L1(IR), while γ(x, t) belongs to L1(Q).

4. Some technical results

Characterization of the time mollification of a function u. To deal with time
derivative, we introduce a time mollification of a function u belonging to a some
Lebesgue space. Thus we define for all µ ≥ 0 and all (x, t) ∈ Q,

uµ = µ

∫ t

∞
ũ(x, s) exp(µ(s− t))ds

where ũ(x, s) = u(x, s)χ(0,T )(s).
Note that in this section, we omit the proof of each of the above proposition and
lemmas, since it is a slight modification of its analogous in [1].

Proposition 4.1. (see [1]) (1) If u ∈ Lp(x)(Q), then uµ is measurable in Q,
∂uµ

∂t =
µ(u− uµ) and

∥uµ∥Lp(x)(Q) ≤ ∥u∥Lp(x)(Q).

(2) If u ∈W
1,p(x)
0 (Q), then uµ → u in W

1,p(x)
0 (Q) as µ→ ∞.

(3) If un → u in W
1,p(x)
0 (Q), then (un)µ → uµ in W

1,p(x)
0 (Q).
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Some embedding and compactness results. In this section we establish some

embedding and compactness results in generalized Sobolev spaces. LetX =W
1,p(x)
0 (Ω),

H = L2(Ω) and let X∗ = W−1,p′(x)(Ω), with (2 ≤ p− < ∞). Denoting the space
W 1

p(x)(0, T,X,H) = {v ∈ V : v′ ∈ V ∗} endowed with the norm

∥u∥W 1
p(x)

= ∥u∥V + ∥u′∥V ∗ ,

which is a Banach space. Here u′ stands for the generalized derivative of u; i.e.,∫ T

0

u′(t)φ(t)dt = −
∫ T

0

u(t)φ′(t)dt for all φ ∈ C∞
0 (0, T ).

Lemma 4.1. (see [23]) (1) The evolution triple X ⊆ H ⊆ X∗ is satisfied.
(2) The embedding W 1

p(x)(0, T,X,H) ⊆ C(0, T,H) is continuous.

(3) The embedding W 1
p(x)(0, T,X,H) ⊆ Lp(x)(Q) is compact.

(4) The evolution triple Lp+

(0, T ;Lp(x)(Ω)) ⊆ Lp(x)(Q) ⊆ Lp−
(0, T ;Lp(x)(Ω)) is sat-

isfied.

Lemma 4.2. (see [1]) Let g ∈ Lr(x)(Q) and gn ∈ Lr(x)(Q) with ∥gn∥Lr(x)(Q) ≤ C for

1 < r <∞. If gn(x) → g(x) a.e. in Q, then gn ⇀ g in Lr(x)(Q).

Lemma 4.3. (see [1]) Assume that

∂vn
∂t

= αn + βn in D′(Q)

where αn and βn are bounded respectively in V ∗ and in L1(Q). If vn is bounded in

V , then vn → u in L
p(x)
loc (Q). Further vn → v strongly in L1(Q) where n→ ∞.

Lemma 4.4. (see [1]) Assume that (3.2) - (3.4) are satisfied and let (un) be a sequence
in V such that un ⇀ u weakly in V and∫

Q

[a(x, t, un,∇un)− a(x, t, u,∇u)][∇un −∇u] dx dt→ 0. (4.1)

Then, un → u in V .

5. Existence result

Definition 5.1. Let f ∈ L1(Q) and b(u0) ∈ L1(Ω). A real-valued function u defined
on Q is a renormalized solution of problem 1.1 if

Tk(u) ∈ V for all k ≥ 0 and b(u) ∈ L∞(0, T ;L1(Ω)), (5.1)∫
{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt→ 0 as m→ +∞, (5.2)

∂BS(u)

∂t
− div (S′(u)a(x, t, u,∇u)) + S′′(u)a(x, t, u,∇u)∇u+H(x, t, u,∇u)S′(u)

= fS′(u) in D′(Q),

(5.3)

for all functions S ∈W 2,∞(IR) which is piecewise C1 and such that S′ has a compact

support in IR, where BS(z) =
∫ z

0
∂b(r)
∂r S′(r)dr and

BS(u)(t = 0) = BS(u0) in Ω. (5.4)

Remark 5.1. Equation (5.3) is formally obtained through pointwise multiplication
of (1.1) by S′(u). All the terms in (5.3) have a meaning in D′(Q).
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Now we announce the main result of this section.

Theorem 5.1. Let f ∈ L1(Q) and b(u0) ∈ L1(Ω). Assume that (A1)-(A3) hold
true. Then, there exists at least one renormalized solution u of problem (1.1)

The proof of this theorem is divided into 4 steps.

Step 1. A priori estimates in Generalized Lebesgue spaces. For n > 0, let
us define the following approximation of b,H, f and u0:

bn(r) = b(Tn(r)) +
1

n
r for n > 0, (5.5)

Hn(x, t, s, ξ) =
H(x, t, s, ξ)

1 + 1
n |H(x, t, s, ξ)|

.

fn ∈ V ∗ and fn → f a.e. in Q and strongly in L1(Q) as n→ +∞, (5.6)

u0n ∈ D(Ω), ∥bn(u0n)∥L1 ≤ ∥b(u0)∥L1 , (5.7)

bn(u0n) → b(u0) a.e. in Ω and strongly in L1(Ω). (5.8)

Then we consider the approximate problem:

∂bn(un)

∂t
− div(a(x, t, un,∇un)) +Hn(x, t, un,∇un) = fn in D′(Q),

un = 0 in (0, T )× ∂Ω,

bn(un(t = 0)) = bn(u0n).

(5.9)

Note that Hn(x, t, s, ξ) satisfies the following conditions

|Hn(x, t, s, ξ)| ≤ H(x, t, s, ξ) and |Hn(x, t, s, ξ)| ≤ n.

Moreover, since fn ∈ V ∗, proving existence of a weak solution un ∈ V of (5.9) is an
easy task (see [17]).

Let φ ∈ V ∩ L∞(Q) with φ > 0, choosing v = exp(G(un))φ as a test function in

(5.9) with G(s) =
∫ s

0
g(r)
α dr (the function g appears in (3.5)). We have∫

Q

∂bn(un)

∂t
exp(G(un))φdx dt+

∫
Q

a(x, t, un,∇un)∇(exp(G(un))φ) dx dt

=

∫
Q

Hn(x, t, un,∇un) exp(G(un))φdx dt+
∫
Q

fn exp(G(un))φdx dt.

According to (3.5), we obtain∫
Q

∂bn(un)

∂t
exp(G(un))φdx dt+

∫
Q

a(x, t, un,∇un)∇un
g(un)

α
exp(G(un))φdx dt

+

∫
Q

a(x, t, un,∇un) exp(G(un))∇φdx dt

≤
∫
Q

γ(x, t) exp(G(un))φdx dt+

∫
Q

g(un)

N∑
i=1

∣∣∂un
∂xi

∣∣ exp(G(un))φdxdt
+

∫
Q

fn exp(G(un))φdx dt.

From (3.4), we obtain
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∫
Q

∂bn(un)

∂t
exp(G(un))φdx dt+

∫
Q

a(x, t, un,∇un) exp(G(un))∇φdx dt

≤
∫
Q

γ(x, t) exp(G(un))φdx dt+

∫
Q

fn exp(G(un))φdx dt,

(5.10)

for all φ ∈ V ∩ L∞(Q), φ > 0. On the other hand, taking v = exp(−G(un))φ as a
test function in (5.9), we deduce, as in (5.10), that∫

Q

∂bn(un)

∂t
exp(−G(un))φdx dt+

∫
Q

a(x, t, un,∇un) exp(−G(un))∇φdx dt

+

∫
Q

γ(x, t) exp(−G(un))φdx dt

≥
∫
Q

fn exp(−G(un))φdx dt, (5.11)

for all φ ∈ V ∩ L∞(Q), φ > 0.
For every τ ∈ [0, T ], let φ = Tk(un)

+χ(0,τ), in (5.11) we have,∫
Ω

Bn
k (un(τ)) exp(G(un))dx+

∫
Qτ

a(x, t, un,∇un) exp(G(un))∇Tk(un)+ dx dt

≤
∫
Qτ

γ(x, t) exp(G(un))Tk(un)
+ dx dt+

∫
Qτ

fn exp(G(un))Tk(un)
+ dx dt

+

∫
Ω

Bn
k (u0n)dx,

(5.12)

where Bn
k (r) =

∫ r

0

Tk(s)
+ ∂bn(s)

∂s
ds. Due to this definition, we have

0 ≤
∫
Ω

Bn
k (u0n)dx ≤ k

∫
Ω

|bn(u0n)|dx ≤ k∥b(u0)∥L1(Ω). (5.13)

Using the above result, Bn
k (un) ≥ 0 and G(un) ≤

∥g∥L1(IR)

α , we get∫
Qτ

a(x, t, un,∇Tk(un)+)∇Tk(un)+ exp(G(un)) dx dt

≤ k exp
(∥g∥L1(IR)

α

)(
∥fn∥L1(Q) + ∥γ∥L1(Q) + ∥bn(u0n)∥L1(Ω)

)
≤ c1k.

Thanks to (3.4), we conclude that

α

∫
Qτ

N∑
i=1

∣∣∂Tk(un)+
∂xi

∣∣p(x) exp(G(un)) dx dt ≤ c1k. (5.14)

Hence

α

∫
Q

N∑
i=1

∣∣∂Tk(un)+
∂xi

∣∣p(x) dx dt ≤ c1k. (5.15)

Similarly to (5.15), choosing φ = Tk(un)
−χ(0,τ) as a test function in (5.11) leads to

α

∫
Q

N∑
i=1

∣∣∂Tk(un)−
∂xi

∣∣p(x) dx dt ≤ c2k (5.16)
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where c2 is a positive constant.
Combining (5.15) and (5.16), we conclude that

∥Tk(un)∥γV ≤ ck, (5.17)

where

γ =

{ 1
p− if ∥∇Tk(un)∥Lp(x)(Q) > 1,
1
p+ if ∥∇Tk(un)∥Lp(x)(Q) ≤ 1.

(5.18)

The above inequality together with (5.12) and (5.13) make it possible to obtain∫
Ω

Bn
k (un)dx ≤ k(∥f∥L1(Q) + ∥b(u0)∥L1(Ω)) ≡ Ck. (5.19)

Since Tk(un) is bounded in V , there exists some vk such that

Tk(un)⇀ vk in the space V,

and by the compact embedding (see Lemma (4.1)), we have

Tk(un) → vk strongly in Lp(x)(Q) and a.e. in Q.

Let k > 0 be large enough. Combining the generalized Hölder’s inequality and
Poincaré inequality, one has

kmeas({|un| > k} × [0, T ]) =

∫ T

0

∫
{|un|>k}

|Tk(un)| dx dt

≤
∫ T

0

∫
Ω

|Tk(un)| dx dt

≤ (
1

p−
+

1

p′−
)∥Tk(un)∥Lp(x)(Q)∥1∥Lp′(x)(Q)

≤ c∥∇Tk(un)∥Lp(x)(Q)

≤ ckγ ,

which yields,

meas({|un| > k} × [0, T ]) ≤ c1
k1−γ

, ∀k ≥ 1.

Moreover, we have

lim
k→+∞

(meas({|un| > k} × [0, T ])) = 0.

Now we turn to prove the almost every convergence of un and bn(un). Consider now
a non decreasing function gk ∈ C2(IR) such that gk(s) = s for |s| ≤ k

2 and gk(s) = k
for |s| ≥ k. Multiplying the approximate equation by g′k(bn(un)), we get

∂gk(bn(un))

∂t
− div(a(x, t, un,∇un)g′k(bn(un)))

+ a(x, t, un,∇un)g′′k (bn(un))b′n(un)∇un +Hn(x, t, un,∇un)g′k(bn(un))
= fng

′
k(bn(un))

(5.20)

in the sense of distributions, which implies that

gk(bn(un)) is bounded in V (5.21)

and

∂gk(bn(un))

∂t
is bounded in V ∗ + L1(Q), (5.22)
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independently of n as soon as k < n.
Due to Definition (3.1) and (5.5) of bn, it is clear that

{|bn(un)| ≤ k} ⊂ {|un| ≤ k∗}

as soon as k < n and k∗ is a constant independent of n.
As a first consequence we have

∇gk(bn(un)) = g′k(bn(un))b
′
n(Tk∗(un))∇Tk∗(un) a.e. in Q as long as k < n.

(5.23)
Secondly, the following estimate holds true

∥g′k(bn(un))b′n(Tk∗(un))∥L∞(Q) ≤ ∥g′k∥L∞(Q)( max
|r|≤k∗

(b′(r)) + 1).

As a consequence of (5.17) and (5.23), we then obtain (5.21).
To show that (5.22) holds, we use (5.20) to obtain

∂gk(bn(un))

∂t
= div(a(x, t, un,∇un)g′k(bn(un)))− a(x, t, un,∇un)g′′k (bn(un))b′n(un)∇un

−Hn(x, t, un,∇un)g′k(bn(un)) + fng
′
k(bn(un)).

(5.24)
Each term in the right hand side of (5.24) is bounded either in V ∗ or in L1(Q).
Actually, since supp g′k and supp g′′k are both included in [−k, k], un may be replaced
by Tk∗(un) in each of these terms. As a consequence, Lemma 4.3 allows us to conclude

that gk(bn(un)) is compact in L
p(x)
loc (Q).

Thus, for a subsequence, it also converges in measure and almost every where in Q,
due to the choice of gk, we conclude that for each k, the sequence Tk(bn(un)) converges
almost everywhere in Q (since we have, for every λ > 0)

meas({
∣∣bn(un)− bm(um)

∣∣ > λ} × [0, T ]) ≤ meas({|bn(un)| > k} × [0, T ])

+ meas({|bm(um)| > k} × [0, T ]) + meas({
∣∣gk(bn(un))− gk(bm(um))

∣∣ > λ}).

Let ε > 0, then there exist k(ε) > 0 such that

meas({
∣∣bn(un)− bm(um)

∣∣ > λ} × [0, T ]) ≤ ε

for all n,m ≥ n0(k(ε), λ). This proves that (bn(un)) is a Cauchy sequence in measure
in Ω× [0, T ], thus converges almost everywhere to some measurable function v. Then
for a subsequence denoted again un,

un → u a.e. in Q, (5.25)

bn(un) → b(u) a.e. in Q. (5.26)

We can deduce from (5.17) that

Tk(un)⇀ Tk(u) weakly in V (5.27)

and then, the compact embedding (4.1) gives

Tk(un) → Tk(u) strongly in Lp(x)(Q) and a.e. in Q.

Which implies, by using (3.2), for all k > 0 that there exists a function hk ∈∏N
i=1 L

p′(x)(Q), such that

a(x, t, Tk(un),∇Tk(un))⇀ hk weakly in
N∏
i=1

Lp′(x)(Q). (5.28)
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We now establish that b(u) belongs to L∞(0, T ;L1(Ω)). Using (5.25) and passing
to the limit-inf in (5.19) as n tends to +∞, we obtain that

1

k

∫
Ω

Bk(u)(τ)dx ≤ [∥f∥L1(Q) + ∥u0∥L1(Ω)] ≡ C,

for almost any τ in (0, T ). Due to the definition of Bk(s) and the fact that 1
kBk(u) con-

verges pointwise to b(u), as k tends to +∞, shows that b(u) belong to L∞(0, T ;L1(Ω)).

Lemma 5.1. Let un be a solution of the approximate problem (5.9). Then

lim
m→∞

lim sup
n→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx dt = 0. (5.29)

Proof. Considering the function φ = T1(un − Tm(un))
− := αm(un) in (5.11), this

function is admissible since φ ∈ V and φ ≥ 0. Then, we have∫
Q

∂bn(x, un)

∂t
αm(un) dx dt+

∫
{−(m+1)≤un≤−m}

a(x, t, un,∇un)∇unα′
m(un) dx dt

+

∫
Q

fn exp(−G(un))αm(un) dx dt

≤
∫
Q

γ(x, t) exp(−G(un))αm(un) dx dt.

Setting Bm
n (x, r) =

∫ r

0

∂bn(s)

∂s
αm(s)ds, permit us to write∫

Ω

Bm
n (un)(T )dx+

∫
{−(m+1)≤un≤−m}

a(x, t, un,∇un)∇unα′
m(un) dx dt

+

∫
Q

fn exp(−G(un))αm(un) dx dt

≤
∫
Q

γ(x, t) exp(−G(un))αm(un) dx dt+

∫
Ω

Bm
n (u0n)dx.

Since Bm
n (un)(T ) ≥ 0 and by Lebesgue’s theorem, we have

lim
m→∞

lim
n→∞

∫
Q

fn exp(−G(un))αm(un) dx dt = 0. (5.30)

Similarly, since γ ∈ L1(Ω), we obtain

lim
m→∞

lim
n→∞

∫
Q

γ exp(−G(un))αm(un) dx dt = 0. (5.31)

Therefore,

lim
m→∞

lim sup
n→∞

∫
{−(m+1)≤un≤−m}

a(x, t, un,∇un)∇un dx dt = 0. (5.32)

On the other hand, let φ = T1(un−Tm(un))
+ as a test function in (5.10) and reasoning

as in the proof of (5.32) we deduce that

lim
m→∞

lim sup
n→∞

∫
{m)≤un≤m+1}

a(x, t, un,∇un)∇un dx dt = 0. (5.33)

Thus (5.29) follows from (5.32) and (5.33). �
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Step 2. Almost everywhere convergence of the gradients. This step is devoted
to introduce for k ≥ 0 fixed, a time regularization of the function Tk(u), in order to
perform the monotonicity method.
Let ψi ∈ D(Ω) be a sequence which converge strongly to u0 in L1(Ω). Set wi

µ =

(Tk(u))µ + e−µtTk(ψi) where (Tk(u))µ is the mollification with respect to time of
Tk(u). Note that wi

µ is a smooth function having the following properties:

∂wi
µ

∂t
= µ(Tk(u)− wi

µ), wi
µ(0) = Tk(ψi) and

∣∣wi
µ

∣∣ ≤ k, (5.34)

wi
µ → Tk(u) in V as µ→ ∞. (5.35)

We introduce the following function of one real

hm(s) =


1 if |s| ≤ m

0 if |s| ≥ m+ 1

m+ 1− s if m ≤ s ≤ m+ 1

m+ 1 + s if − (m+ 1) ≤ s ≤ −m

where m > k.
Let φ = (Tk(un)− wi

µ)
+hm(un) ∈ V ∩ L∞(Q) and φ ≥ 0, then we take this function

in (5.10), to write∫
{Tk(un)−wi

µ≥0}

∂bn(x, un)

∂t
exp(G(un))(Tk(un)− wi

µ)hm(un) dx dt

+

∫
{Tk(un)−wi

µ≥0}
a(x, t, un,∇un)∇(Tk(un)− wi

µ)hm(un) dx dt

−
∫
{m≤un≤m+1}

exp(G(un))a(x, t, un,∇un)∇un(Tk(un)− wi
µ)

+ dx dt

≤
∫
Q

γ(x, t) exp(G(un))(Tk(un)− wi
µ)

+hm(un) dx dt

+

∫
Q

fn exp(G(un))(Tk(un)− wi
µ)

+hm(un) dx dt.

(5.36)

Observe that∫
{m≤un≤m+1}

exp(G(un))a(x, t, un,∇un)∇un(Tk(un)− wi
µ)

+ dx dt

≤ 2k

∫
{m≤un≤m+1}

a(x, t, un,∇un)∇un dx dt.

Thanks to (5.29) the third integral tends to zero as n and m go to infinity, and by
Lebesgue’s theorem, we deduce that the right hand side converges to zero as n, m
and µ go to infinity. Since

(Tk(un)− wi
µ)

+hm(un)⇀ (Tk(u)− wi
µ)

+hm(u) weakly–* in L∞(Q) as n→ ∞
and (Tk(u)− wi

µ)
+hm(u)⇀ 0 weakly–* in L∞(Q) as µ→ ∞.

Let εl(n,m, µ, i), l = 1, . . . , n various functions which converge to zero as n, m, i and
µ tend to infinity.
The definition of the sequence wi

µ makes it possible to establish the following Lemma.
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Lemma 5.2. For k ≥ 0, we have∫
{Tk(un)−wi

µ≥0}

∂bn(un)

∂t
exp(G(un))(Tk(un)− wi

µ)hm(un) dx dt ≥ ε(n,m, µ, i).

(5.37)

Proof. The proof of this Lemma is a slight modification of the analogues one of [19].
�

On the other hand, the second term of left hand side of (5.36) reads as follows∫
{Tk(un)−wi

µ≥0}
a(x, t, un,∇un)∇(Tk(un)− wi

µ)hm(un) dx dt

=

∫
{Tk(un)−wi

µ≥0,|un|≤k}
a(x, t, Tk(un),∇Tk(un))∇(Tk(un)− wi

µ)hm(un) dx dt

−
∫
{Tk(un)−wi

µ≥0,|un|≥k}
a(x, t, un,∇un)∇wi

µhm(un) dx dt.

Since m > k, hm(un) = 0 on {|un| ≥ m+ 1}, one has∫
{Tk(un)−wi

µ≥0}
a(x, t, un,∇un)∇(Tk(un)− wi

µ)hm(un) dx dt

=

∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(un))∇(Tk(un)− wi

µ)hm(un) dx dt

−
∫
{Tk(un)−wi

µ≥0,|un|≥k}
a(x, t, Tm+1(un),∇Tm+1(un))∇wi

µhm(un) dx dt

= J1 + J2.

(5.38)
In the following we pass to the limit in (5.38): letting first n goes to +∞, then µ
and finally m tend toward +∞. Since a(x, t, Tm+1(un),∇Tm+1(un)) is bounded in
N∏
i=1

Lp′(x)(Q), we have that

a(x, t, Tm+1(un),∇Tm+1(un))hm(un)χ{|un|>k} → hmhm(u)χ{|u|>k}

strongly in
N∏
i=1

Lp′(x)(Q) as n tends to infinity, it follows that

J2 =

∫
{Tk(un)−wi

µ≥0}
hm∇wi

µhm(u)χ{|u|>k} dx dt+ ε(n)

=

∫
{Tk(un)−wi

µ≥0}
hm(∇Tk(u)µ − e−µt∇Tk(ψi))hm(u)χ{|u|>k} dx dt+ ε(n).

By letting µ→ +∞, we obtain

J2 =

∫
{Tk(un)−wi

µ≥0}
hm∇Tk(u) dx dt+ ε(n, µ).
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Using now the term J1 of (5.38), one can easily show that∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(un))∇(Tk(un)− wi

µ)hm(un) dx dt

=

∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)]hm(un) dx dt

+

∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(u))(∇Tk(un)−∇Tk(u))hm(un) dx dt

+

∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(un))∇Tk(u)hm(un) dx dt

−
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(un))∇wi

µhm(un) dx dt

= K1 +K2 +K3 +K4.

(5.39)
We shall go to the limit as n and µ → +∞ in the three integrals of the right-hand
side. Starting with K2, we have by letting n→ +∞,

K2 = ε(n). (5.40)

Concerning K3, can be see letting n→ +∞ and using (5.28),

K3 =

∫
{Tk(un)−wi

µ≥0}
hk∇Tk(u)hm(u)χ{|u|>k} dx dt+ ε(n)

By letting µ→ +∞, we get

K3 =

∫
{Tk(un)−wi

µ≥0}
hk∇Tk(u) dx dt+ ε(n, µ). (5.41)

For K4 we can write

K4 = −
∫
{Tk(un)−wi

µ≥0}
hk∇wi

µhm(u) dx dt+ ε(n),

by letting µ→ +∞,

K4 = −
∫
{Tk(un)−wi

µ≥0}
hk∇Tk(u) dx dt+ ε(n, µ). (5.42)

Then, we conclude that∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(un))∇(Tk(un)− wi

µ)hm(un) dx dt

=

∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)]hm(un) dx dt+ ε(n, µ).

On the other hand, we have
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∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)] dx dt

=

∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)]hm(un) dx dt

+

∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(u))

× (1− hm(un)) dx dt

−
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un),∇Tk(u))(∇Tk(un)−∇Tk(u))

× (1− hm(un)) dx dt.

(5.43)

Since hm(un) = 1 in {|un| ≤ m} and {|un| ≤ k} ⊂ {|un| ≤ m} for m large enough,
we deduce from (5.43) that∫

{Tk(un)−wi
µ≥0}

[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)] dx dt

=

∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)]hm(un) dx dt

+

∫
{Tk(un)−wi

µ≥0,|un|>k}
a(x, t, Tk(un),∇Tk(u))∇Tk(u)(1− hm(un)) dx dt.

It is easy to see that the last terms of the last equality tend to zero as n → +∞,
which implies∫

{Tk(un)−wi
µ≥0}

[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)] dx dt

=

∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)]hm(un) dx dt+ ε(n).

Combining (5.37), (5.39), (5.40), (5.41), (5.42) and (5.43), follows∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)] dx dt ≤ ε(n, µ,m).

(5.44)

Passing to the limit in (5.44) as n and m tend to infinity, we obtain

lim
n→∞

∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)] dx dt = 0.

(5.45)
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On the other hand, taking φ = (Tk(un) − wi
µ)

−hm(un) in (5.11), we may adopt the
same procedure in (5.45) to obtain

lim
n→∞

∫
{Tk(un)−wi

µ≤0}
[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)] dx dt = 0.

(5.46)

Furthermore, combining (5.45) and (5.46), we conclude

lim
n→∞

∫
Q

[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))]

× [∇Tk(un)−∇Tk(u)] dx dt = 0.

(5.47)

Which, from Lemma (4.4), it follows that

Tk(un) → Tk(u) strongly in V for all k. (5.48)

Now, observe that for every σ > 0,

meas{(x, t) ∈ Ω× [0, T ] : |∇un −∇u| > σ} ≤ meas{(x, t) ∈ Ω× [0, T ] : |∇un| > k}
+meas{(x, t) ∈ Ω× [0, T ] : |u| > k}
+meas{(x, t) ∈ Ω× [0, T ] :

∣∣∇Tk(un)−∇Tk(u)
∣∣ > σ},

then as a consequence of (5.48), it follows that ∇un converges to ∇u in measure and
therefore, always reasoning for a subsequence,

∇un → ∇u a.e. in Q. (5.49)

Which yields,

a(x, t, Tk(un),∇Tk(un))⇀ a(x, t, Tk(u),∇Tk(u)) in
N∏
i=1

Lp′(x)(Q). (5.50)

Step 3. Compactness of the nonlinearities. In order to pass to the limit in the
approximated equation, we now show that

Hn(x, t, un,∇un) → H(x, t, u,∇u) strongly in L1(Q),

by using Vitali’s theorem. SinceHn(x, t, un,∇un) → H(x, t, u,∇u) a.e. inQ, consider
a function ρh(s) =

∫ s

0
g(ν)χ{ν>h}dν, we take φ = ρh(un) =

∫ un

0
g(s)χ{s>h}ds as a

test function in (5.10), to obtain[ ∫
Ω

Bn
h (x, un)dx

]T
0
+

∫
Q

a(x, t, un,∇un)∇ung(un)χ{un>h} dx dt

≤
(∫ ∞

h

g(s)χ{s>h}ds
)
exp

(∥g∥L1(IR)

α

)(
∥γ∥L1(Q) + ∥fn∥L1(Q)

)
,

where Bn
h (x, r) =

∫ r

0
∂bn(x,s)

∂s ρh(s)ds.
Which implies that (since Bn

h (x, r) ≥ 0),∫
Q

a(x, t, un,∇un)∇ung(un)χ{un>h} dx dt

≤
(∫ ∞

h

g(s)ds
)
exp

(∥g∥L1(IR)

α

) (
∥γ∥L1(Q) + ∥fn∥L1(Q)

)
+

∫
Ω

Bn
h (x, u0n)dx.



84 E. AZROUL, M.B. BENBOUBKER, H. REDWANE, AND C. YAZOUGH

Now, using (3.4), we get∫
{un>h}

g(un)

N∑
i=1

∣∣∂un
∂xi

∣∣p(x) dx dt ≤ C

∫ ∞

h

g(s) ds.

Since g ∈ L1(IR), we have

lim
h→∞

sup
n∈N

∫
{un>h}

g(un)
N∑
i=1

∣∣∂un
∂xi

∣∣p(x) dx dt = 0.

By the same procedure as above, choose φ =

∫ 0

un

g(s)χ{s<−h}ds as a test function in

(5.11), we conclude that

lim
h→∞

sup
n∈N

∫
{un<−h}

g(un)
N∑
i=1

∣∣∂un
∂xi

∣∣p(x) dx dt = 0.

Consequently,

lim
h→+∞

sup
n∈N

∫
{|un|>h}

g(un)
N∑
i=1

∣∣∂un
∂xi

∣∣p(x) dx dt = 0,

we may choose h large enough, such that∫
Q

g(un)
N∑
i=1

∣∣∂un
∂xi

∣∣p(x) dx dt ≤ ∫
{|un|<h}

g(un)
N∑
i=1

∣∣∂un
∂xi

∣∣p(x) dx dt+ 1

≤
∫
Q

g(Tk(un))
N∑
i=1

∣∣∂Tk(un)
∂xi

∣∣p(x) dx dt+ 1.

Then, by (5.48) and Vitali’s theorem, we can deduce that g(un)
N∑
i=1

∣∣∂un
∂xi

∣∣p(x) con-

verges to g(u)
N∑
i=1

∣∣ ∂u
∂xi

∣∣p(x) strongly in L1(Q).

Finally, (3.5) gives

Hn(x, t, un,∇un) → H(x, t, u,∇u) strongly in L1(Q). (5.51)

Step 4. In this step we prove that u satisfies (5.2), (5.3) and (5.4).

Lemma 5.3. The limit u of the approximate solution un of (5.9) satisfies

lim
m→+∞

∫
{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt = 0.

Proof. To this end, remark that for any fixed m ≥ 0 one has

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un =

∫
Q

a(x, t, un,∇un)(∇Tm+1(un)−∇Tm(un))

=

∫
Q

a(x, t, Tm+1(un),∇Tm+1(un))∇Tm+1(un)−
∫
Q

a(x, t, Tm(un),∇Tm(un))∇Tm(un).
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According to (5.50) and (5.48), one is at liberty to pass to the limit as n → +∞ for
fixed m ≥ 0 and to obtain

lim
n→+∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx dt

=

∫
Q

a(x, t, Tm+1(u),∇Tm+1(u))∇Tm+1(u) dx dt

−
∫
Q

a(x, t, Tm(u),∇Tm(u))∇Tm(un) dx dt.

=

∫
{m≤|un|≤m+1}

a(x, t, u,∇u)∇u dx dt.

(5.52)

Taking the limit as m tends ∞ in (5.52) and using the estimate (5.29) show that u
satisfies (5.3). The proof is then complete. �

Now, let us show that u satisfies (5.3) and (5.4).
Let S be a function in W 1,∞(IR) such that S′ has a compact support. Let M be a
positive real number such that supp S′ ⊂ [−M,M ].
Pointwise multiplication of the approximate equation (5.9) by S′(un) leads to

∂Bn
S(x, un)

∂t
− div[S′(un)a(un,∇un)] + S′′(un)a(un,∇un)∇un + S′(un)Hn(un,∇un)

= fS′(un) in D′(Q).

(5.53)
Passing to the limit, as n tends to +∞, we have

• Since S is bounded and continuous, then the fact that un → u a.e. in Q implies
that Bn

S(un) converges to BS(u) a.e. in Q and L∞ weak–*. Consequently,

∂Bn
S(un)

∂t
converges to

∂BS(u)

∂t

in D′(Q) as n tends to +∞.
• Since suppS′ ⊂ [−M,M ], we have for n ≥M ,

S′(un)an(un,∇un) = S′(un)a(TM (un),∇TM (un)) a.e. in Q.

The pointwise convergence of un to u and (5.50) as n tends to +∞ and the bounded
character of S′ permit us to conclude that

S′(un)an(un,∇un)⇀ S′(u)a(TM (u),∇TM (u)) in
N∏
i=1

Lp′(x)(Q), (5.54)

as n tends to +∞. S′(u)a(TM (u),∇TM (u)) has been denoted by S′(u)a(u,∇u) in
equation (5.3).

• Regarding the ‘energy’ term, we have

S′′(un)a(un,∇un)∇un = S′′(un)a(TM (un),∇TM (un))∇TM (un) a.e. in Q.

The pointwise convergence of S′(un) → S′(u) and (5.50) as n tends to +∞ and the
bounded character of S′′ permit us to conclude that

S′′(un)an(un,∇un)∇un ⇀ S′′(u)a(TM (u),∇TM (u))∇TM (u) weakly in L1(Q).
(5.55)

Recall that

S′′(u)a(TM (u),∇TM (u))∇TM (u) = S′′(u)a(u,∇u)∇u a.e. in Q.
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• Since suppS′ ⊂ [−M,M ] and from (5.51), we have

S′(un)Hn(x, t, un,∇un) → S′(u)H(x, t, u,∇u) strongly in L1(Q). (5.56)

• Due to (5.6) and the fact that un → u a.e. in Q, we have

S′(un)fn → S′(u)f strongly in L1(Q).

As a consequence of the above convergence results, we are in a position to pass to
the limit as n tends to +∞ in equation (5.53) and to conclude that u satisfies (5.3).

It remains to show that BS(u) satisfies the initial condition (5.4). To this end,
firstly remark that, S being bounded, Bn

S(un) is bounded in L∞(Q). Secondly, (5.53)
and the above considerations on the behavior of the terms of this equation show that
∂Bn

S (un)
∂t is bounded in L1(Q) + V ∗. As a consequence, an Aubin’s type lemma (see,

e.g, [22]) implies that Bn
S(un) lies in a compact set of C0([0, T ], L1(Ω)). It follows

that, on the one hand, Bn
S(un)(t = 0) = Bn

S(u
n
0 ) converges to BS(u)(t = 0) strongly

in L1(Ω). On the other hand, the smoothness of S imply that

BS(u)(t = 0) = BS(u0) in Ω.

As a conclusion of Step 1, Step 2, Step 3 and Step 4 the proof of Theorem 5.1 is
complete.
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