
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 41(1), 2014, Pages 88–103
ISSN: 1223-6934
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boundary value problems
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Abstract. In this paper, we prove the existence of infinitely many solutions to nonlinear
perturbed fractional boundary value problems. The approach is based on critical point theory
and variational methods.
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1. Introduction

In this paper, we are interested in ensuring the existence of infinitely many solutions
for the following perturbed fractional boundary value problem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ λf(u(t)) + µg(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

(1)
where α ∈ (1/2, 1], 0D

α−1
t and tD

α−1
T are the left and right Riemann-Liouville frac-

tional integrals of order 1−α respectively, c
0D

α
t and c

tD
α
T are the left and right Caputo

fractional derivatives of order 0 < α ≤ 1 respectively, λ is a positive real parameter,
µ is a non-negative real parameter and f, g : R → R are continuous functions.

Because of its wide applicability in the modeling of many phenomena in various
fields of physic, chemistry, biology, engineering and economics, the theory of fractional
differential equations has recently been attracting increasing interest, see for instance
the monographs of Miller and Ross [33], Samko et al [38], Podlubny [35], Hilfer [25],
Kilbas et al [27] and the papers [2, 3, 6, 7, 8, 9, 28, 29, 40, 41, 42] and the references
therein.

Critical point theory has been very useful in determining the existence of solution
for integer order differential equations with some boundary conditions, for example
[17, 29, 30, 32, 36, 39]. But until now, there are few results on the solution to fractional
boundary value problems which were established by the critical point theory, since
it is often very difficult to establish a suitable space and variational functional for
fractional boundary value problems. Recently, Jiao and Zhou in [26] by using the
critical point theory investigated the fractional boundary-value problem

d

dt

(1
2
0D

−β
t (u′(t)) +

1

2
tD

−β
T (u′(t))

)
+∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0
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where 0D
−β
t and tD

−β
T are the left and right Riemann-Liouville fractional integrals

of order 0 ≤ β < 1 respectively, F : [0, T ]×RN → R is a given function and ∇F (t, x)
is the gradient of F at x. Also, Chen and Tang in [16] studied the existence and
multiplicity of solutions for the following fractional boundary value problem

d

dt

(1
2
0D

−β
t (u′(t)) +

1

2
tD

−β
T (u′(t))

)
+∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where F (t, ·) are superquadratic, asymptotically quadratic, and subquadratic, respec-
tively. In particular, Bai in [4], by using a local minimum theorem due to Bonanno
([10]), investigated the existence of at least one non-trivial solution to the problem
(1).

In the present paper, motivated by [4], employing a smooth version of Theorem 2.1
of [13] which is a more precise version of Ricceri’s Variational Principle [37, Theorem
2.5] (see Theorem 2.6), requiring that the nonlinear term f has a suitable oscillating
behavior at infinity, in Theorem 3.1, we establish the existence of a precise interval
of parameters Λ such that, for each λ ∈ Λ and every arbitrary continuous function g
which satisfies a certain growth at infinity, choosing µ sufficiently small, the perturbed
problem (1) admits a sequence of solutions which are unbounded in the fractional
derivative space Eα

0 . We also list some consequences of Theorem 3.1 and one example.
Finally, we present an analogous result (see Theorem 3.6), in which we replace the
oscillating behavior condition at infinity in Theorem 3.1, by a similar one at zero. In
this setting, a sequence of pairwise distinct non-zero solutions which converges to zero
is achieved.

A special case of our main result is the following theorem.

Theorem 1.1. Let 1
2 < α ≤ 1. Assume that

lim inf
ξ→+∞

max|x|≤ξ F (x)

ξ2
= 0 and lim sup

ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

F (x)dx

ξ2
= +∞

where F (x) =
∫ x

0
f(s)ds for every x ∈ R and Γ is the gamma function. Then, the

problem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ f(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

admits a sequence of pairwise distinct positive solutions.

For a discussion about the existence of infinitely many solutions for boundary value
problems, using Ricceri’s Variational Principle [37] and its variants ([13, Theorem 2.1]
and [31, Theorem 1.1]) we refer the reader to the papers [5, 11, 12, 14, 15, 18, 21, 22,
23].

For a through on the subject, we also refer the reader to [1, 19, 20, 24, 34].

2. Preliminaries

In this section, we will introduce some notations, definitions and preliminary facts
which are used throughout this paper.
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Definition 2.1 ([27]). Let f be a function defined on [a, b] and α > 0. The left and
right Riemann-Liouville fractional integrals of order α for the function f are defined
by

aD
−α
t f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ [a, b],

tD
−α
b f(t) =

1

Γ(α)

∫ b

t

(s− t)α−1f(s)ds, t ∈ [a, b],

provided the right-hand sides are pointwise defined on [a, b], where Γ(α) is the gamma
function.

Definition 2.2 ([27]). Let γ ≥ 0 and n ∈ N.
(i) If γ ∈ (n−1, n) and f ∈ ACn([a, b],RN ), then the left and right Caputo fractional
derivatives of order γ for function f denoted by c

aD
γ
t f(t) and c

tD
γ
b f(t), respectively,

exist almost everywhere on [a, b], c
aD

γ
t f(t) and

c
tD

γ
b f(t) are represented by

c
aD

γ
t f(t) =

1

Γ(n− γ)

∫ t

a

(t− s)n−γ−1f (n)(s)ds, t ∈ [a, b],

c
tD

γ
b f(t) =

(−1)n

Γ(n− γ)

∫ b

t

(s− t)n−γ−1f (n)(s)ds, t ∈ [a, b],

respectively.
(ii) If γ = n − 1 and f ∈ ACn−1([a, b],RN ), then c

aD
n−1
t f(t) and c

tD
n−1
b f(t) are

represented by

c
aD

n−1
t f(t) = f (n−1)(t), and c

tD
n−1
b f(t) = (−1)(n−1)f (n−1)(t), t ∈ [a, b].

With these definitions, we have the rule for fractional integration by parts, and the
composition of the Riemann-Liouville fractional integration operator with the Caputo
fractional differentiation operator, which were proved in [27, 38].

Proposition 2.1 ([27, 38]). We have the following property of fractional integration∫ b

a

[aD
−γ
t f(t)]g(t)dt =

∫ b

a

[tD
−γ
b g(t)]f(t)dt, γ > 0, (2)

provided that f ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ 1, q ≥ 1, 1/p+1/q ≤ 1+γ
or p ̸= 1, q ̸= 1, 1/p+ 1/q = 1 + γ.

Proposition 2.2 ([27]). Let n ∈ N and n − 1 < γ ≤ n. If f ∈ ACn([a, b],RN ) or
f ∈ Cn([a, b],RN ), then

aD
−γ
t (caD

γ
t f(t)) = f(t)−

n−1∑
j=0

f (j)(a)

j!
(t− a)j ,

tD
−γ
b (ctD

γ
b f(t)) = f(t)−

n−1∑
j=0

(−1)jf (j)(b)

j!
(b− t)j ,

for t ∈ [a, b]. In particular, if 0 < γ ≤ 1 and f ∈ AC([a, b],RN ) or f ∈ C1([a, b],RN ),
then

aD
−γ
t (caD

γ
t f(t)) = f(t)− f(a), and tD

−γ
b (ctD

γ
b f(t)) = f(t)− f(b). (3)
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Remark 2.1. In view of (2) and Definition 2.2, it is obvious that u ∈ AC([0, T ]) is
a solution of (1) if and only if u is a solution of the problem

d

dt

(
0D

−β
t (u′(t)) + tD

−β
T (u′(t))

)
+ λf(u(t)) + µg(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(4)

where β = 2(1− α) ∈ [0, 1).

To establish a variational structure for (1), it is necessary to construct appropriate
function spaces.

Definition 2.3 ([26]). Let 0 < α ≤ 1. The fractional derivative space Eα
0 is defined

by the closure of C∞
0 [0, T ] with respect to the norm

∥u∥α =
(∫ T

0

|c0Dα
t u(t)|2dt+

∫ T

0

|u(t)|2dt
)1/2

, ∀u ∈ Eα,

where C∞
0 [0, T ] denotes the set of all functions u ∈ C∞[0, T ] with u(0) = u(T ) = 0. It

is obvious that the fractional derivative space Eα
0 is the space of functions u ∈ L2[0, T ]

having an α-order Caputo fractional derivative c
0D

α
t u ∈ L2[0, T ] and u(0) = u(T ) = 0.

Proposition 2.3 ([26]). Let 0 < α ≤ 1. The fractional derivative space Eα
0 is

reflexive and separable Banach space.

Proposition 2.4 ([26]). Let 0 < α ≤ 1. For all u ∈ Eα
0 , we have

∥u∥L2 ≤ Tα

Γ(α+ 1)
∥c0Dα

t u∥L2 , (5)

∥u∥∞ ≤ Tα−1/2

Γ(α)(2(α− 1) + 1)1/2
∥c0Dα

t u∥L2 . (6)

According to (5), we can consider Eα
0 with respect to the norm

∥u∥α =
(∫ T

0

|c0Dα
t u(t)|2dt

)1/2

= ∥c0Dα
t u∥L2 , ∀u ∈ Eα

0 (7)

in the following analysis.

Proposition 2.5 ([26]). Let 1/2 < α ≤ 1, then for all any u ∈ Eα
0 , we have

| cos(πα)|∥u∥2α ≤ −
∫ T

0

c
0D

α
t u(t) · ctDα

Tu(t)dt ≤
1

| cos(πα)|
∥u∥2α. (8)

By Proposition 2.4, when α > 1/2, for each u ∈ Eα
0 we have

∥u∥∞ ≤ Ω
(∫ T

0

|c0Dα
t u(t)|2dt

)1/2

= Ω∥u∥α, (9)

where

Ω =
Tα− 1

2

Γ(α)
√

2(α− 1) + 1
. (10)

Our main tool is the celebrated Ricceri’s Variational Principle [37, Theorem 2.5]
that we now recall as given by Bonanno and Molica Bisci in [13].
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Theorem 2.6. Let X be a reflexive real Banach space, let Φ,Ψ : X −→ R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicon-
tinuous, strongly continuous, and coercive and Ψ is sequentially weakly upper semi-
continuous. For every r > infX Φ, let us put

φ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r]) Ψ(v)−Ψ(u)

r − Φ(u)

and

γ := lim inf
r→+∞

φ(r), δ := lim inf
r→(infX Φ)+

φ(r).

Then, one has
(a) for every r > infX Φ and every λ ∈]0, 1

φ(r) [, the restriction of the functional

Iλ = Φ − λΨ to Φ−1(] − ∞, r[) admits a global minimum, which is a critical point
(local minimum) of Iλ in X.
(b) If γ < +∞ then, for each λ ∈]0, 1

γ [, the following alternative holds:

either
(b1) Iλ possesses a global minimum,
or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

either
(c1) there is a global minimum of Φ which is a local minimum of Iλ,
or

(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ
which weakly converges to a global minimum of Φ.

3. Main results

Put

ωα :=
4Γ2(2− α)

Γ(4− 2α)
T 1−2α(22α−1 − 1)

and F (x) =
∫ x

0
f(s)ds for every x ∈ R.

We state our main result as follows:

Theorem 3.1. Let 1
2 < α ≤ 1. Assume that

(A1) lim infξ→+∞
max|x|≤ξ F (x)

ξ2 < | cos(πα)|
Γ(2−α)ωαΩ2 lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2 .

Then, for each λ ∈]λ1, λ2[ where

λ1 :=
Γ(2− α)ωα

T lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2

and

λ2 :=
| cos(πα)|

Ω2T lim infξ→+∞
max|x|≤ξ F (x)

ξ2

,
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for every arbitrary continuous function g : R → R whose potential G(x) =
∫ x

0
g(s)ds

for every x ∈ R, is a non-negative function satisfying the condition

G∞ := limξ→+∞
max|x|≤ξ G(x)

ξ2
< +∞ (11)

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
| cos(πα)|
Ω2TG∞

(
1− λT

Ω2

| cos(πα)|
lim inf
ξ→+∞

max|x|≤ξ F (x)

ξ2

)
,

the problem (1) has an unbounded sequence of solutions in Eα
0 .

Proof. In order to apply Theorem 2.6 to our problem, letX be the fractional derivative
space Eα

0 equipped with the norm

∥u∥α =
(∫ T

0

|c0Dα
t u(t)|2dt

)1/2

,

and we introduce the functionals Φ, Ψ : X → R for each u ∈ X as follows:

Φ(u) := −
∫ T

0

c
0D

α
t u(t) · ctDα

Tu(t)dt, Ψ(u) :=

∫ T

0

(F (u(t)) +
µ

λ
G(u(t)))dt.

Clearly, Φ and Ψ are Gâteaux differentiable functional whose Gâteaux derivative at
the point u ∈ X are given by

Φ′(u)v = −
∫ T

0

(c0D
α
t u(t) · ctDα

T v(t) +
c
tD

α
Tu(t) · c0Dα

t v(t))dt,

Ψ′(u)v =

∫ T

0

(f(u(t)) +
µ

λ
g(u(t)))v(t)dt

= −
∫ T

0

∫ t

0

f(u(s))ds · v′(t)dt− µ

λ

∫ T

0

∫ t

0

g(u(s))ds · v′(t)dt

for every v ∈ X. By Definition 2.2 and (3), we have

Φ′(u)v =

∫ T

0

(0D
α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))) · v′(t)dt.

Put Iλ := Φ− λΨ. The solutions of the problem (1) are exactly the solutions of the

equation I ′
λ
(u) = 0 (see [4]). Fix λ ∈]λ1, λ2[ and let G be a non-negative function

satisfies the condition (11). Since, λ < λ2, one has

µG,λ :=
| cos(πα)|
Ω2TG∞

(
1− λT

Ω2

| cos(πα)|
lim inf
ξ→+∞

max|t|≤ξ F (t)

ξ2

)
> 0.

Fix µ ∈]0, µG,λ[ and set ν1 := λ1 and ν2 := λ2

1+ Ω2

| cos(πα)|
µ

λ
λ2TG∞

. If G∞ = 0, clearly,

ν1 = λ1, ν2 = λ2 and λ ∈]ν1, ν2[. If G∞ ̸= 0, since µ < µG,λ, we obtain

λ

λ2
+

Ω2

| cos(πα)|
µTG∞ < 1,

and so
λ2

1 + Ω2

| cos(πα)|
µ

λ
λ2TG∞

> λ,

namely, λ < ν2. Hence, bering in mind that λ > λ1 = ν1, one has λ ∈]ν1, ν2[.
Now, let us show that

γ < +∞.
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Let {ξn} be a real sequence such that ξn → +∞ as n → ∞ and

lim
n→∞

max|x|≤ξn F (x) + µ

λ
max|x|≤ξn G(x)

ξ2n
= lim inf

ξ→+∞

max|x|≤ξ F (x) + µ

λ
max|x|≤ξ G(x)

ξ2
.

For every n ∈ N let us consider rn = | cos(πα)|
Ω2 ξ2n. Taking (8) into account, for all

u ∈ X such that u ∈ Φ−1(]−∞, rn]), we have

| cos(πα)|∥u∥2α ≤ Φ(u) ≤ rn,

which implies

∥u∥2α ≤ 1

| cos(πα)|
rn. (12)

Thus, by (9) and (12) we obtain

|u(t)| < Ω∥u∥α ≤ Ω

√
r

| cos(πα)|
= ξn, ∀t ∈ [0, T ],

which from the definition of Ψ follows

sup
u∈Φ−1(]−∞,rn])

Ψ(u) ≤ T max
|x|≤ξn

(F (x) +
µ

λ
G(x)) ≤ T ( max

|x|≤ξn
F (x) +

µ

λ
max
|x|≤ξn

G(x)).

Therefore, since Φ(0) = Ψ(0) = 0, for every n large enough, one has

φ(rn) = inf
u∈Φ−1(]−∞,rn[)

(supv∈Φ−1(]−∞,rn]) Ψ(v))−Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1(]−∞,rn]) Ψ(v)

rn

≤ T
max|x|≤ξn F (x) + µ

λ
max|x|≤ξn G(x)

| cos(πα)|
Ω2 ξ2n

.

Moreover, from Assumption (A1) and the condition (11) one has

lim
n→∞

max|x|≤ξn F (x) + µ

λ
max|x|≤ξn G(x)

ξ2n
< +∞.

So,

γ ≤ lim inf
n→+∞

φ(rn) ≤ T
Ω2

| cos(πα)|
lim
n→∞

max|x|≤ξn F (x) + µ

λ
max|x|≤ξn G(x)

ξ2n
< +∞.

(13)
Taking (11) into account, one has

lim inf
ξ→+∞

max|x|≤ξ F (x) + µ

λ
max|x|≤ξ G(x)

ξ2
≤ lim inf

ξ→+∞

max|x|≤ξ F (x)

ξ2
+

µ

λ
G∞, (14)

which follows

λ ∈]ν1, ν2[⊆ Γ(2− α)ωα

T lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 (F (x)+µ

λ
G(x))dx

ξ2

,
| cos(πα)|

Ω2T lim infξ→+∞
max|x|≤ξ(F (x)+µ

λ
G(x))

ξ2

 .
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Assumption (A1) in conjunction with (13), implies Γ(2− α)ωα

T lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 (F (x)+µ

λ
G(x))dx

ξ2

,
| cos(πα)|

Ω2T lim infξ→+∞
max|x|≤ξ(F (x)+µ

λ
G(x))

ξ2


⊆

]
0,

1

γ

[
.

For the fixed λ, the inequality (13) ensures that the condition (b) of Theorem 2.6 can
be applied and either Iλ has a global minimum or there exists a sequence {un} of
weak solutions of the problem (1) such that limn→∞ ∥un∥ = +∞.
The other step is to show that for the fixed λ the functional Iλ has no global minimum.
Let us verify that the functional Iλ is unbounded from below. Since

1

λ
<

T

Γ(2− α)ωα
lim sup
ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

F (x)dx

ξ2

≤ T

Γ(2− α)ωα
lim sup
ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

(F (x) + µ

λ
G(x))dx

ξ2
,

we can consider a real sequence {dn} and a positive constant τ such that dn → +∞
as n → ∞ and

1

λ
< τ <

T

Γ(2− α)ωα

1
|dn|

∫ Γ(2−α)|dn|
0

(F (x) + µ

λ
G(x))dx

d2n
(15)

for each n ∈ N large enough. Let {wn} be a sequence in X defined by putting

wn(t) =

{
2Γ(2−α)dn

T t, t ∈ [0, T/2),
2Γ(2−α)dn

T (T − t), t ∈ [T/2, T ]
(16)

It is easy to check that wn(0) = wn(T ) = 0 and wn ∈ L2[0, T ]. The direct calculation
shows that

c
0D

α
t wn(t) =

{
2dn

T t1−α, t ∈ [0, T/2),
2dn

T (t1−α − 2(t− T
2 )

1−α), t ∈ [T/2, T ]

and

∥wn∥2α =

∫ T

0

(c0D
α
t wn(t))

2dt =

∫ T
2

0

+

∫ T

T/2

(c0D
α
t wn(t))

2dt

=
4d2n
T 2

[ ∫ T

0

t2(1−α)dt− 4

∫ T

T/2

t1−α(t− T

2
)1−αdt+ 4

∫ T

T/2

(t− T

2
)2(1−α)dt

]
=

4(1 + 22α−1)d2n
3− 2α

T 1−2α − 16d2n
T 2

∫ T

T/2

t1−α(t− T

2
)1−αdt < ∞.

That is, c
0D

α
t wn ∈ L2[0, T ]. Thus, wn ∈ X. Moreover, the direct calculation shows

c
tD

α
Twn(t) =

{
2dn

T ((T − t)1−α − 2(T2 − t)1−α), t ∈ [0, T/2),
2dn

T (T − t)1−α, t ∈ [T/2, T ]
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and

Φ(wn) = −
∫ T

0

c
0D

α
t wn(t) · ctDα

Twn(t)dt

= −(
2dn
T

)2
[ ∫ T

2

0

t1−α
(
(T − t)1−α − 2

(T
2
− t

)1−α
)
dt

+

∫ T

T/2

(T − t)1−α ·
(
t1−α − 2(t− T

2
)1−α

)
dt
]

= −(
2dn
T

)2
[ ∫ T

0

t1−α(T − t)1−αdt− 4

∫ T
2

0

t1−α
(T
2
− t

)1−α
dt
]

= −(
2dn
T

)2
[Γ2(2− α)

Γ(4− 2α)
T 3−2α − 4

Γ2(2− α)

Γ(4− 2α)
(
T

2
)3−2α

]
=

4Γ2(2− α)

Γ(4− 2α)
T 1−2α(22α−1 − 1)d2n = ωαd

2
n (17)

and

Ψ(wn) =

∫ T

0

(F (wn(t))+
µ

λ
G(wn(t))dt =

T

Γ(2− α)|dn|

∫ Γ(2−α)|dn|

0

(F (x)+
µ

λ
G(x))dx.

(18)
So, according to (15), (17) and (18) we achieve

Iλ(wn) = ωαd
2
n − λ

T

Γ(2− α)|dn|

∫ Γ(2−α)|dn|

0

(F (x) +
µ

λ
G(x))dx < (1− λτ)ωαd

2
n

for every n ∈ N large enough. Hence, the functional Iλ is unbounded from below, and
it follows that Iλ has no global minimum. Therefore, recalling (8), applying Theorem
2.6 we deduce that there is a sequence {un} ⊂ X of critical points of Iλ such that
limn→∞ ∥un∥ = +∞, and the proof is complete. �

Remark 3.1. Under the conditions

lim inf
ξ→+∞

max|x|≤ξ F (x)

ξ2
= 0

and

lim sup
ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

F (x)dx

ξ2
= +∞,

Theorem 3.1 ensures that for every λ > 0 and for each µ ∈ [0, | cos(πα)|
Ω2TG∞

[ the problem

(1) admits infinitely many solutions in Eα
0 . Moreover, if G∞ = 0, the result holds for

every λ > 0 and µ ≥ 0.

We now exhibit an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.1. Let 1
2 < α ≤ 1. Let f : R → R be the function defined by

f(x) =

{
x
(
2− cos(ln(|x|))− 2 sin(ln(|x|))

)
if x ∈ (R− {0}),

0 if x = 0.

A direct calculation shows

F (x) =

{
x2

(
1− sin(ln(|x|))

)
if x ∈ (R− {0}),

0 if x = 0.
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So,

lim inf
ξ→+∞

max|x|≤ξ F (x)dx

ξ2
= 0

and

lim sup
ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

F (x)dx

ξ2
= +∞.

Hence, using Theorem 3.1, the problem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ λf(u(t)) + µu(t)e−u(t)(2− u(t)) = 0,

a.e. t ∈ [0, 1],

u(0) = u(1) = 0,

since G∞ = 0, for every (λ, µ) ∈]0,+∞[×[0,+∞[ has an unbounded sequence of
solutions in Eα

0 .

Now we want to present the following existence result which instead of Assumption
(A1) in Theorem 3.1 a more general condition is assumed.

Theorem 3.2. Let 1
2 < α ≤ 1. Assume that

(A2) there exist two sequence {an} and {bn} with ωαa
2
n < | cos(πα)|

Ω2 b2n for every n ∈ N
and limn→+∞ bn = +∞ such that

lim
n→+∞

max|x|≤bn F (x)− 1
|an|

∫ Γ(2−α)|an|
0

F (x)dx

| cos(πα)|
Ω2 b2n − ωαa2n

<
1

ωα
lim sup
ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

F (x)dx

ξ2
.

Then, for each

Λ′ :=
] ωα

T lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2

,

| cos(πα)|
Ω2 b2n

T limn→+∞
max|x|≤bn F (x)− 1

|an|
∫ Γ(2−α)|an|
0 F (x)dx

| cos(πα)|
Ω2 b2n−ωαa2

n

[
,

for every arbitrary continuous function g : R → R whose potential G(x) =
∫ x

0
g(s)ds

for every x ∈ R, is a non-negative function satisfying the condition (11) and for every
µ ∈ [0, µG,λ[ where

µG,λ :=
| cos(πα)|
Ω2TG∞

1− λT lim
n→+∞

max|x|≤bn F (x)− 1
|an|

∫ Γ(2−α)|an|
0

F (x)dx

| cos(πα)|
Ω2 b2n − ωαa2n

 ,

the problem (1) has an unbounded sequence of solutions in Eα
0 .

Proof. Clearly, from (A2) we obtain (A1), by choosing an = 0 for all n ∈ N. More-

over, if we assume (A2) instead of (A1) and set rn = | cos(πα)|
Ω2 b2n for all n ∈ N, by the

same arguing as inside in Theorem 3.1, we obtain
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φ(rn) = inf
u∈Φ−1(]−∞,rn[)

(supv∈Φ−1(]−∞,rn]) Ψ(v))−Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1(]−∞,rn]) Ψ(v)−

∫ T

0
(F (wn(t)) +

µ
λG(wn(t))dt

rn +
∫ T

0
c
0D

α
t wn(t) · ctDα

Twn(t)dt

≤
max|x|≤bn F (x) + µ

λ max|x|≤bn G(x)− 1
|an|

∫ Γ(2−α)|an|
0

(F (x) + µ
λG(x))dx

| cos(πα)|
Ω2 b2n − ωαa2n

where

wn(t) =

{
2Γ(2−α)an

T t, t ∈ [0, T/2),
2Γ(2−α)an

T (T − t), t ∈ [T/2, T ].

Moreover, from Assumption (A2) and the condition (11) one has

lim
n→∞

max|x|≤bn F (x) + µ
λ max|x|≤bn G(x)− 1

|an|
∫ Γ(2−α)|an|
0

(F (x) + µ
λG(x))dx

| cos(πα)|
Ω2 b2n − ωαa2n

< +∞.

Therefore,

γ ≤ lim inf
n→+∞

φ(rn)

≤ T lim
n→∞

max|x|≤bn F (x) + µ
λ max|x|≤bn G(x)− 1

|an|
∫ Γ(2−α)|an|
0

(F (x) + µ
λG(x))dx

| cos(πα)|
Ω2 b2n − ωαa2n

< +∞.

So, we have the desired conclusion. �

The following result is a special case of Theorem 3.1 with µ = 0.

Theorem 3.3. Assume that the assumptions in Theorem 3.1 hold. Then, for each

λ ∈ Λ :=

 Γ(2− α)ωα

T lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2

,
| cos(πα)|

Ω2T lim infξ→+∞
max|x|≤ξ F (x)

ξ2


the problem (1), for µ = 0, has an unbounded sequence of solutions in Eα

0 .

Here we point out the following consequence of Theorem 3.3.

Corollary 3.4. Let 1
2 < α ≤ 1. Assume that

(B1) lim infξ→+∞
max|x|≤ξ F (x)

ξ2 < | cos(πα)|
Ω2 .;

(B2) lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2 > Γ(2− α)ωα.

Then, for each λ ∈]λ1, λ2[ where

λ1 :=
Γ(2− α)ωα

T lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2

and

λ2 :=
| cos(πα)|

Ω2T lim infξ→+∞
max|x|≤ξ F (x)

ξ2

,
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Then, the problem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ f(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

has an unbounded sequence of solutions in Eα
0 .

Remark 3.2. Theorem 1.1 in Introduction is an immediately consequence of Corol-
lary 3.4.

We here give the following consequence of the main result:

Corollary 3.5. Let 1
2 < α ≤ 1. Let h1 : R → R be a non-negative continuous func-

tion, and denote that H1(x) =
∫ x

0
h1(s)ds for all x ∈ R. Assume that

(C1) lim infξ→+∞
H1(ξ)
ξ2 < +∞ ;

(C2) lim supξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0 H1(x)dx

ξ2 = +∞.

Then, for every non-negative continuous hi : R → R for 2 ≤ i ≤ n satisfying

max
{
sup
ξ∈R

Hi(ξ); 2 ≤ i ≤ n
}
≤ 0

and

min
{
lim inf
ξ→+∞

Hi(ξ)

ξ2
; 2 ≤ i ≤ n

}
> −∞

where Hi(x) =
∫ x

0
hi(s)ds for all x ∈ R for 2 ≤ i ≤ n, for each

λ ∈

]
0,

| cos(πα)|
Ω2T lim infξ→+∞

H1(ξ)
ξ2

[
,

and for every arbitrary continuous function g : R → R whose potential G(x) =∫ x

0
g(s)ds for every x ∈ R, is a non-negative function satisfying the condition (11)

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
| cos(πα)|
Ω2TG∞

(
1− λT

Ω2

| cos(πα)|
lim inf
ξ→+∞

H1(ξ)

ξ2

)
,

the problem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ λ

n∑
i=1

hi(u(t)) + µg(u(t)) = 0,

a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

has an unbounded sequence of solutions in Eα
0 .

Proof. Set f(x) =
∑n

i=1 hi(x) for all x ∈ R. Assumption (C2) together with the
condition

min
{
lim inf
ξ→+∞

Hi(ξ)

ξ2
; 2 ≤ i ≤ n

}
> −∞

ensures

lim sup
ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

F (x)dx

ξ2
= lim sup

ξ→+∞

1
|ξ|

∫ Γ(2−α)|ξ|
0

∑n
i=1 Hi(x)dx

ξ2
= +∞.
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Moreover, Assumption (C1) along with condition

max
{
sup
ξ∈R

Hi(ξ); 2 ≤ i ≤ n
}
≤ 0

follows

lim inf
ξ→+∞

max|x|≤ξ F (x)

ξ2
≤ lim inf

ξ→+∞

H1(ξ)

ξ2
< +∞.

Hence, from Corollary 3.1 the conclusion follows. �

Finally, we observe that by similar reasonings as in the proof of Theorem 3.1 but
using conclusion (c) of Theorem 2.6 instead of (b), the following result holds.

Theorem 3.6. Let 1
2 < α ≤ 1. Assume that

(A3) lim infξ→0+
max|x|≤ξ F (x)

ξ2 < | cos(πα)|
Γ(2−α)ωαΩ2 lim supξ→0+

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2 .

Then, for each λ ∈]λ1, λ2[ where

λ3 :=
Γ(2− α)ωα

T lim supξ→0+

1
|ξ|

∫ Γ(2−α)|ξ|
0 F (x)dx

ξ2

and

λ4 :=
| cos(πα)|

Ω2T lim infξ→0+
max|x|≤ξ F (x)

ξ2

,

for every arbitrary continuous function g : R → R whose potential G(x) =
∫ x

0
g(s)ds

for every x ∈ R, is a non-negative function satisfying the condition

G0 := limξ→0+
max|x|≤ξ G(x)

ξ2
< +∞ (19)

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
| cos(πα)|
Ω2TG0

(
1− λT

Ω2

| cos(πα)|
lim inf
ξ→0+

max|x|≤ξ F (x)

ξ2

)
,

the problem (1) has a sequence of solutions, which strongly converges to 0 in Eα
0 .

Proof. Fix λ ∈]λ3, λ4[ and let G be a function satisfies the condition (19). Since,
λ < λ2, one has

µG,λ :=
| cos(πα)|
Ω2TG0

(
1− λT

Ω2

| cos(πα)|
lim inf
ξ→0+

max|x|≤ξ F (x)

ξ2

)
> 0.

Fix µ ∈]0, µG,λ[ and put ν1 := λ3 and ν2 := λ4

1+ Ω2

| cos(πα)|
µ

λ
λ2G0

. If G0 = 0, clearly,

ν1 = λ3, ν2 = λ4 and λ ∈]ν1, ν2[. If G0 ̸= 0, since µ < µG,λ, we obtain

λ

λ2
+

Ω2

| cos(πα)|
µTG0 < 1,

and so
λ2

1 + Ω2

| cos(πα)|
µ

λ
λ2TG0

> λ,
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namely, λ < ν2. Hence, bering in mind that λ > λ3 = ν1, one has λ ∈]0ν1, ν2[. Taking
(19) into account, one has

lim inf
ξ→0+

max|x|≤ξ F (x) + µ

λ
max|x|≤ξ G(x)

ξ2
≤ lim inf

ξ→0+

max|x|≤ξ F (x)

ξ2
+

µ

λ
G0. (20)

Therefore, from (20), we observe

λ ∈]ν1, ν2[⊆ Γ(2− α)ωα

T lim supξ→0+

1
|ξ|

∫ Γ(2−α)|ξ|
0 (F (x)+µ

λ
G(x))dx

ξ2

,
| cos(πα)|

Ω2T lim infξ→0+
max|x|≤ξ F (x)+µ

λ
max|x|≤ξ G(x)

ξ2

 .

We take X, Φ, Ψ and Iλ as in the proof of Theorem 3.1. Let {ξn} be a sequence of
positive numbers such that ξn → 0+ as n → +∞ and

lim
n→∞

max|x|≤ξn F (x) + µ

λ
max|x|≤ξn G(x)

ξ2n
< +∞.

Putting rn = | cos(πα)|
Ω2 ξ2n for every n ∈ N and working as in the proof of Theorem 3.1

it follows that δ < +∞. Let us show that the functional Iλ has not a local minimum
at zero. For this, let {dn} be a sequence of positive numbers and τ > 0 such that
dn → 0+ as n → ∞ and

1

λ
< τ <

T

Γ(2− α)ωα

1
|dn|

∫ Γ(2−α)|dn|
0

(F (x) + µ

λ
G(x))dx

d2n
(21)

for each n ∈ N large enough. Let {wn} be a sequence in X defined by setting wn as
given in (16). Putting together (17), (18) and (21) we achieve

Iλ(wn) = Φ(wn)− λΨ(wn)

= ωαd
2
n − λ

T

Γ(2− α)|dn|

∫ Γ(2−α)|dn|

0

(F (x) +
µ

λ
G(x))dx

< (1− λτ)ωαd
2
n < 0

for every n ∈ N large enough. Since Iλ(0) = 0, this ensures that the functional Iλ has
not a local minimum at zero. Hence, recalling (8), the part (c) of Theorem 2.6 ensures
that there exists a sequence {un} in X of critical points of Iλ such that ||un|| → 0 as
n → ∞, and the proof is complete. �

Remark 3.3. Applying Theorem 3.6, results similar to Theorems 1.1, 3.2 and 3.3
and Corollaries 3.4 and 3.5 can be obtained by replacing ξ → +∞ with ξ → 0+.
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