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Generalized Hermite-Hadamard type integral inequalities for
s-convex functions via fractional integrals
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Abstract. In this paper, we have established Hermite-Hadamard type inequalities for the
class of functions whose derivatives in absolute value at certain powers are s-convex functions
by using fractional integrals depending on a parameter.
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1. Introduction

Definition 1.1. The function f : [a, b] ⊂ R → R, is said to be convex if the following
inequality holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ [a, b] and λ ∈ [0, 1] . We say that f is concave if (−f) is convex.

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very important in the literature (see, e.g.,[18, p.137], [12]). These inequalities
state that if f : I → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
. (1)

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s
inequality may be regarded as a refinement of the concept of convexity and it follows
easily from Jensen’s inequality. Hadamard’s inequality for convex functions has re-
ceived renewed attention in recent years and a remarkable variety of refinements and
generalizations have been found (see, for example, [1, 2, 12, 13, 18]) and the references
cited therein.

Definition 1.2. [4] Let s be a real number, s ∈ (0, 1]. A function f : [0,∞)→[0,∞)
is said to be s−convex (in the second sense), or that f belongs to the class K2

s , if f

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

for all x, y ∈ [0,∞) and λ ∈ [0, 1].

An s−convex function was introduced in Breckner’s paper [4] and a number of
properties and connections with s−convexity in the first sense are discussed in paper
[11]. Of course, s−convexity means just convexity when s = 1.

In [10], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which
holds for s−convex functions in the second sense.
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Theorem 1.1. [10] Suppose that f : [0,∞) → [0,∞) is an s-convex function in the
second sense, where s ∈ (0, 1), and let a, b ∈ [0,∞), a < b. If f ∈ L1([a, b]), then the
following inequalities hold:

2s−1f(
a+ b

2
) ≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

s+ 1
. (2)

The constant k = 1
s+1 is the best possible in the second inequality in (2).

Meanwhile, Sarikaya et al.[21] presented the following important integral iden-
tity including the first-order derivative of f to establish many interesting Hermite-
Hadamard type inequalities for convexity functions via Riemann-Liouville fractional
integrals of the order α > 0.

Lemma 1.2. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L [a, b] , then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α

[
Jα
a+f(b) + Jα

b−f(a)
]

(3)

=
b− a

2

∫ 1

0

[(1− t)
α − tα] f ′ (ta+ (1− t)b) dt.

It is remarkable that Sarikaya et al.[21] first give the following interesting inte-
gral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional
integrals.

Theorem 1.3. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈
L1 [a, b] . If f is a convex function on [a, b], then the following inequalities for fractional
integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)
α

[
Jα
a+f(b) + Jα

b−f(a)
]
≤ f (a) + f (b)

2
(4)

with α > 0.

In the following we will give some necessary definitions and mathematical prelimi-
naries of fractional calculus theory which are used further in this paper. More details,
one can consult [14, 15, 17, 19].

Definition 1.3. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jα
a+f and Jα

b−f of
order α > 0 with a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a

(x− t)
α−1

f(t)dt, x > a

and

Jα
b−f(x) =

1

Γ(α)

∫ b

x

(t− x)
α−1

f(t)dt, x < b

respectively. Here, Γ(α) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).

For some recent results connected with fractional integral inequalities see ([3, 5, 6,
7, 8, 9, 16, 20, 22, 23, 24]).

The aim of this paper is to establish generalized Hermite-Hadamard type integral
inequalities for the class of functions whose derivatives in absolute value at certain
powers are s-convex functions by using Riemann-Liouville fractional integral and some
other integral inequalities. The results presented in this paper provide extensions of
those given in earlier works.
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2. Main Results

For our results, we give the following important fractional integral identity [22]:

Lemma 2.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b.
If f ′ ∈ L [a, b] , then the following equality for fractional integrals holds:

−f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
+

Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]

(5)

=

1∫
0

[(1− t)α − tα] f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)] dt

where λ ∈ [0, 1] \{ 1
2} and α > 0.

Theorem 2.2. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b.
If |f ′|q , q ≥ 1 is s-convex on [a, b] , then the following inequality for fractional integrals
holds:∣∣∣∣f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
− Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]∣∣∣

≤
(

2

α+ 1

[
1− 1

2α

])1− 1
q [

|f ′(λa+ (1− λ)b)|q + |f ′(λb+ (1− λ)a)|q
] 1

q (6)

×
[
B1\2 (s+ 1, α+ 1)− 1

2α+s (α+ s+ 1)
+

1

α+ s+ 1
−B1/2 (α+ 1, s+ 1)

] 1
q

where λ ∈ [0, 1] \{ 1
2}, α > 0, and Bx is the incomplete beta function defined as follows

Bx(m,n) =

∫ x

0

tm−1(1− t)n−1, m, n > 0, 0 < x ≤ 1. (7)

Proof. Firstly, we suppose that q = 1. Using Lemma 2.1 and s-convexity of |f ′|q , we
find that∣∣∣∣f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
− Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]∣∣∣

≤
1∫

0

|(1− t)α − tα| |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]| dt

≤
1∫

0

|(1− t)α − tα| [ts |f ′(λa+ (1− λ)b)|+ (1− t)s |f ′(λb+ (1− λ)a)|] dt

= |f ′(λa+ (1− λ)b)|


1
2∫

0

[
(1− t)

α
.ts − tα+s

]
dt+

1∫
1
2

[
tα+s − (1− t)

α
.ts

]
dt
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+ |f ′(λb+ (1− λ)a)|


1
2∫

0

[
(1− t)

α+s − tα (1− t)
s
]
dt+

1∫
1
2

[
tα (1− t)

s − (1− t)
α+s

]
dt


=

[
B1/2 (s+ 1, α+ 1)−B1/2 (α+ 1, s+ 1)− 1

2α+s(α+ s+ 1)
+

1

α+ s+ 1

]
× [|f ′(λa+ (1− λ)b)|+ |f ′(λb+ (1− λ)a)|]

Secondly, we suppose that q > 1. Using Lemma 2.1 and power mean inequality, we
obtain

1∫
0

|(1− t)α − tα| |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]| dt

≤

 1∫
0

|(1− t)α − tα| dt

1− 1
q

(8)

×

 1∫
0

|(1− t)α − tα| |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]|q dt


1
q

.

Hence, using s-convexity of |f ′|q and (8) we obtain∣∣∣∣f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
− Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]∣∣∣

≤

 1∫
0

|(1− t)α − tα| dt

1− 1
q

×

 1∫
0

|(1− t)α − tα| |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]|q dt


1
q

≤


1
2∫

0

[(1− t)α − tα] dt+

1∫
1
2

[tα − (1− t)α] dt


1− 1

q

×

 1∫
0

|(1− t)α − tα|
[
ts |f ′(λa+ (1− λ)b)|q + (1− t)s |f ′(λb+ (1− λ)a)|q

]
dt


1
q

≤
(

2

α+ 1

[
1− 1

2α

])1− 1
q [

|f ′(λa+ (1− λ)b)|q + |f ′(λb+ (1− λ)a)|q
] 1

q

[
B1/2 (s+ 1, α+ 1)−B1/2 (α+ 1, s+ 1)− 1

2α+s(α+ s+ 1)
+

1

α+ s+ 1

] 1
q

.

This completes the proof. �
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Remark 2.1. If we take s = 1 in Theorem 2.2, then Theorem 2.2 reduces to Theorem
3 which is proved by Sarikaya and Budak in [22].

Remark 2.2 (Trapezoid Inequality). If we take s = 1, α = 1 and λ = 0 (or λ = 1)
in Theorem 2.2, we have∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a

8
2

q−1
q

[
|f ′(a)|q + |f ′(b)|q

] 1
q

where q ≥ 1. Choosing q = 1 in last inequality, it follows that∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a

8
[|f ′(a)|+ |f ′(b)|]

which are proved by Dragomir and Agarwal in [13].

Theorem 2.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b.
If |f ′|q s-convex on [a, b] for same fixed q > 1, then the following inequality for
fractional integrals holds:∣∣∣∣f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
− Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]∣∣∣

≤
(

2

αp+ 1

) 1
p
(
1− 1

2αp

) 1
p
(
|f ′(λa+ (1− λ)b)|q + |f ′(λb+ (1− λ)a)|q

s+ 1

) 1
q

where
1

p
+

1

q
= 1, α > 0 and λ ∈ [0, 1] \{ 1

2}.

Proof. Using Lemma 2.1, s-convexity of |f |q and well-known Hölder’s inequality, we
obtain∣∣∣∣f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
− Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]∣∣∣

≤
1∫

0

|(1− t)α − tα| |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]| dt

≤

 1∫
0

|(1− t)α − tα|p dt


1
p
 1∫

0

|f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]|q dt


1
q

≤


1
2∫

0

[(1− t)
α − tα]

p
dt+

1∫
1
2

[tα − (1− t)α]
p
dt


1
p

×

 1∫
0

ts |f ′(λa+ (1− λ)b)|q + (1− t)s |f ′(λb+ (1− λ)a)|q


1
q
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=

(
2

αp+ 1

) 1
p
(
1− 1

2αp

) 1
p
(
|f ′(λa+ (1− λ)b)|q + |f ′(λb+ (1− λ)a)|q

s+ 1

) 1
q

.

Here, we use

(c− d)p ≤ cp − dp,

for any c > d ≥ 0 and p ≥ 1. �

Remark 2.3. If we take s = 1 in Theorem 2.3, then Theorem 2.3 reduces to Theorem
4 which is proved by Sarikaya and Budak in [22].

Remark 2.4 (Trapezoid Inequality). If we take s = 1, α = 1 and λ = 0 (or λ = 1)
in Theorem 2.3, we have∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a

2

[
2

p+ 1

(
1− 1

2p

)] 1
p
(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

which are proved by Dragomir and Agarwal in [13].

Theorem 2.4. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b.
If |f ′|q is a s-convex on [a, b] for same fixed q ≥ 1,then the following inequality for
fractional integrals holds:∣∣∣∣f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
− Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]∣∣∣

≤
[
B1/2 (αq + 1, s+ 1)−B1\2 (s+ 1, αq + 1) +

1

αq + s+ 1

(
1− 1

2αq+s

)] 1
q

×
(
|f ′(λa+ (1− λ)b)|q + |f ′(λb+ (1− λ)a)|q

) 1
q

where λ ∈ [0, 1] \{ 1
2} and α > 0.

Proof. Using Lemma 2.1, s-convexity of |f ′|q , and well-known Hölder’s inequality, we
have∣∣∣∣f(λa+ (1− λ)b) + f(λb+ (1− λ)a)

(1− 2λ)(b− a)
− Γ(α+ 1)

(1− 2λ)α+1(b− a)α+1

×
[
Jα
(λb+(1−λ)a)+f(λa+ (1− λ)b) + Jα

(λa+(1−λ)b)−f(λb+ (1− λ)a)
]∣∣∣

≤
1∫

0

|(1− t)α − tα| |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]| dt

≤

 1∫
0

1pdt


1
p
 1∫
0

|(1− t)α − tα|q |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]
q| dt


1
q



232 M.Z.SARIKAYA AND F. ERTUGRAL

=


1
2∫

0

[(1− t)α − tα]
q |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]|q dt

+

1
2∫

0

[tα − (1− t)α]
q |f ′ [t(λa+ (1− λ)b) + (1− t)(λb+ (1− λ)a)]|q dt


1
q

≤

|f ′(λa+ (1− λ)b)|q
1
2∫

0

[
(1− t)qαts − tqα+s

]
dt

+ |f ′(λb+ (1− λ)a)|q
1
2∫

0

[
(1− t)qα+s − tqα(1− t)s

]
dt

+ |f ′(λa+ (1− λ)b)|q
1∫

1
2

[
tqα+s − (1− t)qαts

]
dt

+ |f ′(λb+ (1− λ)a)|q
1∫

1
2

[
tqα(1− t)s − (1− t)qα+s

]
dt


1
q

=

[
B1/2 (αq + 1, s+ 1)−B1\2 (s+ 1, αq + 1) +

1

αq + s+ 1
− 1

2αq+s (αq + s+ 1)

] 1
q

× [|f ′(λa+ (1− λ)b)|+ |f ′(λb+ (1− λ)a)|]
1
q .

Here, we use (A−B)p ≤ Ap −Bp, for any A > B ≥ 0 and q ≥ 1. �

Remark 2.5. If we take s = 1 in Theorem 2.4, the Theorem 2.4 reduces the Theorem
5 which is proved by Sarikaya and Budak in [22].

Remark 2.6 (Trapezoid Inequality). If we take s = 1, α = 1 and λ = 0 (or λ = 1)
in Theorem 2.4, we have∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a

2

[
1

q + 1

(
1− 1

2q+1

)] 1
q
(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

.

References

[1] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math. 28
(1994), 7–12.
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