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Towards a local definition of body in Continuum Mechanics

Néstor León D., Óscar López Pouso, and José A. Oubiña

Abstract. The purpose of this paper is to introduce the concept of pyramidal manifold, and
to demonstrate that it is useful as a model definition of three-dimensional body. Pyramidal

manifolds generalize three-dimensional manifolds with corners and represent an approach to
the definition of body from the point of view of Differential Geometry, which facilitates the
development of the mathematical theory of Continuum Mechanics. Two maps defined on a
pyramidal manifold, the degree and the index, are introduced. Both of them are invariant

under deformations and allow taking a first step towards a classification of bodies. The Stokes
theorem for bodies is also discussed, and a proof thereof is provided by using differential forms
on pyramidal manifolds.
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1. Introduction

The notion of (deformable) body is fundamental in Continuum Mechanics (here-
inafter, CM), since bodies are the material objects that are affected by forces and
experience deformations and motions. Nevertheless, an ultimate definition of body
has not yet been established. To reinforce this assertion, we reproduce the following
words of Sheldon R. Smith in [17, footnote 44]:

“I should note here that the question of the structure of bodies is not a
finished business decided once and for all but is, rather, an on-going area of
research. [...]”

In fact, in recent years other authors have made research on this topic. As far as
we know, the last scholarly article entirely devoted to this subject is the paper of Del
Piero [3], where the author sharpens the class of fit regions defined by himself in [2].
In both papers, Del Piero follows the original lines established by Noll and Virga in
[16] and, in particular, he takes from them the term fit region with the meaning of
“sets fit to be occupied by continuous bodies and their subbodies”.

We follow another approach, which combines the spirit of Gurtin’s book [6] and the
language of Differential Geometry; specifically, we employ the language of manifolds
with corners to define a larger class that we call pyramidal manifolds.

There exist some references intersecting this one in the sense that they understand
bodies as manifolds; perhaps the most remarkable one is the book by Marsden and
Hughes [15]. In the same line, but much more recent, are [1] and [13]. Among all
those three references, it is in the paper [13] where one finds the highest degree of
proximity with our standpoint; there, the authors define a body as a manifold with
corners, which shows their intention of understanding the concept of body in the way
we do.
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The purpose of this paper is to introduce the concept of pyramidal manifold, and to
demonstrate that it is useful as a model definition of three-dimensional (from now on,
3D) body. A definition of body expressed in the language of Differential Geometry has
the nice property of being framed within a strong branch of modern Mathematics, the
theorems of which can consequently be employed to CM concepts involving bodies,
like for instance deformations, motions, and theorems of integration.1

To give an example, when speaking of “deformed bodies” it is understood that
the deformation of a body (the image of a body under a deformation) is, in turn,
a body. From a dynamical point of view, the same situation occurs when talking
about motions, as a motion is a one-parameter family of deformations. Inter alia,
the methodology employed in the present paper allows performing an easy proof of
the statement that “the deformation of a body is again a body”. Even when this
statement might seem to be trivial, its proof is obviously related to the way in which
the concept of body is defined, and typically a complex proof is required when a
complicated definition is given.

This work assumes that, given a definition of 3D body B, the following assertions
should be true:
(1) It is easy to discern whether a given subset of R3 is a 3D body or not.
(2) B◦ is connected.

(3) B = B◦.
(4) B possesses some local structure of 3D manifold, in such a way that:

(a) The set of 3D bodies includes as particular cases the 3D manifolds with
corners, but it is strictly larger. (A cube is a manifold with corners, but a
pyramid with four or more faces converging in its vertex is not, whereas it
should be a body.)

(b) The set of 3D bodies is invariant under deformations. In other words, the
deformation of a 3D body is again a 3D body.

(c) The Stokes theorem holds for bounded 3D bodies.
The contents of this paper are based upon the unpublished work [12], carried out by

the first author, when he was an undergraduate senior student, under the supervision
of the second and third ones.

After 3D, the symbols 0D, 1D and 2D will be employed with their obvious meaning.
Throughout all of this paper, except for the last section, the word “body” shall mean
“3D body”.

2. Origins

The scientific origins of this work can be found in Gurtin’s book [6], where it is
said that “a body B is a (possibly unbounded) regular region in E ”. The symbol
E stands for R3, and the expression regular region is used “in the sense of Kellogg”,
which in turn means in the sense of Kellogg’s book [8]. But if one wants to deepen into
details and goes to [8], it soon becomes apparent that that definition is not entirely
satisfactory, due to the following reasons:
A. Firstly, one notice that Kellogg’s regular regions are necessarily bounded, while

Gurtin wants to consider unbounded bodies in CM (an unbounded body may be
a good approximation for the problem under consideration when one direction
is much larger than the others).

1One cannot forget that the Stokes theorem is a matter of utmost concern in CM.
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B. As a second point of disagreement, the example of two cones sharing the same
vertex (and only that point) shows that a regular region in Kellogg’s sense may
fail to be the closure of a domain,2 a property which is mandatory for Gurtin’s
bodies (as it is for ours; see Conditions 2 and 3 above). Other examples are
furnished by thinking of two balls with one point of tangency or of two cubes
with only one edge in common.

C. Lastly, Kellogg’s definition is given in such a way that makes it difficult to check
whether the deformation of a body is a body, as it should be, or not.

This paper is focused on giving a definition of body according to Gurtin’s spirit
from the viewpoint of the Differential Geometry.

It is by no means our intention to censure the definition of Kellogg, which was
published in 1929, when the concept of manifold with corners did not even exist, and
which possesses the good property of agreeing very well with what a body should
be. It must be pointed out, moreover, that the class of Kellogg’s bodies which satisfy
Conditions 2 and 3 above is larger than the class of bounded bodies as defined in
here, where we shall limit ourselves to study bodies which are locally deformable into
a convex set which has Lipschitz boundary and is equal to the closure of its interior;
precisely speaking, for every x of the body B there exists a neighborhood of x, let
us say U , in R3 such that U ∩ B can be deformed, via an orientation-preserving
C 1-diffeomorphism, into a convex subset of R3 which has Lipschitz boundary and is
equal to the closure of its interior. These statements set out the scope of the present
study, which we consider not definitive as the word “towards” in the title tries to
reflect.

3. Pyramidal manifolds

3.1. Pyramids. We will start by fixing what we mean by a differentiable map de-
fined on an arbitrary subset of Rp. We follow the definition given by Kobayashi
and Nomizu [9, Appendix 3]; that is, we say that the map φ : A ⊂ Rp −→ Rq is
C r-differentiable (where p and q are natural numbers and r ∈ N ∪ {∞}) at x ∈ A
whenever there exists a C r-map φx, defined on a open neighborhood of x in Rp,
which agrees with φ in the intersection of their domains. Every time that we use the
term C r-differentiable we mean r > 1 and never r = 0 which will be mentioned as
continuous.

We recall here that Gurtin uses in [6] the term smooth for C 1-maps. We do not
follow this convention. We say that a map is a C r-diffeomorphism when it is a
C r-differentiable bijection with C r-differentiable inverse.

Following [5], we are going to work with convex polytopes in an Euclidean space:
the intersection of a finite family of closed half-spaces. (We understand by closed
half-space a subspace of the form

{(x1, . . . , xp) ∈ Rp : x1 > c}
for a given basis of Rp and a given real constant c.) Convex polytopes in R3 present
an interesting property: they are locally generated by pyramids. Our purpose is to
define the concept of body by means of local diffeomorphisms to convex polytopes.
It is thus enough to take charts only to pyramids.

Definition 3.1 (Pyramid of n edges in R3, where n ∈ N r {1, 2}). Let us consider
the family {πn

k }
n−1
k=0 of planes in R3 containing the origin and two consecutive nth

2Here, a domain is an open and connected subset of R3.
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roots of unity on the plane x3 = 1. We define Pn to be the closure of the connected
component of R3 r

∪n−1
k=0 π

n
k containing (0, 0, 1). We call this subspace the pyramid

of n edges in R3.

This definition would fail for smaller n. But we would like to have an equivalent
idea of convex topological cone with 2, 1 and 0 edges.

Definition 3.2 (Pyramid of n edges in R3, where n ∈ {0, 1, 2}). We define for
n ∈ {0, 1, 2} the pyramid of n edges in R3 as the subspace of R3 given by

P0 := {(x1, x2, x3) ∈ R3 : x22 6 (x3 + x1) (x3 − x1) , x3 > 0},
P1 := {(x1, x2, x3) ∈ R3 : x22 6 (x3 + x1) (x3 − x1)

2, x3 > |x1|},
P2 := {(x1, x2, x3) ∈ R3 : x22 6 (x3 + x1)

2(x3 − x1)
2, x3 > |x1|}.

These pyramids are cones over some figures of the plane x3 = 1 as in the previous
cases. Evaluating x3 = 1 in the defining equations of the pyramids we find that
the generating figures are homeomorphic to closed discs of the plane with n corners,
located in the nth roots of unity (we understand here that there are no 0th roots of
unity). In fact, this might be done for any n ∈ N.

Remark 3.1. It is possible to give a name to the regular surfaces bounding Pn for
n ∈ {0, 1, 2} as we have done in Definition 3.1. Those are given by taking the cones
over the closed curves bounding the disc of the plane x3 = 1 without the corners and
removing the vertex (0, 0, 0). The number of those surfaces is equal to n and will be
denoted by πn

k as before (except for n = 0, in which case there exists one surface, π0
0).

3.2. Pyramidal manifolds. We might remark at this point that Pn = (Pn)◦, a
property which is desired for bodies. This appreciation leads us to the definition
of pyramidal manifold. Avoiding formalisms, a pyramidal manifold is nothing but a
subspace of R3 which looks locally like a pyramid.

Definition 3.3 (Pyramidal manifold in R3). We say that a subset M of R3 is a
C r-differentiable pyramidal manifold, where r ∈ N∪{∞}, when for each x inM there
exist

• a C r-diffeomorphism φx : Ux −→ Vx of an open neighborhood of x in R3 onto
an open subset of R3, and

• a non-negative integer number nx
satisfying that φx(Ux ∩M) = Vx ∩Pnx .

In Figure 1 two examples of pyramidal manifolds are shown. Note that both sets
are conceivable bodies, but they are not manifolds with corners.

Every pyramidal manifold of class C r (r ∈ N ∪ {∞}) is in particular of class C 1.
We will often use pyramidal manifold as shorthand for a C r-differentiable pyramidal
manifold in R3 for some r ∈ N ∪ {∞}.

We will call the triplet (Ux, φx, nx) a pyramidal local chart omitting the subindex
x whenever possible.

Definition 3.3 might be confusing because nx might change for the same points
and might be fixed for some others. Let us imagine that we want to show that P0

is a pyramidal manifold. We might think of choosing for each point the pyramidal
local chart (R3, id, 0) which gives indeed the structure of a pyramidal manifold to P0.
But we could have chosen for any interior point an open ball U fully contained in
the interior of P0 centered at that point and V an open ball in the interior of any
pyramid Pn centered at (0, 0, 1). It is possible to find an affine φ mapping U onto
V . This time (U,φ, n) is again a pyramidal local chart for a point in the interior of
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Figure 1. A spinning top (left) is modeled in P0. Many blades (clip
point blades) and wedges (right) are modeled in P1. None of these
sets is a manifold with corners (see Section 5).

P0. Nevertheless, the only choice for n(0,0,0) at each pyramid Pn is n(0,0,0) = n as we
study in the following section.

In fact, the points away from the origin are locally like the intersection of at
most two half-spaces. We use the notion of Λ-quadrant of order n in Rp [14, Defini-
tion 1.1.1]:

Λn
p = {(x1, . . . , xp) ∈ Rp : xi > 0; p− n < i 6 p} = Rp−n × [0,∞)n.

Remark 3.2. The linear map Φ: R3 −→ R3 sending in order the 3rd roots of unity
of the plane x3 = 1 to the usual basis of R3 shows that P3 is C∞-diffeomorphic to its
image Λ3

3 under Φ.

Our aim is to take local charts around x to different objects such that (0, 0, 0) is
the image of x. This is achieved by taking local charts to certain Λ-quadrants. We
rename some of those spaces to better fit in our language:

Pn := Λn+3
3 for n ∈ {−3,−2,−1}.

Remark 3.3. Although we denote those spaces by the same letter as that used for
the pyramids, and in fact we will also call these Λ-quadrants pyramids, we want to
highlight the complete different nature of those subspaces which are not cones over a
topological disc with n corners.

We give the names π−1
0 , π−1

1 (respectively, π−2
0 ) to the faces bounding P−1 (re-

spectively, P−2) as we have done in Definition 3.1. In this case we need to use another
point (for instance (1, 1, 1)) to identify the connected component whose closure is Pn.

It is easy to check that the point (0, 0, 0) is in each Pn, n > −3. This fact will play
a fundamental role in the theory.

Theorem 3.1. A subset M of R3 is a C r-differentiable pyramidal manifold if, and
only if, for each x in M there exist

• a C r-diffeomorphism φx : Ux −→ Vx of an open neighborhood of x in R3 onto
an open neighborhood of (0, 0, 0) in R3, and

• an integer number nx > −3
satisfying that φx(x) = (0, 0, 0) and φx(Ux ∩M) = Vx ∩Pnx .

We call the triplet (Ux, φx, nx) in this new sense an adapted local chart centered
at x, or even an adapted local chart.
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Proof.
(1) LetM be a subset of R3 satisfying the properties required in the theorem. Given

any point x ∈ M with an adapted local chart such that nx > 0 it is also a pyr-
amidal local chart. We recall that P3 is diffeomorphic to Λ3

3 through the diffeo-
morphism Φ defined in Remark 3.2. What is more, given any open neighborhood
V of the origin in Λi

3 (i ∈ {0, 1, 2}), by restricting to a small enough open ball
W centered at the origin contained in V , there exists a translation ψ such that
ψ(W ∩ Λi

3) = ψ(W ) ∩ Λ3
3, post-composing with Φ−1 we have built a pyramidal

local chart centered at any point x ∈M .
(2) Let M be a pyramidal manifold. We fix a point x ∈ M and a pyramidal local

chart Ux, φx, nx) around it. If φx(x) = (0, 0, 0) the same chart is also an adapted
local chart. We assume now that φx(x) ̸= (0, 0, 0). If φx(x) is in the interior of
Pnx

, we take an open neighborhood fully contained in Vx∩Pnx
and a translation

by −φx(x) to get the new desired adapted chart. If φx(x) is on the boundary
of Pnx

and nx > 3, then φx(x) belongs to at most two planes πnx

k . In this case
we can take a small enough neighborhood of the point meeting the same amount
of planes πnx

k and take an affine map sending φx(x) to (0, 0, 0) and the plane or
planes πnx

k to the plane or planes bounding Λ1
3 or Λ2

3 respectively.
For the remaining cases (φx(x) ̸= (0, 0, 0), φx(x) on the boundary of Pnx ,
and nx ∈ {0, 1, 2}) we can approximate the intersection Pn ∩ {(y1, y2, y3) ∈
R3 : y3 = x3} close to φx(x) by a line or by two intersecting half-lines (the
generated by the lateral derivatives). In any case we can apply the previous
procedure to get an adapted local chart. �

4. Index and degree

Theorem 3.1 shows in particular that every pyramid as in Definitions 3.1 and 3.2
is a C∞-pyramidal manifold. It was already said that the use of the adapted charts
stresses out the importance of the third component of a local chart.

Proposition 4.1 (Index and Degree). Let M be a C r-differentiable pyramidal man-
ifold. Let (U,φ, nx) be an adapted local chart centered at a point x of M . Then nx
is independent of the adapted local chart chosen for x and thus the following maps,
called index (ind) and degree (deg), are well defined:

ind: M −→ {0, 1, 2, 3},
deg : ind−1(3) −→ N ∪ {0},

where the index assigns to x ∈M the number nx + 3 if nx < 0 and 3 otherwise, and
the degree assigns to x ∈ ind−1(3) the number nx.

Proof. Let x be an arbitrary point inM and (U,φ,m) and (V, ψ, n) two adapted local
charts centered at x. The map

h = ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V ),

which is called transition function, is a C r-diffeomorphism, hence sending the bound-
ary of φ(U ∩ V ) ∩Pm onto the boundary of ψ(U ∩ V ) ∩Pn. What is more, since h
is a diffeomorphism, it preserves regular submanifolds.

The proof of this proposition is done by studying the number of maximal dimen-
sional C 1-submanifolds of the boundary. We find that for n > 1 the number of
C 1-surfaces and curves is equal to n (the open sections of the planes πn

k and the inter-
sections between them), and the origin is not contained in any of them, so we have a
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0D submanifold. If n = 0 there is no C 1-curve but one surface and one remaining 0D
submanifold. For n < 0 there is no 0D remaining submanifold, and there are exactly
n+ 3 regular C 1-surfaces. The same consideration might be done for m.

Let n′ and m′ be, respectively, the number of maximal regular surfaces of the
boundary of Pn and Pm. Since h sends surfaces into surfaces, given i ∈ {0, . . . ,m′−1}
there exists a unique j ∈ {0, . . . , n′ − 1} such that

h(φ(U ∩ V ) ∩ πm
i ) = ψ(U ∩ V ) ∩ πn

j .

It is now clear that n′ = m′. The existence of a 0D remaining regular submanifold
and of a C 1-curve classifies the different cases that might appear for n′ = m′ 6 2,
which proves the proposition. �

We distinguish points of a pyramidal manifold in two ways (index and degree)
because of several reasons. One of them is agreement with other authors (term Λ-index
for [14]), another one is to differentiate between the points that look locally like the
vertices of cones over topological discs (those where the degree is defined) and those
which do not (index strictly smaller than 3). The differences between these two
concepts will be developed in the following sections.

The same argument can be used to prove the following corollary. From now on we
will just use (U,φ) for an adapted local chart centered at x (the third component will
be referred to as the degree or the index of the point depending on the situation).

Corollary 4.2. Let f : M −→ N be a C r-diffeomorphism between two pyramidal
manifolds M and N . Then

ind(x) = ind(f(x)) ∀x ∈M and

deg(x) = deg(f(x)) ∀x ∈ ind−1(3).

Proof. We fix a point x ∈ M and two adapted local charts (U,φ, n) centered at x
and (V, ψ,m) centered at f(x). The map

h = ψ ◦ f ◦ φ−1 : φ(U ∩ f−1(V )) −→ ψ(f(U) ∩ V )

is a C r-diffeomorphism and we can apply the same procedure of the previous proof to
get the result. (Note that a local extension of f on an open neighborhood of x and a
local extension of f−1 on an open neighborhood of f(x) need not be inverse of each
other, but we can get smaller open neighborhoods so that this property holds.) �
Remark 4.1. Given a pyramid Pn we observe that there are points of, at most, four
different indices: the interior points (index 0), those belonging to a single face (index
1), those belonging to a single edge (index 2) and, in case (0, 0, 0) is not of one of the
previous kinds, it is of index 3 and degree n. This assertion follows from Theorem 3.1.

This gives us more information about the index and degree on a pyramid. First of
all, there are no points of index or degree greater than the index or degree of (0, 0, 0)
in any pyramid. Besides, in every open neighborhood of (0, 0, 0) on Pn there are
points of index i ∈ {0, . . . , n+ 3} if n < 0, of all indices (0, 1, 2 and 3) for n > 0 and
of index i ∈ {0, 1, 3} for n = 0. What is more, there is only one point where the index
is defined in any Pn with n > 0: the origin, whose degree is equal to n.

Definition 4.1 (ith stratum and ith skeleton). Let M be a pyramidal manifold.
Then, for each i ∈ {0, 1, 2, 3}, the sets

∂iM = {x ∈M : ind(x) = i} and
∂iM = {x ∈M : ind(x) > i}

are called, respectively, the ith stratum and the ith skeleton of M.
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The vocabulary of strata and skeletons is taken from simplicial homotopy theory.
Extensions of the meaning of these terms are common in algebraic topology (see [10],
for example). The concept is also a generalization of Λ-index [14, Definition (1.2.6)]
for small dimensions.

Both strata and skeletons have important properties, as will be shown in the fol-
lowing sections. As a first observation ∂3M is the subset of M where the degree
is defined. We begin with a result which also generalizes [7, Proposition 2.4] for
dimension 3. The symbol ⊔ is used to denote disjoint union.

Proposition 4.3. Let M be a pyramidal manifold. Then:
(1) M =

⊔3
i=0 ∂iM .

(2) ∂iM =
⊔3

j=i ∂jM .

(3) M = ∂0M .
(4) ∂3M = ∂3M is a set of isolated points, and so are deg−1(n) ⊂ ∂3M for all

n ∈ N ∪ {0}.
(5) ∂iM ∩M = ∂iM for all i ∈ {0, 1, 3}. If M is closed in R3, ∂iM = ∂iM .
(6) ∂2M ∩M ⊂ ∂2M , and when M is closed in R3, ∂2M ⊂ ∂2M . Both equalities

hold if, and only if, deg−1(0) = ∅.

Proof.
1, 2 and 3. Assertions in these items follow immediately from Definition 4.1 and Proposi-

tion 4.1.
4. Given x ∈ M such that ind(x) = 3, there exists a neighborhood of x which

is diffeomorphic to a neighborhood of (0, 0, 0) in Pdeg(x) where deg(x) > 0. It
follows from the definition of pyramid and Corollary 4.2 that the only point with
index 3 in the open neighborhood is x itself.

5 and 6. Set i ∈ {0, 1, 2, 3}. Fix a point x ∈ ∂(∂iM)∩M and apply on x the index map. If
the index is smaller than i, we have seen in Remark 4.1 that there is no point in a
small enough neighborhood of x whose index is larger than ind(x), in particular
no point of index i, which is a contradiction to the fact that x ∈ ∂(∂iM). That
proves the inclusion

∂iM ∩M = ∂iM ∪ (∂(∂iM) ∩M) ⊂ ∂iM.

In order to finish this proof we may apply again the Remark 4.1. If i is in {0, 1, 3}
and x in ∂iM , then in any open neighborhood of x we find some point with index
in {0, . . . , ind(x)}r {2}. In any case, with degree exactly i.
If M is closed in R3, then ∂(∂iM) ⊂ M = M and ∂iM ∩M = ∂iM for each
i ∈ {0, 1, 2, 3}. �

The exceptional behavior of i = 2 on the last statement of the previous proposition
is only caused by P0: it has 2nd stratum empty. With less formalism, the origin in
P0 is a vertex which is not attached to any edge.

We conclude this section with a corollary to the previous proposition which reflects
the idea that ∂i is a generalized boundary operator.

Corollary 4.4. Let M be a pyramidal manifold. Then

∂0M =M◦ and
∂1M = ∂M ∩M.

If M is closed in R3, ∂1M = ∂M .
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Proof. After Proposition 4.3 it is enough to show one of the equalities. Let us check
that ∂0M =M◦.

First of all, we will show that ∂0M is open in M and hence a subset of M◦.
Given any point in ∂0M , we fix an adapted local chart (U,φ) and we want to prove
that every point in U is actually in ∂0M . It is clear that U ⊂ M (U = φ−1(V ) =
φ−1(V ∩P−3) = U ∩M). Given any point y ∈ U , as V is open in R3, we can find an

open ball Ṽ centered at φ(y) fully contained in V . Fixing Ũ = φ−1(Ṽ ) and

φ̃ : w ∈ Ũ −→ φ̃(w) = φ(w)− φ(y) ∈ R3

we get an adapted local chart centered at y making deg(y) = 0.
We work similarly for the other inclusion. Taking x ∈ M◦, we can find an open

ball U centered at x fully contained in M◦. We build an adapted local chart centered
at x just by setting

φ : w ∈ U −→ φ(w) = w − y ∈ R3,

which completes the proof. �

5. Pyramidal manifolds and manifolds with corners

In this section we show the existing relations between pyramidal manifolds and
some known objects of Differential Geometry such as manifolds with corners or the
less demanding notions of manifold, manifold with boundary and manifold with edges.
We will see that the concept of pyramidal manifold is a generalization in the 3D case
of these and we will prove some results concerning the boundary of a pyramidal
manifold.

We understand manifold (with or without boundary) on Rp in the sense of Spivak
[18, Chapter 5]. We adapt to our language the definitions for the sake of clarity and
extend them to the case of manifolds with edges and corners.

Definition 5.1. LetM be a subset of Rp, 0 6 n 6 p an integer, and r ∈ N∪{∞}. We
assume that whenever x is in M there exists a C r-diffeomorphism φx : Ux −→ Vx of
an open neighborhood of x in Rp onto an open subset of Rp satisfying that φx(x) = 0
and φx(Ux ∩M) = Vx ∩

(
Λi
n × {0}p−n

)
for some i ∈ {0, 1, 2, n}.

We say that M is an n-dimensional C r-manifold (or C r-manifold with boundary,
or with edges, or with corners) in Rp if i = 0 (or i 6 1, or i 6 2, or i ∈ {0, 1, 2, n},
respectively), for all x ∈M .

Remark 5.1. These charts centered at each point are the equivalent to the adapted
charts of Theorem 3.1; that is why we will also call them adapted charts. In case of
confusion we will specify pyramidal adapted local charts for the ones in Theorem 3.1.
Following the same spirit of that theorem, there is an equivalent definition of manifold,
manifold with boundary, with edges and with corners using analogous notions of
pyramidal charts: instead of requiring the charts to send the point to the origin we
ask all the charts to have i fixed. A local chart in this new sense is a chart with
corners if i = n, with edges if i = 2, with boundary if i = 1 and just a local chart if
i = 0.

Definition 5.2 (0th stratum and 1st skeleton). LetM be a manifold with or without
boundary, edges or corners. A point x ∈M is called a boundary point if there exists
no adapted chart with i = 0 for x. It is called interior otherwise. Then the sets

∂0M = {x ∈M : x is interior} and
∂1M = {x ∈M : x is a boundary point}
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are called, respectively, the 0th stratum and the 1st skeleton of M .

Those sets are well defined, disjoint and they cover M (see [11, Theorem 1.37]).

Remark 5.2. It follows from the definition of Λ-quadrant that Λn
n ⊂ Λ2

n ⊂ Λ1
n ⊂ Λ0

n.
We recall here that Λ3

3 is diffeomorphic to P3 (Remark 3.2). Putting those two facts
together we have, for a 3D C r-manifold M ⊂ R3, the following chain of implications:

M is a manifold =⇒M is a manifold with boundary =⇒
M is a manifold with edges =⇒M is a manifold with corners
=⇒M is a pyramidal manifold.

We introduce the following twin propositions that state that strata are manifolds
and the complementary of the skeletons are manifolds with corners (cf. [10]). As we
have done just before, we fix r ∈ N ∪ {∞} and we assume that all the manifolds
appearing in the following propositions are of class C r.

Proposition 5.1. Let M be a pyramidal manifold. Then:
0. ∂0M is a 3D manifold.
1. ∂1M is a 2D manifold.
2. ∂2M is a 1D manifold.
3. ∂3M is a 0D manifold.

Proof. This proposition follows from the definitions just by using the same coordinate
charts. The proof can be summarized in the chain of equalities

φ(U ∩ ∂jM) = φ(U) ∩ ∂j(Pj−3) = φ(U) ∩
(
R3−j × {0}j

)
,

which hold for j ∈ {0, 1, 2} and U small enough.
For the case j = 3 we have noted that P3 is diffeomorphic to Λ3

3 (see Remark 3.2,
where the diffeomorphism Φ is specified) so that

φ(U ∩ ∂3M) = Φ(φ(U)) ∩ ∂3(Λ3
3) = Φ(φ(U)) ∩

(
R0 × {0}3

)
,

for U small enough. �

Proposition 5.2. Let M be a pyramidal manifold. Then:
0. M r ∂0M = ∅. Hence, it is a 3D manifold with and without boundary, with and

without edges and with and without corners.
1. M r ∂1M is a 3D manifold.
2. M r ∂2M is a 3D manifold with boundary.
3. M r ∂3M is a 3D manifold with edges.
4. (M r ∂3M) ∪ deg−1(3) is a 3D manifold with corners.

Proof.
0. M r ∂0M = ∅ by Proposition 4.3. The empty set is indeed a manifold with and

without boundary, edges and corners.
1. Again by Proposition 4.3, M r ∂1M = ∂0M . This is just a repetition of the

statement 0 in Proposition 5.1.
2. In this case we have to modify the coordinate charts only for the points in ∂0M ,

being the statement clear in the other case (note that M r∂2M = ∂0M ⊔∂1M).
This problem arises from the fact that given x ∈ ∂0M and (U,φ) an adapted
local chart centered at x, φ(U) is not a subset of Λ1

3. We skip this problem by

shrinking φ(U) to an open ball B(ε) ⊂ φ(U) of radius ε. We fix Ũ = φ−1(B(ε))
and

φ̃ : w ∈ Ũ −→ φ̃(w) = φ(w) + (ε, ε, ε) ∈ R3,
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thus getting a local chart with boundary at x and makingMr∂2M be a manifold
with boundary.

3. The same situation arises here, with similar solution.
4. We only add to the previous case the points locally likeP3, which is diffeomorphic

to Λ3
3 as we have previously said in the Remark 3.2.

�

After those two propositions, we are able to properly state the implications sketched
in Remark 5.2. As it has been the practice throughout this section, we fix r ∈ N∪{∞}
and we assume that all the manifolds appearing in the following statement are of class
C r, and, in this particular case, also 3D.

Corollary 5.3. Let M be a subspace of R3. Then we have the following equivalences:
(1) M is a manifold if and only if M is a pyramidal manifold with empty 1st skeleton

(∂1M = ∅).
(2) M is a manifold with boundary if and only if M is a pyramidal manifold with

empty 2nd skeleton (∂2M = ∅).
(3) M is a manifold with edges if and only if M is a pyramidal manifold with empty

3rd skeleton (∂3M = ∅).
(4) M is a manifold with corners if and only if M is a pyramidal manifold with 3rd

skeleton reduced to deg−1(3) (∂3M = deg−1(3)).

Proof. The implications from right to left are just consequences of Proposition 5.2.
Before going further, let us point out that Λi

3 = Pi−3, and thus it is a C∞-pyramidal
manifold with ∂i+1Pi−3 = ∅ for i ∈ {0, 1, 2}. Furthermore, there exists a C∞-dif-
feomorphism Φ from P3 onto Λ3

3 (see Remark 3.2), and hence Λ3
3 is a C∞-pyramidal

manifold with ∂3(Λ3
3) = ∂3(P3) = deg−1(3) where the degree might be taken both in

Λ3
3 or in P3.
In either case, if x ∈ M we fix (U,φ) a local chart (with or without boundary,

edges or corners) at x. Post-composing with Φ if necessary, we have that φ(x) ∈ Λi
3

for some i ∈ {0, 1, 2, 3}. There exists a, now pyramidal adapted, local chart (V, ψ)

centered at φ(x). Just by taking Ũ = U∩φ−1(V ) and φ̃(y) = ψ◦φ(y) defined for each

y ∈ Ũ , we have that (Ũ , φ̃) is a pyramidal adapted local chart centered at x. What is
more, ind(x) = ind(φ(x)), deg(x) = deg(φ(x)) if it is defined and, since φ(x) ∈ Λi

3,
we have that ind(x) 6 i. Repeating this process for each x ∈ M we get that M is
a pyramidal manifold with ∂i+1M = ∅ if i ∈ {0, 1, 2} or that ∂3M = deg−1(3) for
i = 3. �

It is not true in general that the closure of each connected component of ∂1M is
a 2D manifold with corners. As counterexamples we find P0 and P1. We can only
ensure the following local behavior.

Proposition 5.4. Let M be a pyramidal manifold. Let (U,φ) be an adapted local
chart centered at x ∈ ∂1M such that U∩∂1M is connected. Then U∩∂1M has ind(x)
connected components if ind(x) < 3, otherwise it has deg(x) connected components if
deg(x) > 0 and it is connected if deg(x) = 0.

Moreover, if x /∈ deg−1({0, 1}), given any one of those connected components, its
closure relative to U is a 2D manifold with corners.

Proof. As this is a local statement, it is enough to prove it for the pyramids, because
the number of connected components and the fact that it is a 2D manifold with
boundary are stable under diffeomorphisms.
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We fix a pyramid M = Pi for some i > −2. Given any neighborhood U of (0, 0, 0)
in Pi such that U ∩ ∂Pi is connected, it follows that U ∩ (∂1Pi) has the required
number of connected components (one for each surface πi

k).

We suppose now that x /∈ deg−1({0, 1}). The surfaces πi
k are planes except for

i = 2 when they are both diffeomorphic to a triangular sector of the plane x2 = 0
just by projection (we call this map ρ). We fix S one of such connected components.
Its closure relative to U is nothing but the piece of plane πi

k which meets V (post-
composing with ρ if necessary). It is now enough to see that πi

k∩V is diffeomorphic to
an open subspace of Λ2

2×{0}. This is conquered just by considering the restriction to
πi
k ∩ U of the linear map which sends πi

k onto the plane {(x1, x2, x3) ∈ R3 : x3 = 0}.
We then have that πi

k ∩ U is diffeomorphic to an open submanifold of a 2D manifold
with corners, and then it is also a manifold with corners (see [18]). �

It is important to be aware that each connected component of U ∩ ∂1M does not
have to be part of a different connected component of ∂1M . A tear-based bounded
cylinder serves as a counterexample (by tear we mean the topological disc P1∩{x3 =
1}).

Remark 5.3. Even though we have no intrinsic 2D local charts with corners for
x ∈ deg−1({0, 1}) we might construct them explicitly. For M = Pi, i ∈ {0, 1}, we
consider ∂Pi ∩ {x2 6 0} and ∂Pi ∩ {x2 > 0}. Those two connected subspaces of the
boundary are 2D manifolds with boundary just by projecting to the plane x2 = 0.

6. Bodies

The problems arising from the Gurtin-Kellogg definition of body have already
been explained in the introduction. The previous opening discussion about pyramidal
manifolds leads us to seek a definition of body in terms of pyramidal manifolds.

Remark 6.1. We will think of bodies as deformations of locally convex polytopes.
In particular, we exclude from the definition those subspaces of R3 which are not
locally deformable to a convex body. Extending the definition to those regions is a
fundamental future line of work.

6.1. Regions. We are going to introduce a definition appearing in Gurtin’s book
[6], with some modifications.

Definition 6.1 (Closed region). A subset R of Rn is called a closed region in Rn

whenever there exists an open and connected set D ⊂ Rn such that D = R.

We remark that for Gurtin the term connected refers to C 1-path connectedness. We
use instead the general notion of connectedness. Those two concepts are equivalent
for open subsets of Rn as a corollary of Whitney’s approximation theorem (see [11,
Theorem 6.26], for instance). An open and connected set, like D in the definition
above, is often called a domain as we have already said in the introduction for n = 3.
It is important to observe that, given any two points in a closed region R = D, it is
possible to join them by a C 1 (in fact, C∞) path whose interior is fully contained in
D.

We start relating Gurtin’s terminology with that of pyramidal manifolds by the
following definition.

Definition 6.2 (Quasi-body). We call quasi-body a C 1-differentiable pyramidal man-
ifold which is non-empty and connected.
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This term is justified by the next proposition, which shows that the only property
that a quasi-body lacks to be a closed region is to be closed in R3.

Proposition 6.1. Let M be a quasi-body. The following statements are equivalent:
(1) M is closed in R3.
(2) M is a closed region in R3. What is more, M◦ is a domain and M =M◦.

Proof. It clearly suffices to prove the implication 1 ⇒ 2, since the other one holds
trivially. Assume that the quasi-body M is closed in R3.
a) We first observe that M =M◦. This fact follows from Corollary 4.4 and Propo-

sition 4.3:
M◦ = (∂0M) = ∂0M =M.

b) We prove now that M◦ is connected. For doing so, we write M◦ as the union
of two sets A and B which are both open and closed (in M◦) and disjoint. We
want to argue that either A or B is the empty set. In order to do so we are going
to prove that M = A∪B and that the closed subsets A and B of M are disjoint.

b.i: First of all A ∪B = A ∪B =M◦ =M as seen in the previous step.
b.ii: Now we are going to prove that A and B are disjoint. It is enough to

prove that ∂A and ∂B are disjoint, because A is open in M and disjoint
from B. Then A ∩B = ∅, and by symmetry A ∩B = ∅, which yields to

A ∩B = ∂A ∩ ∂B.
Now, given x ∈ ∂A we have that x /∈ A because A is open in M and
x /∈ B because ∂A ∩ B ⊂ A ∩ B = ∅. Thus x ∈ M rM◦ = ∂M . We
are about to prove that x /∈ ∂B. Let (U,φ, n) be an adapted local chart
for x. Fix ε such that 0 < ε < d ((0, 0, 0), ∂ (φ(U))) and define B = B(ε),
V = φ−1(B) and W = φ−1(B ∩ P◦

n). We have on one hand that V is an
open neighborhood of x and then V ∩A ̸= ∅. On the other hand, we have
that B ∩P◦

n is convex (it is the intersection of two convex sets) and thus
connected, from which we infer that W is also connected.
We observe now that W = V ∩ M◦ just by checking the degrees. In
particular, W ⊂ M◦ and hence fully contained either on A or on B. But
W ∩A = V ∩M◦ ∩A = V ∩A ̸= ∅. This proves W ⊂ A and in particular
W ∩ B = ∅. In order to conclude we just see that the open neighborhood
V of x does not intersect B and then x /∈ ∂B:

V ∩B = V ∩ (M◦ ∩B) = (V ∩M◦) ∩B =W ∩B = ∅.
b.iii: We have that A and B are disjoint, both closed in M = A ∪ B, which

implies that one of them is empty, then either A = ∅ or B = ∅. �

6.2. Kellogg’s terminology. In this subsection we reproduce the basic definitions
of Kellogg in [8, IV.7-9] which are relevant for our purposes. The inclusion of these
terms is justified not only for the article to be self-contained but also because we have
translated the definitions into a more contemporary language with the help of [4].

Definition 6.3 (Piecewise C 1-curve in Rn). Let [a, b] ⊂ R be a non-degenerated
interval, and let n be an integer greater than or equal to 2. We say that a continuous
function γ : [a, b] −→ Rn is a piecewise C 1-curve in Rn when:
(1) γ|[a,b) is injective.
(2) There exists a = t0 < · · · < tk = b a partition of [a, b] such that γ|[ti,ti+1] is of

class C 1and γ′|(ti,ti+1) ̸= 0 for all 0 6 i 6 k − 1.
The curve γ is said to be closed whenever γ(a) = γ(b).
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The points {γ(tj)}kj=0 are called vertices of the curve, while for each j ∈ {0, . . . , k−
1} the set {γ(t) : t ∈ [tj , tj+1]} will be referred to as an arc of γ.

Definition 6.4 (Regular region of the plane). We say that R ⊂ R2 is a regular region
of the plane if it is a bounded closed region whose boundary is the image of a piecewise
C 1-curve in R2.

Definition 6.5 (Regular surface element). A subset S of R3 is called a regular surface
element when it is the graph of a regular region of one of the coordinate planes by a
C 1-map.

A point in S is called a vertex when it is the image of a vertex of the piecewise
C 1-curve bounding the regular region whose graph is S. Analogously, the image of
an arc is called an arc on S.

Definition 6.6 (Piecewise regular surface). A subset S ⊂ R3 is called a piecewise
regular surface when there exists a finite number of regular surface elements {Si}ni=1,
called faces, such that S =

∪n
i=1 Si and fulfill the following conditions:

s1: Si ∩ Sj is a common vertex, or a common arc of the two faces, or the empty
set for each pair of different indices in {1, . . . , n}.

s2: Si ∩ Sj ∩ Sk is empty or a common vertex of the three faces for each triple of
different indices in {1, . . . , n}.

s3: For each pair of different indices i and j in {1, . . . , n}, there exist m, a positive
integer smaller than n, and σ, a permutation of {1, . . . , n}, such that σ(1) = i,
σ(m) = j and Sσ(k) ∩Sσ(k+1) is a common arc of the faces Sσ(k) and Sσ(k+1) for
each k in {1, . . . ,m}.

s4: For each x ∈ S, let m be the cardinality of {Si : x is a vertex of Si}. Then
there exists σ, a permutation of {1, . . . , n}, such that for each k ∈ {1, . . . ,m−1}
there exists ek, a common arc of Sσ(k) and Sσ(k+1), such that x is an extremum
of ek.

The piecewise regular surface is said to be closed whenever every arc of every face
is an arc of exactly two faces.

It is already possible to see the will of Kellogg of defining regular regions in a
recursive way. The following definitions generalize this idea to the 3D case.

Definition 6.7 (Element of regular region of the space). An element of regular region
of the space is a subset R of R3 such that
(1) R is a bounded and closed region of R3, and
(2) ∂R is a closed piecewise regular surface.

Again, we call the vertices and arcs of ∂R vertices and arcs of R.

Definition 6.8 (Regular region of the space). A subset R of R3 is called a regular
region of the space when there exists a finite number of elements of regular region of
the space, {Ri}ni=1, such that R =

∪n
i=1Ri and Ri ∩ Rj is either empty, a common

vertex, a common arc, or a common face of both elements for each pair of different
indices.

7. Body as a pyramidal manifold

We introduce now our proposal of a local definition of body in CM.

Definition 7.1 (Body). We say that B ⊂ R3 is a body when it is a quasi-body which
is closed in R3.
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The following theorem is the main result of this paper.

Theorem 7.1. Let B be a body. Then each connected component of ∂B is a piecewise
regular surface. The number of those piecewise regular surfaces is countable, and finite
when B is bounded.

It is crucial to distinguish the connected components, since a disconnected bound-
ary does not constitute a piecewise regular surface (see condition s3 in Definition 6.6).

Proof. The proof is structured into five steps, to facilitate its comprehension.
Step 1: Suppose that B is a bounded body whose boundary is connected.

Let V (B) be the set of vertices of B. We are going to add points to the set
V (B) at each step. First of all, we initialize in the following way: V (B) = ∂3B.
This set is finite as a consequence of Proposition 4.3 and the compactness of B.
For each x in the boundary of B, we can find a pyramidal adapted local chart
centered at x which defines a finite number of 2D local charts with corners of
∂1B (see Proposition 5.4 and Remark 5.3). Fix one of those charts with cor-
ners, (U,φ). Note that U can be reduced if necessary for it to be the graph
of a coordinate function (see [4, Proposition 3]). We assume without loss of
generality that U = {(x1, g(x1, x3), x3)}. In this case we take φ such that
φ(x1, x2, x3) = (x1, x3). We make U even smaller so that φ(U) is a square
ball in the corresponding coordinate plane.
Let U be the covering of ∂1B given by the charts constructed as before for each
point in the boundary and each of those local charts. The set ∂1B is closed
in B and hence compact. We take a finite subcovering of U which is minimal
in the sense that we cannot extract any proper subcovering. We denote it by
{(Ui, φi)}ni=1.

Step 2: We want a covering {Vi}ni=1 with an additional property: the intersection
of the interior of any two different elements of the covering is empty. This is
conquered by setting

V1 = U1,

Vi =

Ui r
i−1∪
j=1

Uj

 for i > 1.

We extend by continuity the maps φi to Vi. We add to the set of vertices those
which are preimage of a vertex in φi(Vi) for each i. Each Vi ∩ ∂1M is a compact
2D manifold with corners. This ensures that V (B) remains finite.
We want to work with a refinement of {Vi}ni=1 formed by closed regions. We take
the closure of each connected component of the interior of each Vi. The number
of such sets is finite, because of the finiteness of {(Ui, φi)}ni=1 and V (B). We
denote this collection by {Wj}mj=1, which is still a covering of ∂1B. We call ψj

the restriction to Wj of φi, where Wj ⊂ Vi.
Step 3: We are going to distinguish two different kinds of vertices on B. On one

hand, those which are in the interior of some Wj . We denote the set of such
vertices as Vint(B) that so far is empty. On the other hand, we work with the
vertices which are in the boundary of some Wj . The set of such vertices will
be denoted by Vext(B) and it is currently constituted by the points in V (B).
We will also build at this step the set of arcs of ∂B, which will be denoted by
A(B). We similarly distinguish between interior and exterior arcs (Aint(B) and
Aext(B)).
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We are going to give the structure of an element of regular surface to each
(Wj , ψj), where j varies from 1 to m. We first observe that ψj(Wj) is a closed
region of the plane, and thus C 1-path connected (in fact, C∞-path connected).

We denote by {yj,i}
k(j)
i=1 the set of images by ψj of V (B) ∩ Wj . We pick up

a point yj,0 in the interior of ψj(Wj). We are going to build arcs connecting

yj,0 with each of the points in {yj,i}
k(j)
i=0 in a recursive way. For convenience, we

denote Wj,0 = W ◦
j and we construct at each step a domain Wj,l which has the

points {yj,i}
k(j)
i=0 on its boundary. Suppose we have built a C 1-path for some l

(the case l = 0 is trivial). We can build a C 1-path

γj,l+1 : [0, 1] −→ ψ(Wj)

joining yj,0 and yj,l+1 such that γj,l+1((0, 1)) is fully contained in Wj,l. We
set Wj,l+1 := (ψ(Wj,l))

◦ r γj,l+1([0, 1]), which is still a domain whose closure

contains the points {yj,i}
k(j)
i=1 . We repeat this process until we have constructed

γj,k(j).

We add to Vint(B) the points {ψ−1
j (yj,0)}mj=1. We add to Aint(B) the set of arcs

built for Wj : {
ψ−1
j (γj,l([0, 1])) : 1 6 l 6 k(l)

}m

j=1
.

The exterior arcs are those paths joining the points {yj,i}
k(j)
i=1 on ∂Wj . We repeat

this process until we treat all the elements Wj .

Step 4: For each j, the set (ψj(Wj))
◦ r

∪k(j)
l=1 γj,l([0, 1]) has k(j) connected com-

ponents that we can index by l ∈ {1, . . . , k(j)}. We denote by Sj,l the preimage
by ψj of the closure of the lth connected component of that set. The set of faces
is given by all those Sj,l varying j and l until we have covered all the possible
cases. We remark that this set, denoted by C(B), is finite as well. By construc-
tion

∪
Sj,l ∈C(B) Sj,l = ∂1B. What is more, each Sj,l is the image of a triangle,

and then an element of regular surface which exactly three arcs (two interior
and one exterior) and three vertices (two exterior and one interior). We have
endowed ∂B with the structure of a piecewise regular surface. Let us check the
conditions:

s1: Si,j ∩ Sk,l has to occur in the boundary of those sets by construction. If

i = k they share the point ψ−1
i (yi,0); in case they share another vertex,

the whole intersection will just be the arc joining those two vertices. If
i ̸= k, Si,j and Sk,l have an unique exterior arc that could be the same or
not. In the first case the intersection is that arc, in the second case the
intersection is a common vertex of those two arcs or the empty set.

s2: Si,j ∩ Sk,l ∩ Sm,n is the point ψ−1
i (yi,0) if i = k = m. If one the indices

i, j and m is not equal to the others, the intersection has to occur in the
exterior arcs of the faces. By repeating the last argument in s1 twice we
get that the intersection can only be a common vertex or the empty set.

s3: Since ∂BrV (B) is a connected topological manifold with boundary, we
can always join two points by an arc in ∂B (recall that V (B) is finite).
By taking two points in the interior of Si,j and Sk,l we build such a path
and we take care of the faces and arcs that the path crosses—avoiding
repetition—to construct the desired faces and arcs.

s4: Given an element of V (B) we distinguish two cases: interior and exterior.
If the vertex, say ψ−1

j (yj,0), is interior we just select an arbitrary element
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Sj,l and continue in a fixed direction (clockwise for instance) on the coor-
dinate associated plane until we return to Sj,l. If the vertex is exterior, we
take some Sj,l such that the point is a vertex of this face and we continue
through the unique Sj,k different from Sj,l sharing that vertex. After that,

we just keep moving along all the ψ−1
j (Wj) with no empty intersection

with the selected vertex. This process finishes coming back to Sj,l due to
the finiteness of C(B).

Step 5: We extend the proof to the general case. If ∂1B is still bounded but not
connected, we repeat the process for each connected component. The number of
those connected components is finite.
If B is not bounded, we take the net

{Kijk = [i, i+ 1]× [j, j + 1]× [k, k + 1]}i,j,k∈Z.

Every B ∩ Kijk is a bounded body and we can apply the previous process for
∂1B ∩ Kijk ⊂ ∂(B ∩ Kijk). We lose the finiteness of the number of regular
surfaces, but not its countability.

Now the proof of Theorem 7.1 is complete. �
We remark here that a bounded body fulfills the conditions of Definition 6.8 (this

cannot be expected for an unbounded space). What is more, if its boundary is con-
nected, a bounded body fulfills the conditions of Definition 6.7.

8. Deformations

Once we have established a definition of body in terms of Differential Geometry we
keep translating the definitions of Gurtin [6] into this language. We will prove some
results regarding deformations of the whole space and boundary invariance.

Proposition 8.1. Let B be a body and let f : B −→ R3 be an injective and differen-
tiable map such that detDf(x) ̸= 0 for each x ∈ B. Then:
(1) f(B) is a quasi-body.
(2) ind(x) = ind(f(x)) ∀x ∈ B.
(3) deg(x) = deg(f(x)) ∀x ∈ ind−1(3).

Proof. Since B is closed in R3, there exists a differentiable extension of f, namely

f̃ : R3 −→ R3, by [9, Appendix 3, Theorem 2].
Set N := f(B) and let y be a point in N . Let x ∈ B be its unique preimage

in B and let (U1, φ1, n) be an adapted local chart centered at x. By the inverse
function theorem, there exists U an open neighborhood of x, U ⊂ U1, such that

g := f̃|U : U −→ W̃ = f̃(U) is a diffeomorphism.
By restricting the local chart to (U,φ = φ1|U , n) we construct an adapted local

chart on N centered at y. Set W := f̃(U) ⊂ W̃ and ψ : = φ ◦ g−1 : W −→ φ(U). The
mapping ψ is a diffeomorphism because it is the composition of two diffeomorphisms.
What is more, ψ(W ∩N) = φ(U ∩B) = φ(U)∩Pn and ψ(y) = (0, 0, 0). This proves
that (W,ψ, n) is an adapted local chart for y, and so the index and degree (in case it
is defined) of x and y are the same. �

This result and the following corollary show that the approach of taking charts to
pyramids has the advantage that we can distinguish between points on the boundary
of a body by inspecting their degrees. The classification remains the same after a
deformation, so that a point having a certain degree cannot evolve into a point with
a different degree.
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Corollary 8.2 (Stratum invariance). Let B be a body and let f : B −→ R3 be an
injective and differentiable map such that detDf(x) ̸= 0 ∀x ∈ B. Then, for each
i ∈ {0, 1, 2, 3},

f(∂iB) = ∂i(f(B)) and f(∂iB) = ∂i(f(B)).

This result is a generalization (in R3) of [14, Theorem 1.2.12]. As a particular case
we have that

f(∂B) = ∂(f(B)) and f(B◦) = (f(B))
◦
.

In the hypotheses of the two previous results, f(B) only needs to be closed in
R3 to be a body. We are going to require this extra condition and the fact that
detDf(x) > 0 ∀x ∈ B in the definition of deformation. In order to use a more
common language, let us remark that this last condition is often summarized by
saying that f is orientation-preserving.

Definition 8.1 (Deformation). Let B be a body. A map f : B −→ R3 is said to be
a deformation of B if it satisfies the following conditions:
d1: f is a C 1-diffeomorphism between B and f(B),
d2: f is orientation-preserving, and
d3: f(B) is closed in R3.

Previous results help to easily recognize whether a given body is deformable into
another configuration or not. Figure 2 shows an example.

Figure 2. These two bodies cannot be deformed one into another.
This fact can be derived from the invariance of the degree (Corollary
4.2).

Definition 8.1 coincides with the one given by Gurtin in [6], except in condition
d3. Gurtin asks f(B) to be a closed region of the space, but from Proposition 6.1 we
know that this fact and the closed nature of f(B) are equivalent provided f(B) is a
quasi-body (which in turn is ensured by Proposition 8.1). In this new language it is
very easy to prove some results concerning deformations that were not clear in the
Gurtin-Kellogg language.

Proposition 8.3. Let f : B −→ R3 be a deformation of a body B. Then f(B) is a
body.

Proof. f(B) is a quasi-body by Proposition 8.1, non-empty because B ̸= ∅, and closed
in R3 by definition of deformation. �

We are going to remind the concept of part of a body.

Definition 8.2 (Part of a body). A subset P of a body B is called a part of B if it
is itself a body and it is bounded.
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Proposition 8.4. Let f : B −→ R3 be a deformation of a body B and let P be a
part of B. Then
(1) f−1 : f(B) −→ R3 is a deformation of f(B),
(2) f|P : P −→ R3 is a deformation of P, and
(3) B = R3 if, and only if, f(B) = R3.

Proof. First of all we see that f(B) is a body from Proposition 8.3.
(1) d1-2: By the inverse function theorem, f−1 is a diffeomorphism between f(B)

and B. Moreover,

detDf−1(y) = [detDf(f−1(y))]−1 > 0 ∀y ∈ f(B).

d3: f−1(f(B)) = B, which is closed in R3.
(2) The only non-trivial condition is d3. P is compact and f continuous, so f(P) is

compact and hence closed in R3 as it is a closed subset of the closed space f(B).
(3) If B = R3, f(R3) is a body with ∂1(f(R3)) = f(∂1R3) = f(∅) = ∅. The only

subsets of R3 with empty boundary are R3 and ∅. But ∂1(f(R3)) = ∂(f(R3)) by
Proposition 4.4 and, being f(R3) ̸= ∅, the only choice is f(R3) = R3. The other
implication follows by applying the same procedure to its inverse. �

The higher idea of motion of a body is also a well known concept in Differential
Geometry.

Definition 8.3 (Motion of a body). Let B be a body. We say that the map x : B ×
R −→ R3 is a motion of B if it is an isotopy of class C 3 such that, for each t ∈ R, the
map xt(x) = x(x, t) is a deformation of B.

9. Differential forms

In this section we introduce the language of differential forms on pyramidal mani-
folds in order to generalize the proof of Stokes theorem for bodies. For doing that we
will not only need to establish the notions of differential forms on pyramidal mani-
folds, but also on 2D manifolds with corners (think of the boundary of a pyramidal
manifold). We will use the term Λ-pyramid to mean both the pyramids in R3 and
the Λ-quadrants of orders 1 and n in Rn. We will use as well the term Λ-manifold
of dimension n in Rp (or simply Λ-manifold) to embrace the notions of pyramidal
manifold in R3 and n-dimensional manifold with corners in Rp.

A differentiable function f : U ⊂ Rn −→ Rm defines the linear map Df(x) : Rn −→
Rm, for each x ∈ U , and then a linear map between tangent spaces f∗ : TxRn −→
Tf(x)Rm by f∗(vx) = (Df(x)(v))f(x). This linear map induces a linear map between

the vector spaces of k-linear forms f∗ : Λk(Tf(x)Rm) −→ Λk(TxRn) for each k > 1.

Definition 9.1 (Tangent space to a Λ-manifold). Let x be point of a Λ-manifold M
of dimension n in Rp. Given an adapted local chart (U,φ) at x, we define the tangent
space to M at x by TxM = φ−1

∗ (Rn ×{0}p−n)0 if M is an n-dimensional Λ-manifold
in Rp.

This definition is independent of the adapted local chart. The proof is a repetition,
mutatis mutandis, of the same statement for manifolds. The vector space of linear
forms of degree k on TxM is denoted by Λk(TxM).

It is possible to talk about vector fields and differential forms on Λ-pyramids. This
is done just by considering them to be subspaces of the corresponding Rp with the
differentiable structure given by local extensions. This allows us to extend those
definitions to Λ-manifolds.
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Definition 9.2. LetM be a Λ-manifold of dimension n in Rp. Let TM =
∪

x∈M TxM

and ΛkTM =
∪

x∈M ΛkTxM .
(1) We say that a map F: M −→ TM such that F(x) ∈ TxM for each x ∈ M is

a vector field of class C r on M if for each adapted chart (U,φ) on M the map
y ∈ φ(U ∩M) −→ φ∗F(φ

−1(y)) =
∑n

i=1 λi(y)(ei)y is of class C r, that is the
components λ1, . . . , λn are functions of class C r.

(2) We say that a map ω : M −→ ΛkTM such that ω(x) ∈ ΛkTxM for each x ∈M
is a k-form of class C r on M when for every adapted chart (U,φ) on M , the
components of (φ−1)∗ω are differentiable functions of class C r on φ(U ∩M).

(3) Given ω a k-form on M , we define dω to be the unique (k + 1)-form on M such
that, for each adapted chart (U,φ) on M , (φ−1)∗(dω) = d((φ−1)∗ω).

Before stating the classical theorems of integration we need to show that every
pyramidal manifold is orientable. We say that a manifold with corners or pyramidal
manifold is orientable if it admits an atlas of adapted local charts such that the
transition functions are orientation-preserving—this term used as in the previous
section—. Once we have fixed such an atlas we say that the manifold has been
oriented and that those adapted local charts are oriented.

Proposition 9.1. Every pyramidal manifold M is orientable. The atlas given by the
adapted local charts which are orientation-preserving is an orientation of M which
will be called its natural orientation.

Proof. Let (U,φ) be a connected adapted local chart in M . Dφ has constant sign
in U because U is connected and φ is a C r-diffeomorphism. If its sign is positive,
the adapted local chart belongs to the natural orientation of R3—the one given by
adapted local charts which preserve the orientation—. If the sign is negative, we take
the symmetric adapted chart (U,φ ◦ r), where

r(x1, x2, x3) = (x1,−x2, x3).
Note that r(Pi) = Pi for all i ̸= −1 because roots of unity on the plane are

symmetric with respect to the x1-axis (the case i = −1 is an exception and we need
to take r(x1, x2, x3) = (−x1, x2, x3)). Thus, the new adapted local chart is well
defined and its differential has the opposite sign to Dφ. We are then able to cover M
by adapted charts in this special atlas or orientation-preserving adapted charts. �

From now on we will assume that every pyramidal manifold is endowed with the
natural orientation. The following theorem remains true for pyramidal manifolds,
the proof being the same that the classical one (which can be found in [11, Proposi-
tion 15.24]). In this theorem we mean by smooth components of the boundary those
given in Proposition 5.1.

Theorem 9.2. Let M be an Λ-manifold of dimension at least 1. If M is orientable
and ∂1M ̸= ∅ then the smooth components of ∂1M are orientable.

We generalize here the concept of Stokes’ orientation to pyramidal manifolds. Let
M be as in the hypotheses of the previous theorem. The Stokes’ orientation on ∂1M is
the one given by the restriction to the boundary of the adapted charts in the oriented
atlas of M if its dimension is even, and the opposite if its dimension is odd.

Definition 9.3 (Outward unit normal vector). Let M be an oriented pyramidal
manifold. For each x ∈ ∂1M , Tx(∂M) is a 1-codimensional vector subspace of TxM
which divides TxM in two connected components. We take on TxM the unique
orthogonal vector to Tx(∂M) of length one which is on the same connected component
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of TxM r Tx(∂M) than φ−1
∗

(
(0, 0,−1)(0,0,0)

)
. This vector is called the outward unit

normal vector to M at x. If x is an element of M of index 2 we can produce two
different vectors corresponding to π−1

0 and to π−1
1 respectively. We define the outward

unit normal vector to M at x ∈ ∂2M to be the normalized sum of those two vectors.

As in the previous lines, we are understanding Tx(∂M) to be the tangent space
at x of the smooth component of ∂M given in Proposition 5.1. The outward unit
normal vector is independent of the selected adapted local chart. It is possible to talk
about the vector field which assigns to each point its outward unit normal vector. We
will say that it is the outward unit normal vector field to ∂1M ∪ ∂2M . This vector
field is C 1-differentiable in the complementary of a subset of the boundary of zero
2D-measure (∂2M) (see [11, Problem 8-4; Lemma 13.16 in first ed.]).

It is also possible to talk about the outward unit normal vector to M at a point
x ∈ deg−3(M) by the same procedure. But we prefer not to do so and to have it just
defined for x ∈ ∂1M ∪ ∂2M .

10. Integration

Differential forms are the basic tool to integrate over pyramidal manifolds indepen-
dently of the local charts. This section shows the extension to pyramidal manifolds
of the theory of integration over manifolds with corners (see [11]). The main result is
a proof of the Stokes theorem for Λ-manifolds.

From now on we will not need adapted charts, but pyramidal, with or without
boundary, edges and corners. We will use the denomination Λ-chart to cover all those
terms. We define at any oriented Λ-manifold what an oriented Λ-chart is: a chart
which after an orientation-preserving map is an adapted oriented local chart.

We first introduce the meaning of integral of a form over an open subset of a
Λ-pyramid.

Definition 10.1. Let U be an open subset of a Λ-pyramid P . Let ω be an n-form
on U and let f : U −→ R be a continuous function such that ω = f dx1 ∧ · · · ∧ dxn.
The integral of ω over U is defined as∫

U

ω :=

∫
U

f dx1 · · · dxn,

whenever the last integral exists.

That existence is guaranteed for instance when ω has compact support. We are
going to denote the support of ω by suppω. The integration on a Λ-pyramid gives a
way of integrating over a manifold. The basic tool is the same used in the theory of
differential forms on manifolds: C∞partitions of unity. The existence of a partition of
unity is guaranteed for Λ-manifolds since they are paracompact (see [9, Appendix 3,
Theorem 1]).

Definition 10.2. Let M be an oriented n-dimensional Λ-manifold and let ω be a
differential n-form on M . Let {(Uα, φα}α∈Θ be a covering of suppω by oriented
Λ-charts in M with a given smooth subordinated partition of unity {Ψα}α∈Θ. We
define the integral of ω over M as∫

M

ω :=
∑
α∈Θ

∫
φα(Uα)∩Pk(α)

(
φ−1
α

)∗
Ψαω,

where φα(Uα)∩Pk(α) = φα(Uα∩M), whenever the integrals and the sum of the right
hand side exist.
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If ω has compact support, then the integrals and the sum are well defined. Exactly
as in the case of manifolds with corners, we have that this definition is independent
of the Λ-charts and of the partition of unity (see [11, page 418]).

Recall that the boundary of an n-dimensional Λ-pyramid is not a Λ-manifold but
the union of (n− 1)-dimensional manifolds with corners. We are going to label those
manifolds with corners. In the case of Λn

n, ∂(Λ
n
n) = H1 ∪ · · · ∪Hn, where

Hi = {(x1, . . . , xn) ∈ Λn
n : xi = 0}

is for each i an (n− 1)-dimensional manifold with corners. For a pyramid Pk in R3,
∂Pk = H1 ∪ · · · ∪Hm, where Hi denotes in that case πk

i−1 ∩Pk (see Definition 3.1).
We will call these Hi the manifolds with corners of the boundary of the Λ-pyramid.
Now we can define the integral of a lower dimensional form along the boundary of a
Λ-pyramid.

Definition 10.3. Let M be an oriented n-dimensional Λ-manifold. Let ω be an
(n− 1)-differential form onM . Let {(Uα, φα}α∈Θ be a covering of suppω by oriented
Λ-charts in M with a given smooth subordinated partition of unity {Ψα}α∈Θ. We
define the integral of ω over ∂M as∫

∂M

ω :=
∑
α∈Θ

mα∑
i=1

∫
Hi

(
φ−1
α

)∗
Ψαω,

whenever the integrals and the sums are defined and where mα denotes the number
of manifolds with corners of ∂Pk(α), with φα(Uα ∩M) = φα(Uα) ∩ Pk(α).

The main result in this section is a generalization of the Stokes theorem to Λ-man-
ifolds. The most general case that is found in the literature is the one for manifolds
with corners. The proof can be found in [11, Theorem 16.25] or in [12, Theorem 14].
We are going to use this result to generalize it, in the 3D case, to pyramidal manifolds.

Theorem 10.1 (Stokes theorem for manifolds with corners). Let M be an oriented
n-dimensional manifold with corners in Rp and let ω be a differential (n− 1)-form
with compact support in Rp which is a subset of the closure of M . Then∫

M

dω =

∫
∂M

ω.

We understand the orientation on the boundary to be the induced Stokes’ ori-
entation. If ∂M = ∅, the integral on the right (and hence on the left) hand side
vanishes.

Theorem 10.2 (Stokes theorem for bodies). Let B be a body and let ω be an
(n− 1)-form with compact support in B. Then∫

B

dω =

∫
∂B

ω.

Proof. The idea of the proof is to take the integrals over a manifold with corners
similar to B and to apply previous Theorem 10.1. We could take (B r ∂3B) ∪
deg−1(3), which is a manifold with corners in R3 by Proposition 5.2, but we prefer for
simplicity take D = B r ∂3B which is also a manifold with corners (it is a manifold
with edges). We assume without loss of generality that both B and D are endowed
with the natural orientation.

Since suppω is compact we can find a finite family of pyramidal charts in B,
{(Ui, φi)}mi=1, covering suppω. We require that each Ui is an open ball in R3. We
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take {Ψi}mi=1 a subordinated partition of unity. From the compactness of suppω we
have that the following integrals and sums are convergent:∫

B

dω =

m∑
i=1

∫
B

Ψi dω.

We consider, for each i, the open set Ũi = Ui∩D and the restricted maps φ̃i = φi|Ũi

and Ψ̃i = Ψi|D. As ∂3B is a countable set of isolated points by Proposition 4.3,

(Ũi, φ̃i) is an oriented pyramidal chart in D. We are going to check that {Ψ̃i : D −→
R}mi=1 is a smooth partition of unity subordinated to {Ũi}mi=1. The smoothness is

preserved because Ũi is an open subset of Ui. For {Ψ̃i}mi=1 to be a subordinated
partition of unity, it has to fulfill the following conditions (see [11, page 43]): each

map takes values in [0, 1], the support of each Ψ̃i is a subset of Ũi which is locally

finite, and
∑m

i=1 Ψ̃i(x) = 1 for each point x ∈ D. The first and last conditions hold

because each Ψ̃i is nothing but the restriction of Ψi to its domain. The statements

about the support follow from the fact that supp Ψ̃i = (suppΨi) ∩ D.
φ(Ui ∩ ∂3D) is a set of isolated points and so is, consequently, its intersection with

Pk(i) for every i. Thus∫
B

Ψi dω =

∫
Ui∩B

Ψi dω =

∫
φi(Ui)∩Pk(i)

(
φ−1
i

)∗
Ψi dω

=

∫
φi(Ui∩∂3B)∩Pk(i)

(
φ−1
i

)∗
Ψi dω +

∫
φi(Ui∩D)∩Pk(i)

(
φ−1
i

)∗
Ψi dω

= 0 +

∫
φ̃i(Ũi)∩Pk(i)

(
φ̃−1
i

)∗
Ψ̃i dω =

∫
Ũi

Ψ̃i dω =

∫
D
Ψ̃i dω.

This procedure can be repeated for ∂B and ∂D because, for every i, φ(Ui ∩ ∂3D)
has zero 2D-measure. So we have that∫

B

dω =

∫
D
dω and

∫
∂B

ω =

∫
∂D

ω.

Now we observe that both D and ω are in the hypotheses of Stokes theorem for
manifolds with corners and hence ∫

D
dω =

∫
∂D

ω,

which proves that ∫
B

dω =

∫
∂B

ω,

as desired. �

Remark 10.1. The classical theorems of integration hold for bodies as they are
special cases of the Stokes theorem. These results include the divergence theorem,
Green’s theorem and the classical version of Stokes theorem. See [12, Section 6.3] for
the explicit calculations.

11. Other dimensions

A pyramidal manifold is no more than a subset of R3 which locally looks like some
cone over a topological disc of the plane x3 = 1 with certain corners. It is possible to
enlarge the definition of pyramidal manifold to other dimensions following the same
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spirit. Basically, we will define the (n+ 1)-dimensional pyramids as the cones over
all possible n-dimensional pyramidal manifolds homeomorphic to the n-dimensional
closed disc Dn. An (n+ 1)-dimensional pyramidal manifold will be a topological
space which looks locally like some (n+ 1)-dimensional pyramid. For doing that we
need a definition of what a 1D pyramid is, but homeomorphic objects to the 0D discs
are just points.

The next definition provides the first inductive step to define the (n+ 1)-dimen-
sional pyramidal manifolds.

Definition 11.1 (0D pyramid and pyramidal manifold). We define D0 = {0} to be
the 0D pyramid. We say that M ⊂ Rp is a C r-differentiable 0D pyramidal manifold
in Rp, where r ∈ N ∪ {∞}, if for each x in M there exists a C r-diffeomorphism
φx : Ux −→ Vx of an open neighborhood of x in Rp onto an open subset of Rp

satisfying that φx(Ux ∩M) = Vx ∩
(
D0 × {0}p−0

)
. That is, M is a set of isolated

points.

Now we need to define what a (not bounded) cone over a figure is. Topologically
the cone over X is given by X × [0,∞) quotiented by relating all the points with
second component equal to 0. As we are working with subspaces of some Euclidean
space, we would like to give a more explicit definition of the cone. For X ⊂ Rp and
t ∈ R we define t · X to be the empty set if t < 0, the origin of Rp if t = 0 and
otherwise the set {

(x1, . . . , xp) ∈ Rp :
(x1
t
, . . . ,

xp
t

)
∈ X

}
.

Definition 11.2 (Cone over a figure). Set X ⊂ Rp. We define the cone over X to
be the subset of Rp+1 given by

{(x1, . . . , xp+1) ∈ Rp+1 : (x1, . . . , xp) ∈ xp+1 ·X}.
Definition 11.3 (Pyramid and pyramidal manifold). We say that a subsetM of Rp is
a C r-differentiable (n+ 1)-dimensional pyramidal manifold in Rp, where r ∈ N∪{∞}
and 0 6 n 6 p− 1 is an integer, when for each x in M there exist

• a C r-diffeomorphism φx : Ux −→ Vx of an open neighborhood of x in Rp onto
an open subset of Rp, and

• an (n+ 1)-dimensional pyramid Px

satisfying that φx(Ux ∩M) = Vx ∩ (Px × {0}p−(n+1)).
Here an (n+ 1)-dimensional pyramid is a cone over a C r-differentiable n-dimen-

sional pyramidal manifold in Rn which is homeomorphic to Dn.

This definition is recursive and the first inductive step has been stated in Defini-
tion 11.1. We are interested in the classification of pyramidal manifolds of the lowest
class r = 1. We omit the degree of differentiability when we have r = 1. The 1D
pyramidal manifolds are C 1-curves (open or closed). Hence the only 2D pyramid up
to diffeomorphism is Λ2

2, in this way the 2D pyramidal manifolds are exactly the 2D
pyramidal manifolds with corners. Following the induction we conclude that the only
3D pyramids are precisely those defined in Definitions 3.1 and 3.2. Consequently,
Definitions 11.3 and 3.3 agree for 3D pyramidal manifolds in R3.

This article has thus studied pyramids and pyramidal manifolds for dimensions
n ∈ {0, 1, 2, 3}. The first original classification is the one developed in the previous
sections: 3D pyramidal manifolds which are catalogued by degree and index. Classi-
fication of higher dimensional pyramidal manifolds is an open question.

We might equally give a definition of bodies for other dimensions. We remark again
that we are only studying bodies which are locally deformable to convex spaces.
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Definition 11.4 (Body). We call n-dimensional body in Rp a C 1-differentiable n-di-
mensional pyramidal manifold in Rp which is non-empty, connected and closed in
Rp.
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dated 1988: Topoloǵıa Diferencial, Consejo Superior de Investigaciones Cient́ıficas, Madrid).
[15] J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity, Dover Publications

Inc., New York, NY, 1994 (unabridged, corrected republication of the work first published in
1983 by Prentice-Hall Inc., Englewood Cliffs, NJ).

[16] W. Noll and E.G. Virga, Fit regions and functions of bounded variation, Archive for Rational
Mechanics and Analysis 102 (1988), no. 1, 1–21.

[17] S.R. Smith, Continuous bodies, impenetrability, and contact interactions: the view from the Ap-

plied Mathematics of Continuum Mechanics, British Journal Philosophy of Science 58 (2007),
no. 3, 503–538.

[18] M. Spivak, Calculus on Manifolds, W. A. Benjamin, New York (NY) and Amsterdam, 1965.
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