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Existence of entropy solutions for some strongly nonlinear
p(x)-parabolic problems with L'-data

ELHOUSSINE AZROUL, HASSANE HJIAJ, AND BADR LAHMI

ABSTRACT. This paper is devoted to study the following strongly nonlinear p(z)-parabolic problem
%—7; — div a(z, t, Vu) + g(z, t,u, Vu) 4+ §|u[P*) 2y = f —div ¢(u) in Qr,
u= 0 on X, (1)
u(z,0) = ug in Q,

with f € LY(Qr), ¢(-) € CO(R, RN), ug € L*(Q) and § > 0. We prove the existence of entropy

solutions for this problem in the parabolic space with variable exponent V.
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1. Introduction

An intensive study of variable exponent Lebesgue and Sobolev spaces has been under-
taken during the last years by several authors, inspired primarily by the work of Kovécik
and Rékosnik [12] from 1991. This impulse comes from their physical applications, e.g.,
processes of image restoration, flows of electro-rheological fluids, thermistor problem,
filtration through inhomogeneous media.

Let 2 be a bounded open subset of RN (N > 2). For T' > 0, we denote by Qr the
cylinder Q x (0,7) and by X the lateral surface 9Q x (0,T). Boccardo, Gallouét and
Vazquez [7] have studied the nonlinear parabolic problem

up + Au+ aglul*~tu = f in Qr,
u =0 on Xr, (2)
u(z,0) =0 in Q

9

with f € L'(Q7), they have proved the solutions existence and some important regularity
results, (see also [1, 6, 14]). Recently, Bendahmane, Wittbold and Zimmermann [5] have
treated the parabolic problem

uy — div (|[VuP®)2Vu) = f  in Qrp,
u =0 on Xr, (3)
u(z,0) = up(x) in Q

they proved the existence and uniqueness of renormalized solutions for this nonlinear
parabolic problem. Moreover, they proved some regularity of the solutions, (see [2, 3] for
more interesting results).
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In this paper, we establish the existence of entropy solutions for the following strongly
nonlinear initial-boundary p(x)-parabolic problem

% —diva(x,t, Vu) + g(x, t,u, Vu) + 0ulP® =2y = f —div ¢(u) in Qr,
u= 0 on Yp, (4)
u(z,0) = ug in Q,
where f € LY (Qr), ¢(-) € C°(R,IRY) uo € L'(2) and § > 0. Under our assumptions,
it is more suitable to use the notion of entropy solution, introduced for the first time

by Bénilan et al. [6]. Also, it is reasonable to study our problem in the framework of
variable exponent space

V= {u e LP-(0,T; Wg’p(x)(Q)) such that uw e L™ (Qr) and |Vu| € Lp(x)(QT)}.

introduced by Bendahmane et al. in [5].

This paper is organized as follows: In the section 2 we recall some important definitions
and results regarding variable exponent Lebesgue and Sobolev spaces. The section 3 is
devoted to give some property concerning the time mollification in the space of variable
exponent. We introduce in the section 4 some assumptions on a(x,t,£) and g(x,t,s,§)
for which our problem has at least one solution. The section 5 contains some important
lemmas useful to prove our main result. The section 6 will be devoted to show the
existence of entropy solutions for our problem (4).

2. Preliminaries

Let © be a bounded open subset of IRY (N > 2), we denote
C4(Q) = {measurable function p(-): @+~ IR such that 1<p_ <p, < oo},
where
p_ = essinf{p(x) /x € Q} and py = esssup{p(z) /= € Q}.

We define the variable exponent Lebesgue space for p(-) € C1(Q) by
LP@(Q) = {u: Q— R measurable / / lu(z)[P® dz < oo},
Q

the space LP(*)(Q) under the norm

p(z)
lullye) = infd A > 0, / e <1
Q

is a uniformly convex Banach space, and therefore reflexive. We denote by L¥'(*)(Q)

the conjugate space of LP(*)(Q) where ﬁ + ﬁ =1 (see [9], [16]).

u(z)

x
A

Proposition 2.1. (see [9], [16]) (Generalized Holder inequality)
(i) For any u € LP@(Q) and v e LV @(Q), we have

/uvdx
Q

(i) For all p1, pz € C(Q) such that py(x) < pa(z) a.e in Q, then LP2(®)(Q) — LP1(*)((Q)
and the embedding is continuous.

1 1
< (5 + o) ooy Mol
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Proposition 2.2. (see [9], [16]) We denote the modular
plu) = / [u[P™ dz  Vu e LP(Q),
Q

then, the following assertions holds
(1): Nullp@y <1 (resp,=1,>1) <= pu) <1 (resp, =1,>1),
Gi): Nullpw) >1 = luly) < pu) <lullys,  and  Jlullpe) <1 = Jlulld,) <
p(u) < Jlullp iy
(iii): [|unllp@) =0 <= pun) =0, and ||uylp@) — o0 <= p(u,) — oco.
Which implies that the norm convergence and the modular convergence are equivalent.

Now, we define the variable exponent Sobolev space by
WiP@(Q) = {u e LP@(Q) and |Vu| € LP(Q)},

normed by
Hqu,p(I) = HUHp(z) + HVUHP(I) Vu € WLp(x)(Q)'
We denote by Wol’p(m)(Q) the closure of C§°(2) in W1P(#)(Q), and we define the Sobolev

]\J]V_pg():a) for p(z) < N.

exponent by p*(z) =

Proposition 2.3. (see [9))
(i): Assuming 1 < p_ < py < oo, the spaces WHPE)(Q) and Wol’p(z)(Q) are separable
and reflexive Banach spaces.
(ii): Ifq(-) € C(Q) and q(x) < p*(z) for any x € 2, then the embedding Wol’p(x)(fl) e
L) (Q) is continuous and compact.

Remark 2.1. Recall that the definition of these spaces requires only the measurability
of p(z). In this work we do not need to use Sobolev and Poincaré inequality. Note that
the sharp Sobolev inequality is proved for p(z) log-Holder continuous, while the Poincaré
inequality requires only the continuity of p(x), (see [8, 10]).

Lemma 2.4. Let Q be a bounded open subset of RN (N >2), T >0 and p(-) € C4+ (),
then we have the following continuous dense embedding

LP+(0,T; LP*)(Q)) = LP@(Qr) = L7~ (0,T; LM (Q)) (5)
Definition 2.1. Let p(-) € C4(Q) and T > 0, we define the space V by
V= {u € LP- (0, T; WP (Q)) such that u € LP®(Qr) and |Vu| € LP@) (QT)}.

We denote the modular p; ,(,)(-) for any u €V by

P1,p(z)(U) = / [u[P@ dz dt —l—/ |VulP® de dt.
QT T
The space V' endowed by the norm
lullv = llullLee @) + IVUll Lo (@)

is a separable and reflexive Banach space, (for more details see [5]).

Definition 2.2. We denote the dual of the space of V' by V*, and for any F € V*
there exists (Fy, Fi,..., Fy) € (LP®(Q))N*!, such that

N
F:FO_ZaFZ
i=1

aiﬂi '
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Moreover, for all ©w € V' we have

<F,u>:/ FoudxdtJrZ/ d:z:dt
T

and we define a norm on the dual space by

N
1Pl = 3" 1 o ony-

It’s clear that V* C LP-(0,T; W 1% (@) ((Q)).
Lemma 2.5. Let By, B and By be a Banach spaces with By C B C By. Let us set
Y = {u :u € LP(0,T;By) and wus € L”l(O,T;Bl)}

where pg > 1 and p; > 1 are reals numbers.
Assuming that the embedding By —<— B is compact, then

Y —<— LP°(0,T; B)
and this embedding is compact.

IN ., ,
Remark 2.2. Let p_ > —— N1z then Wol’p( )(Q) C L*(Q) c W=hP@)(Q). We set

Bo=Wi*"(Q), B=I*Q) and B, =W "7@Q),
with pg =p_ and p; = p’ . In view of the Lemma 2.5, we obtain
{u:uweV and w €V*}CY = LYQ7). (6)
Moreover, in view of [5], we have

{u:uweV and wu, €V*}CC(0,T];L' (). (7)
3. The time mollification of a function « in V.

Let >0, we introduce the time mollification u,, of a function u € V, by

uy(x,t) = ,u/ u(zx, s)exp(u(s —t)) ds where  u(z,s) = u(z, s)X(0,1)(5)-

— 00

Proposition 3.1. If u € L*®)(Q7), then u,, 1s measurable in Qr, % = p(u—u,)

and

/ |1, [P dae dt S/ [ulP®) da: dt.

Proof. The applications (x, s,t) — u(x, s)exp(u(s—t)) is measurable in Q2 x [0, T] x [0, T7,
using Fubini’s theorem we deduce that u, is measurable.

0
In view of Jensen’s integral inequality and since / wexp(us) ds =1, we obtain

— 00

p(x)

’/ wexp(u(s —t)) u(x, s)dsp(x) 7’/ wexp(us) u(x,s +t) ds

< /  exp(ys) [a(z, s + &)/ ds,
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it follows that,

+oo
/ [ ()P da dt / / / exp(ps) [a(z, s + t)[P™) ds) dx dt
Qr

0 “+o0
= / 1 exp(us) / / [u(z, s +t)|P@ da dt) ds
—o0 —oco JQ

= /O 1 exp(us)(/@ lu(z, t)|P®) da dt) ds

— 0o

_ / lu(z, )P da dt.

T

Furthermore,
Ouy, ~ lim up(z, t+1) —uu(x,t)
8t r—0 ot ( )
T " L, . exp(—pr) —1
= 711_% ) U(x, s)exp(p(s —t —r)) ds + uy(z,t) Th_}r% —

= pu(z,t) — puy(z,t).

Proposition 3.2. If ucV, then u, = u inV as p — +oo.

ou,, (8u

Proof. Firstly, since

that u, € V.
Now, we are in a position to prove that u, —u in V as u — +oo.
Let (¢x)r C D(Qr) such that ¢y — uw in V. We have

(60—t = 2 ] 221

) and in view of Proposition 3.1, we can easily see
o

(®)

On the one hand, since u, — (¢¥x), = (v — ), and thanks to the Proposition 3.1 and
(8), we obtain

Lee QT

/ |y — ulP@ dodt < / |(u — ) o |P®) da dt + / |(r),0 — i |P™®) da dt
T T T
+/ b — ulP® da dt
T

+ 1)p+.

< 2/ lu — [P da dt +
L>=(Qr)

Qr
Let € > 0, there exists ko(¢) > 0 such that

meas(Qr) H Oy, H
pP=

/ lu— pP@ dedt < S for all k > ko,
- 3
and there exists ug(e) > 0 such that
meas(Qr) H51/)kH +1)P << for all  p > po(e).
pP= =3

Hence

/ lu, — ulP@ dx dt < e for all > pp(e).
T
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which implies that w, — u in LP@®)(Qr).

Ouy, 0
On the other hand, since au’ = ( au> . Following the same reasoning as above for
£ LT/ p

ou
each ——, we can conclude the desired result. O

6l‘i
Proposition 3.3. If u, - u in V, then (un)y — u, in V.

Proof. Assuming u, — u in V. It’s clear that

O(tn) 3 Ou, _ (8un 3 8u>

(un)py — up = (up —u), and

Using the Proposition 8, we deduce that

. aun p(x)
oo ()~ ) = [ >\p(>dm+z / O 00y "

ou Ou |p@)
< — ulP®) dz dt / - da dt
< / [ x dt + Z oz, x
= P1,p(x) (un - ’LL)
It follows that (u,), — u, in V. O
Remark 3.1. We have |[(Tx(u)),| <k forall ue V.
Indeed,
¢ ¢
|(Tk(w))u| = ‘ / pexp(p(s —t)) Ti(u(z,s)) ds‘ < k/ wexp(p(s—1t))ds =k,
—o0 —o0

with Ty (u(z, s)) = T (u(z, s)) - X(0,7)(8)-
4. Essential Assumptions

Let Q be a bounded open subset of RN (N > 2), 0 < T < oo and taking p(-) € C4(Q)
such that p_ > N+2
We consider a Leray-Lions operator A from V' into its dual V*, defined by the formula

Au = —div a(z,t, Vu) 4 0|u[P @2y (9)

where 6 >0 and a: Qr x RN + RN is a Carathéodory function (measurable with
respect to (x,t) in Q7 for every ¢ in IRY, and continuous with respect to ¢ in RN for
almost every (z,t) in Qr) which satisfies the following conditions

la(x,t,€)] < B (K (x,t) + [P, (10)
a(l’,t,g) g > a‘ﬂp(m)’ (11)
(a(z,t,6) —a(,t,6)) - (=€) >0 forall {#E& in RY, (12)

for a.e. (x,t) € Qr and all ¢ € RN, where K(z,t) is a positive function lying in
Lp'(f”)(QT) and «, 8 > 0.
The nonlinear term g(z, ¢, s,€) is a Carathéodory function which satisfies

g(x,t,8,&)s > 0, (13)
lg(x,t,5,€)| < b(|s])(c(x,t) + [¢[P), (14)
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where b(-) : IRT — IRT is a continuous, nondecreasing function, and ¢(-,-) : Q x (0,T)
R* with ¢(-,-) € LY(Q7).
We consider the strongly nonlinear p(z)-parabolic problem

uy — div a(z, t, Vu) + g(x, t,u, Vu) + 6ulP@ 2y = f — div ¢(u) in Qr,
u=0 on Y, (15)
u(z,0) = ug in Q,

with ¢(-) € CO(]R7 IRN)7 fe LI(QT)7 ug € LI(Q) and § > 0.
5. Some technical Lemmas

Lemma 5.1. (see [11], Theorem 13.47) Let (uy), be a sequence in LY () and u € L*(Q)

such that u, — u a.e. in Q, u,, u >0 a.e. and Up, dx — udzx, then u, — u in

Q Q
LY(Q).
Lemma 5.2. (see [4]) Let p(-) € CL(Q), g € LP@(Q) and g, € LP@(Q) with

If go(x) = g(x) a.e. on Q, then g, — g in LP®(Q).
Lemma 5.3. Let ueV then Ti(u) € V with k> 0. Moreover, we have
Ti(u) —u in V as k — oo.
The proof of this Lemma is the same as in the case of constant exponent p.

Lemma 5.4. Assuming that (10) — (12) holds, and let (uy), be a sequence in V' such
that u, = u in V and

/ (a(x, t, Vu,) — a(x, t, Vu)) - (Vuy, — Vu) dx dt
T (16)
+/ (|un|p(x)72un — |u\p(z)72u> (up, —u)dedt — 0 for n — oo,

then u, — u in V for a subsequence.
Proof. Let
D, = (a(:z:,t, Vu,) — a(z,t, Vu)) - (Vu, — Vu) + (|un|p(‘r)72un — |u|p(z)72u) (up, — u),

thanks to (12) we have D,, is a positive function, and in view of (16), we get D,, — 0
in LYQr) as n— .

We have u, — u in V, and in view of the compact embedding (6) we obtain w, — u
strongly in L?(Qr), it follows that u, — u a.e in Qr, and since D,, — 0 a.e in Qr,
there exists a subset B in Qr with measure zero such that V(z,t) € Qr\B

[t (z,t)] < 00, |Vup(z,t)] < oo, |K(z,t)] < oo, up(z,t) = u(z,t)
and D,, — 0 a.e. in Q. We have
Dy (z,1)
= (a(z,t, Vu,) — a(z,t, Vu)) - (Vu, — Vu) + (|un|p(x)72un — |u\p(1)72u) (up, — )
> a|Vun [P + a| VP 4 Ju, [P 4 [uP®) — B(K (2, ) + |Vuy [P |V
—BK (,t) + [VulP ) [Vun| = fun [P fu] = [ufP O u,|
> a|Vu, [P — Cm,t(l + |V, |[P@ 1 4 |Vun|>7
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where C,; depending on (z,t), without dependence on n. (since wy(z,t) — u(z,t)
then (u,), is bounded), we obtain

Cz,t _ C;ut _ C;mt )
|vUn p(z) |Vun| |Vun|17(w)71 ’

by the standard argument (Vu,), is bounded almost everywhere in Qp, (Indeed, if
|Vuy,| — oo in a measurable subset E € Qr then

Dy () > [V, |P® (a -

lim D, (x) dx dt

n— oo QT

> 1i \V4 p(z) —
> Jim, /E‘ e G T

Cac,t _ Oﬂc,t _ Ox,t
P@) V| |V [p@ -1

which is absurd since D,, — 0 in LY(Q7r)).
Let £* an accumulation point of (Vuy,),, we have |¢*| < oo and by the continuity
of the Carathéodory function a(x,t,-), we obtain

(a(x,t,§*) —a(z,t, Vu)) (&= Vu) =0,

thanks to (12) we have £* = Vu, the uniqueness of the accumulation point implies that
Vuy(z,t) — Vu(z,t) a.e in Q.
since (a(z,t, Vuy,)), is bounded in (LP'®)(Q7))N and a(z,t, Vu,) — a(x,t, Vu) ae
in Qp, in view of the Lemma 5.2, we can establish that

a(a,t, Vu,) = a(z,t,Vu) in  (LP @ (Qr))N.
Using (16) and the Lemma 5.1, we deduce that

Jun [P — [P i LNQr), (17)

)dscdtzoo7

and
a(x,t,Vuy) - Vu, — a(z,t,Vu)-Vu in  LY(Qr). (18)
According to the condition (11) we have
a|Vu, [P < a(z,t, Vuy,) - Vg,
a(z,t,Vuy) - Vuy, a(z,t,Vu) - Vu

Let z, =Vu,, z=Vu and y, = , y= ————— in view of
Q@ e

the Fatou Lemma, we get

1
< limi N DU} 1€9)
/T2ydxdt 11nm1nf/T(yn+y 2p+_1|zn 2| ) d dt,

then 0 < —lim sup/ |2 — 2P dz dt, and since

n—00 T

0< liminf/ |z, — z\”(z) dx dt < limsup/ |z, — z|p(x) dz dt <0,
Qr

n—0o0 n—00 T

it follows that / |V, — VulP® dedt — 0 as n — oo, and we get

T
Vu, — Vu in  (LP®(Qr))Y,
thanks to (17), we deduce that
Up —> U in V,

which conclude the proof the Lemma 5.4. O
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6. Main results

Let Ty(s) = max(—k, min(s,k)), we set

r e if |r|<k
= T d = 2 2 ! - ’
or(r) /0 k(o) ds { K= % it e > ke

Definition 6.1. A measurable function v is an entropy solution of the strongly nonlinear
parabolic problem (15) if

Ti(u) € V. Vk >0, gz, t,u, Vu) € LN (Q7), [ulP® =2y e LYQr),
[ow—om - [ aw-woar+ [ Dna-va
Q Q QT
—l—/ a(z,t,Vu) - VI (u — ) de dt + / gz, t,u, Vu) Ty (u — ¢) de dt
T Qr
+5/ [u[P® =2y T (u— ) de dt < | fTi(u—)dedt+ | ¢(u)- VTi(u— ) de dt,
Qr Qr Qr
(19)
for all ¥ € VN L*®(Qr) with %—f e V*+ LY(Q7).

Theorem 6.1.  Assuming that (10) — (14) holds, with f € L*(Qr), uop € L*(Qr) and
#(-) € C°(IR, IRN). Then the problem (15) has at least one entropy solution.

Proof of the Theorem 6.1.

Step 1 : Approximate problems.

Let (fn)n be asequence in V*NLY(Qr) such that f, — f in LY(Qr) with |f.| <|f],
and let (ug ,)n be a sequence in C§°(2) such that ug,, — up in L' () and |ug .| < |ug|-
We consider the approximate problem

(un)i — div a(z,t, V) + gn (2, t, un, V) + 0w, [P® 20, = f,, — div ¢p(u,) in Qr,

up(z,t) = 0 on X,
Un(2,0) = ugp in Q,
(20)

g(‘rat787£)
1+ 3lg(w,t,5,€)|
We define the operator G, : V — V*, by

with ¢, (s) = ¢(T,,(s)) and g,(z,t,s,&) = , note that

T
/ (Gru,v) dt = / gn(x,t,u, Vu)v dx dt Yo e V.
0 T
Thanks to the Holder type inequality, we have for all u, v € V

1 1
gn(x,t,u, Vu)v dz dt’ < (p— + IT) Hgn(m,t,u,Vu)HLp,(w)(QT)HUHLPM(QT)
. - a

Q 1
§2(/ |9 (2, 1,1, V) [P @) dae dt 4 1) 75 |Jo|v
QT

1
< 2 (nP+.meas(Qr) + 1) "= [Jv]|lv
< Collvllv
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and we define the operator R, =div¢, : V —— V* such that

T
/ (Rp(u),v) dt = — ¢n(u) - Vodz dt Yu,v €V,
0 Qr

we have

’/ On(u Vvdxdt‘ <2H¢n HLP @) (Qr) HVUHLP(I)(QT)
<2 ([ 1ou @ ot + 1) ol
Qr

<2 ( sup (j0(s)| + 1)"-meas(@r) +1)7 [v]}v

|s|<n
< Chllvflv

(22)

In view of the Lemma 7.1 (see Appendix) and (7), there exists at least one weak
solution w, € V of the problem (20), (cf. [13]).

Step 2 : Weak convergence of truncations.
Let n large enough. By taking Ty (u,) as a test function in (20), we obtain

T
/(%,Tk(un» dt Jr/ a(x,t,Vuy) - VT (uy) dx dt +/ In (T, Up, Vup )T (uy) dz dt
0 T

T

+0 / [t |P®) =20, Ty () dae dt = | f, T (uy) da dt + / Gnltin) - VT (uy) dz dt.
Qr Qr Qr
(23)

We have ¢ (r) = / T (s) ds and since |@g(r)| < k|r|, then
0

8un 8un
/0<8t Ty (un)) dt // Tie (up) dt dz
// &Pk un dt de
/n (24)

[ outa (T))dx—/@apk(uo’n)dx

> / ok (un(T)) dz — Klluol| 2 s-
Q

The third term on the left-hand side of (23) is positif due to the sign condition. For the
second and fourth terms on the left-hand side of (23), we have

/ a(w,t, Vi) - VTg(un) da dt > / VT ()| da d, (25)

T T

and

/ o [P ~20 Ty (1) it > / T () P® d dt. (26)

T T

Concerning the two terms on the right-hand side of (23), we have

S Ti(uy) dx dt < k/ | fn] dx dt < k'HfHLl(QT). (27)
Qr Qr
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¢
Taking @, () = / én(T)dr, then ®,(0) = Oy and ®,(-) € CH(R, RY), by the

Divergence Theorem, we obtain

T
On(un) - VT (uy) do dt / / On(Tk(up)) - VT (uy) da dt

Qr OT Q
:/ /le D, (T (ur)) dz dt
Or 7% (28)
:/ / n(Tk(uy)) - i do dt
0o Joaa
N T
:Z @, i (Ti(up)).n; do dt =0,
—Jo Jon
since u, =0 on 90 x [0,T], with @, = (®p1,...,Psn) and 7 = (n1,n2,...,nN)

The exterior normal vector on the boundary 9Q x [0,T].
By combining (23) — (28), we deduce that

/mun(T»dm IV T ()P @ it 6 / Tt [P@ dvdt < k(o] 2+ 2 @m):
Q Qr

Qr
(29)
since g (un(T)) > 0, there exists a constant Cy that does not depend on n and k,
such that
19Ty + 1Tk

g/ VT (uy,)|P®) dde/ T (un ) [P daz dt + 2

Qr Qr
< kCo,
then )
Tk (un)||v < Csk?— for k>1. (30)
Let k> 1, we have
k meas{|u,| > k} = / |5 (un,)| d dt
|un|>k}
< | Tk (un)| dz dt
Qr
< 2(meas(Qr) + 1) [Tk (un ) [|v
S C4kp,

which implies that

1
meas{\un\ > k} < Oy — — 0 as k — oo, (31)
k _

For all A > 0, we have
meas{ [, — um| > A} < meas{|u,| > k} + meas{|u,| > k}

32
+meas{|Tx(un) — T (um)| > A}. (32)

Using (31) we get that for all € > 0, there exists ko > 0 such that
meas{ |u,| > k} < % and meas{ [tm| > k} < % VE > ko(e). (33)

On the other hand, we have (Tg(u,)), is bounded in V, then there exists a sequence
still denoted (Tk(un)), such that

Ti(up) —m in V. as n— oo,
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and by the compact embedding (6) we obtain
Ti(up) = n,  in Ll(QT) and a.ein Q7.

Thus we can assume that (T (un))n is a Cauchy sequence in measure in @7, then for
all k>0 and A, € >0 there exists ng = no(k, A,e) such that

meas{|Ti(un) — Ti(um)| > A} < % Vn,m > ng. (34)

By combining (32) — (34), we deduce that for all £, A > 0, there exists ng = ng(),¢)
such that

meas{|un, — um| > A} <e Vn,m > ng. (35)

If follows that (u,), is a Cauchy sequence in measure, then there exists a subsequence
still denoted (uy), such that

Up — U a.ein Qr.

‘We deduce that
Tk (upn) — Tx(u) in V, (36)

and in the view of the Lebesgue dominated convergence theorem

T (tn) = Tio(u) in  LPE(Qq). (37)

Step 3 : A priori estimates.
Let h > 0, by taking Th41(un) — Th(uy,) as a test function in (20), we obtain

duy,
/ (gt s Tht(ug) — Th(un)>dt+/ a(x,t,Vuy) - (VIhy1(un) — VT (uy)) de dt
0 T
+ / Gn (@t U, V) (Tha1 (wn) — T (un)) de dt +6 [ [wn [P 2w, (Tt (un) — Th(un)) da dt

T Qr
=an-(Th+1(un)—Th(un)) dz dt + Q¢n(un)-(VThH(un)—VTh(un))dxdt.

‘We have

/ <a“" Tt (wn) — Th (un)) dt :// Opni1(Un) 40 i 7// a‘/’h “” dt da
o Ot 0
:/Q<Ph+1(un(T))_<Ph+1(u0,n) dz
Q

- / on(un(T)) — pnltio,n) da
Q

with
B u%(T)i " h? .
[ ety [ ouyar = [ )+ ) d
+ (|lun(T)| — h—f) dzx > 0.

{h+1<un (T)[}
(38)
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It’s clear that Tho1(upn)—Th(uy) have the same sign as u,,, and |Thy1(un) —Th(uy)| < 1,
using (11) and (13) we obtain

a/ Vi, |P@®) da dt + 6 |1 |P@) Y da dt
{h<|un|<h+1} {ht+1<]ug}

< a(x,t,Vuy,) - Vu, dedt + 6§ |un|p(z)_2un(Th+1(un) — Th(uy)) dz dt
h<|u,|<h+1} {h<|unl}
< / fr s (The1(up) — Th(uy)) de dt + / On(un) - (Vg1 (un) — VTi(uy)) da dt
T Qr
+/ Pn+1(uon) dr — / en(uon) dz.
Q Q
(39)
Concerning the terms on the right-hand side of (39), we have
‘ o (Thsr (un) — Ti(un)) dac dt‘ < / (fldedt — 0  as h— oo. (40)
Qr {lun|>h}

Similarly as (28), we obtain

; Gn(un) - (Vi1 (un) — VT (uy)) do dt

4 T
- / / On(Thi1(un)) - VThi1(uy) do dt —/ / b (Th(wn)) - VT (up) dz dt  (41)
Op 7 - 0o Ja
= /O /Qdiv @, (Thy1(up)) do dt — /0 /Qdiv D, (T (uy)) de dt =0,

and since ug, — ug in L'(Q), then

Uo,n 2 h
[ enertunn) o~ [ on(unn) da= [ (w0l ppgl + ) d
Q Q 1{h§\uo,n|<h+1} 2 2
+ (|U()7n| _h_,) dx
{h+1<]uo,n)} 2
< fdx+/ |ug|dr — 0 as h — oo,
{h<luo.n|<h+1} 2 {h+1<uo.n|}
(42)
By combining (39) — (42), we deduce that
/ |V, |P@ dedt — 0 as  h — oo, (43)
{r<|un|<h+1}
and
/ |un|p(gﬂ)*1 dedt — 0 as h— oo. (44)
{h+1<|unl}

Step 4 : Convergence of the gradient.
In the sequel, we denote by €;(n) i =1, 2,... a various functions of real numbers which
converges to 0 as n tends to infinity (respectively for ;(n, 1) and &;(n, u, h)).

Let &x(s) = s.exp(ys?) where v = (2(—?)2, it is obvious that

bg6) - " Digs) >3 wem

o
Let wy,p = T (upn) — (Ti(w))p, where (Tj(u)), is the mollification, with respect to time,
of Ty (u).

Taking Si(-) € C?(IR) an increasing function, such that Sy (r)

=r for |r] < h and
supp(S},) C [h — 1,h + 1], then supp(S}y) C [-h —1,—h]U[h,h+1].
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It’s clear that Ty (un,) — (Tk(u)), have the same sign as u,, on the set {|u,| > k}. By
using &g (wn,u) S} (un) as a test function in (20), we obtain

1
jn,,u,h + js,p,h + jri,u,h + jr%,u,h + d j:,#,h S jr?,,u,h + jg,u,h + jr?,#,h (45)

where,
T
ouy,

Thon = [ (G &elon)Si(un) dt,
Tiun = ]; Sh(un)a(z,t, Vuy) - (VT (un) — V(T () u) €L (Wn,p) da dt,
jr?,,u,h = , &k (W) Sh (up)a(z, t, Vuy,) - Vu, dz dt,
jfjil%h = / gn(x7taunvvun)S;L(un)fk(wmu) dx dt,
jr?,u,h = |un|p(w)_2un52(un)£k(wn,u) dx dtv

|un|§k}
jﬁ,,u,h = 0 fnsé(un)gk(wn,u) dl‘dt,
Ton = [ Silun)onlun) - (VTilun) = T (T(00), )64 o) o

TS = / G (1n) - Vit (1 )6 () e .

QT
The first term
‘We have
oSy (un,
T = [ L) ¢ (13 1) — (D)) i

O(Sn(un) = Ti(un))
ot

alr%i(tun)fk(’rk(un) — (Tk(u))u) dx dt

(Sn(tn) = T (1)) (T () = (Ti(w)),.) de ]

& (T (upn) — (T (u)),,) do dt

Il
S
| N

_|_

|

T

0

S —— 5

— [ (Sh(un) = Th(un)) & (Th(un) — (Th(u)) ) (3T%(1;un) 7 a(T’},(:))ﬂ> dr dt
+ 8Tka(tlm)§k(Tk(un) — (Ti(u)),) dz dt
=1L +T12 + 13.

(47)
Concerning the first term on right-hand side of (47), we have Sp(u,) = Tk (u,) = up on
{Jun| <k}, and |Sh(upn)| > |Tk(us)| on the set {|u,| >k}, since Sp(un) and Tk (uy,)
have the same sign of wu,, we obtain

L= [/{un>k}<sh<un> = Tilun))&k (Th(un) = (Tk(w)),.) da

> = . |>k}(Sh(U0,n) — Tr(u0,n)) &k (T (wo,n) — (T (wo)),) da,

also, it’s clear that (Ty(uo)), = Tk(uo), then

T

0

_ /{| | k}(Sh(uo,n) — Ty (uo,n))ek (Th (wom) — Th(ug)) dv — 0 as m — 00,
uo,n|>
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we deduce that

I > e1(n).
For the second term on right-hand side of (47), we have (Sp(un) — Tk(un)) aT%(tun) —0
then
I = / (Sn(un) — Ti(wn ))&k (Ti (un) — (Tk(U))u)w e dt
{lun|>k}
=u ‘ ‘>k}(5h(un) — Tr(un ))& (Tr (un) — (T (w) ) (T (u) — (Ti(w)),,) dz dt
= M/{ ‘>k}(3h(un) = Tr(un ))& (Tr (un) — (T (w)) ) (T (w) — Tr(un)) da dt
+u | |>k}(Sh(Un) — T (un ))& (Tr () — (T (w)) ) (T () — (T () ) da dt
> . M}(Sh(un) — T () )Ep (Th () — (Th(w0)) ) (The (u) — T (uy)) dez dt,

it follows that

I > &5(n)
Concerning the last term Is, Let ¥(s) = %(exp('ysQ) 1) then W(s) = &(s), and we
obtain
ho= [ A O g 0, - (Tefa),) o i
T of Waﬁ(m ) = (7)) dde

= [ [ ¥~ B ] e [ T) = (Tl ) Titin) = (i) ) o

>~ [ WTu(un.) ~ Tiluo)) o /Q (T4l) = (T4 (0), 8 Tir) — (T (1)) v

i E ; Bl = (00, )60 i) = (Tew)) v

By combining these estimates, we conclude that
Ty = €4(n). (48)
The second term

Concerning the second term of (46), we have Sj(s) >0 and Sj(s) =1 for |s] <k,
with supp(S;,) C [-h —1,h + 1], then

T i :/ a(@,t, VTi(un)) - (VTk(un) = V(Ti(u)) )& (wn.p,) do dt
{lunl <k}

- Sp(un)a(@,t, VThi1(un)) - V(T (u)) ub (wn,p) da dt
(k<|un|<h+1}
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> [ (ol VL) = et VI () - (VT (1) — 9T ()6 () dr i

- f;;(Zk)/Q la(z, t, VT (uw)| |VTk(un) — VT (u)| dz dt

— &, (2K) la(z,t, VT (un))| [V(Tk(w)) | do dt

lun|>k}
- 52(%)/ la(@, t, VT (un))| [VTk(u) = V(Ti(w)) ] d dt

Qr

— 2R 1S5 ()| Ly /{ e 96 T ()| [V (T e
- (49)

We have |a(z,t, VT;(u))| € LP @) (Qp) and VT (u,) — VTi(u) in (LP@)(Qr))N, then
/ la(z, £, VTh()| [V Tk (un) — VT4(w)| dzdt — 0 as 1 — oo.
T
For the three last terms on the right-hand side of (49), we have |a(z,t,VTk(uy))| is

bounded in L” *)(Qr), then there exists ¥ € LP'*)(Qr) such that |a(x, t, Vi (un))| — ¢
in LP'@®)(Qr), and since V(Tk(w), = VTi(v) in (LP®)(Qr))N it follows that

/ la(z,t, VT (un))| |V(Tk(w))u|dedt — 9 |V (u)|dedt = 0 as pand n — .
{lun|=k} {lu|=k}
(50)

Similarly, we can prove that

/ la(z,t, VIL(un))| VT (u) — V(Tk(w)),| dedt — 0 as p and n — oo. (51)
Qr

and

/ la(z, t, VIh41(un))| |V(Tk(w))y|dedt — 0 as p and n — oco. (52)
{k<|un|<h+1}
By combining (49) — (52), we deduce that

Jrf’u)h > / (a(x,t, VTi(upn)) — a(z,t, VTk(u))> (VTi(up) — VT (w)&g (wn,y) do dt

+es(p,m).
(53)
The third term
We have supp(S}) C [-h —1,—h]U [h,h + 1], and in view of Young’s inequality, we
obtain

T3 n] < HSZ(-)IILoom)/ |a(z,t, Vi1 (un))] (€ (Wnp)| [VThi1(un)| do dt
{h<|un|<h+1}

< B”SZ(')HL“(R)/ (K (@, ) + [V 1 (wn) PO €k (wn )| VT ()| da it
{h<Jun|<h+1} ,
PESCUI
/

< BISHOecao [ leon)l =)

{h<lun|<h1 :
+8€k(2k) 1S ()Nl Lo (m) / (—— + 1|V Thi1 (un) [P dz dt,
{h<|un|<h+1} p(x)

dx dt

since wp ;= Tr(un) — (Tk(v)), — 0 weak-x in L>°(Qr) then

K (z,t)[P®)
/ PN L (A
{h<|un|<h+1} ()

dedt — 0 as pu, n — o,
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and thanks to (43), we obtain
1
/ (— + V)|V Thy1 (u,) [P dadt — 0 as h — oo,
{h<|un|<h+1} p(df)
it follows that
jﬁ’%h —0 as p, n then h — oo. (54)
The fourth term
We have
Tl < [ lonlt Tiun), Vi) )| dr
{lun|<k}

< b(k) (c(@,t) + [VTh(un)[P) €1 (wn,p.)| da dt

c(x, t)| &k (wn,p)| do dt + bik) / a(z,t,VTi(up)) - VT (un) &k (wn,)| do dt

{
§un<k} a T
{

c(z, )€k (wn )| da dt

(a(z,t, VTi(un)) — alz, t, VT (w))) - (VIk(un) — VT (w)) [k(wn,pw)| do dt

o,
L) /Q 0l £, VTi(0)) - (VTo(un) — VTx(0)) |6 (wn )| de di
/Q a(z,t, VI (u,)) - VI (u) |&k(wn,u)| do dt.

We have & (wp,,) = 0 weak-+ in L*°(Qr), then
/ c(, )&k (wn,p)| drdt — 0 as n and p — oco. (56)
{lun|<k}

Concerning the third and last terms on the right-hand side of (55), we have

(/Q a(z,t, VTi(u) - (VTi(un) — VT3 () €k (wn )| da dt

< §k(2k)/ la(z, t, VI (uw)| [VTk(uyn) — VTi(w)| dzdt — 0 as n — 0o,

Qr
(57)
and
/ a(z,t, VIg(u,)) - VIg(w) |k (wn,,)| dedt — 0 as n,p — oo. (58)

T

By combining (55) — (58), we obtain

el < "2 [ (ol T4 0) = oo, VT - (T (0) = VT )]
+56{n7 M)
(59)
The fifth term

Since S} (u,) =1 on the set {|u,| < k}, we have

T b :/{I < | T (1) [P~ (n) (T () — (T (w)) exp(rwry, ,,) da dt
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=/ (1T () [P~ T () = [T () P2 T (w) ) (T (wn) — Ti(w)) exp(yey, ) dae di

QT
+ 0 | T () [P 2T (u) (T () — Tie (1)) exp(yw n ) do dt
+ / [T (1) PO~ 2T (1) (T () — (T (w)),0) exp(rw?,,,) da dit
[un|<k}
- /{ oy TP i) (i) = () xplrs,) d .

Since Ty (un) — Tx(u) — 0 and Ty(u) — (Th(u)), — 0 strongly in LP(®)(Qr), then the
three last terms on the right-hand side of the previous equality tends to 0, and we obtain

VA 2/ (1T () P2 T () — T3 (u) [P 2T () (T (un) — Tho(w)) dev dit

+67(na /u’)
(60)
The sixth term
We have f, — f in LY(Qr), and since Ty (un) — (Tk(u)), — 0 weak-x in L>°(Q7),
then

T un] < ”S;L(')L"C(ﬂ%)/Q |l 16k(Th(un) = (Tk(u)) p) | dzdt — 0 as n, p— oo. (61)

The seventh and last terms
Let n large enough, it’s clear that ¢, (Thi1(un)) = ¢(Thi1(un)) = ¢(Thyi(w)) in
(LP" @) (Q7))N, and since Vi (up) — V(Tk(u)), — 0 in (LP®)(Q7))N, we conclude that

’jrz,u,h’ = ‘ / On(Tht1(un)) - (VT (un) — V(Tk(u)h)s;z(urt)gllc(wnyu) dx dt
{lun|<h+1}
< &e(2R) 1157 ()lloo /{l ‘ \d;(ThH(un))\ VT (un) = V(Tk(u)) | d dt — 0 as n, u — oo.
un | <h+1
(62)
Concerning the last term, in view of Young’s inequality and (43) we obtain
Tl =] On(Tha(0) - Vit (1) €h(e,) i
{h<|un|<h+1}
< IISZ(')HLOC(JR)/ |0 (Thr1 (un))| [Vun| |8 (wn )| do dt
{h<|un|§h+1}

"(z)
|¢n(Th+1(un))|p ‘él/g(wn,u” dr dt

<1157l /

(h<|un|<h+1} p'(z)

Vu, [P
e (2B)1S) | e () / [V

drdt — 0 as n, p then h — oo.
{h<|un|<h+1} p(z)

(63)
Combining (48), (53), (54) and (60) — (63) we deduce that

P )

+ 5/@ (1T () PO~ T (n) — [T (w) P2 T (w) ) (T () — To(w)) dee dt

/ (@, L9 Tk () ~a(e, 9 T(w)) ) (VTi(un) =T T(0)) (& () —

T
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< o S;L(u7l)a($7t’ Vug) - (VT (un) — V(Tk(u))u)gl;(wmu) dx dt

/ Gn (T, b, U, V) Sy (un) &k (wn,p,) da dt
{|un|<k}

+ 0 [P 20,8, (1 ) (W) da dt + e5(n, i, )
{lun|<k}
<egg (’I’L, Hy h)
By letting n, p and h tend to infinity in the above inequality, we get
lim (a(gc, £, VT (un)) — alz,t, VTk(u))) (VTh(un) — VTi(u)) dz dt

n—oo QT

+ /Q (1T () P2 T () = | T () P 2T () (T () — Ty (w) d dit = 0.

In view of the Lemma 5.4, we deduce that

Ti(up) = Tp(u) in V then Vu, = Vu a.ein Qr. (64)
Step 5 : The equi-integrability of gn(x,t,un, V) and |[u,|P® 2w, .
To prove that
Gn (2, b, U, V) — g(z, t,u, Vu) and |u, |P@ 20, — [u|P@ =2y strongly in L' (Qr),
using Vitali’s theorem, it is sufficient to prove that g, (z,t,u,, Vu,) and |u,[P(®) =2y,

are uniformly equi-integrable.
Indeed, taking Tpy1(un) — Th(uy,) as a test function in (20), we obtain

/ Opnt1(un)  Opn(un) it da +/ a(z,t, V) - Vuy, dz dt
T {h<|u,|<h+1}

ot ot

+ (2, t, Un, V) (Thar (un) — Th(uy)) do dt

{h<|unl}
+6 |t [P 200 (Thy 1 (1) — Th () daz dt

{h<|unl}

= fr Tha1(up) — Th(uy)) dedt + | én(uy) - (VThe1(un) — VI (uy)) dzx dt.

{h<]ual} Qr

(65)
‘We have

/ Opn i1 (uin) — Oipn(un) dt dx :/Qcph+1(un(T))dxf/ggohﬂ(u&n) dx

ot ot
- / on(un(T)) da + / on(un n) de

Q Q

having in mind (38), then

0 Uy, Opp (U
Whgl( ) _ 9onlun) dt dz > —/ on+1(uon) dr +/ on(uon) dz,

and since the second term on the left-hand side of (65) is positive, we obtain
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/ lgn (2, t, Un, Vuy,)| de dt + 6 |1 |P@ Y da: dt
{h+1< unl} {h+1<]unl}
< 9n (@t tny V) (Thop1 (un) — Th(uy)) da dt
{h<lunl}
+6 |t [P 2, (Thg (un) — Th(un)) do dt (66)
{hg‘”n‘}
< |f| dz dt + ¢n(un) : <VTh+l(un) - VTh(un)) dx dt
{h<]unl} Qr
+ [ ent1(uon) de — / on(ugpn) dx.
Q Q
In view of (40) — (42), we deduce that : for all n > 0, there exists h(n) > 0 such that
/ \gn (2, £, U, Vi) | da dt + 6 PO Laza < (67)
{h0n) <lun} {h(m)<lunl} 2

On the other hand, for any measurable subset F C Qr, we have
/ lgn (2, t, Un, Vuy,)| dz dt + 5/ |1 |P@) Y da dt
E E

< / b(h(n))(c(a,t) + |V The) (un) [P do dt + 6 / Thy () [P da dt (68)
E E

—|—/ |gn (2, t, tp, Vuy,)| do dt + 0 \u”|”(”)71 dx dt,
{r(m)<|unl} {h(m)<|unl}

thanks to (64), there exists B(n) > 0 such that

/b (@, )V T (1) [P ddt+6 / (Too ()Pt < 7 for meas(E) < 6(n).

(69)
Finally, by combining (67), (68) and (69), we obtain

/ lgn (2, t, tn, Vuy,)| de dt + 5/ lun|P@ =Y dz dt <n, with meas(E) < B(n), (70)
E B

then (gn(,t,un, Vtun))n and (Ju,|P®~2u,), are equi-integrable. In view of Vitali’s
Theorem, we conclude that

gn(,t,up, Vuy) — g(z,t,u, Vu) and \un|p(z)72un—>|u|p(m)72u in Ll(QT).
(71)

Step 6 : The convergence of u, in C([0,T]; L*(£2))..
Let ¢ € VN L®(Qr) and m, n be two integers, then w, and w,, verifies

ou,  Oupy,

/0 <W - 771@ dt —|—/T (a(z,t, Vu,) — a(z,t, Vuy,)) - VY da dt

+/ (gn(z,t,un, Vun) — gm (2, t, tm, Vum))1/1 dx dt
Qr
+5/ (|un\p(z)72un - |um\p(z)72um)1/) dx dt

Qr

= / (fn = fm)¥ dx dt+/ (¢n(u7z) _d)m(um)) - Vb dz dt,
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By taking ¢ = T (un — um) - X[0,s) for 0 < s < T, we obtain

// On “" _“’”) dt d
Q

( (z,t,Vu,) — a(z,t, Vi) - VT (uy — up) do dt

0,79

+/ / (gn(x’t?una Vun) - gm(x7t7 Um,, vum))Tl(un - um) dx dt

0./Q (72)
£ [ (2 P2 Tt ) e

0 JQ

:/ /(fn )Tt — ) da dt
+/ / (n(ttn) — b () - VT4t — ) d .

o Ja
We have

/ﬂ/ o1 ( un 01 (Un — Um) dt do = /Q<p1(un(8) — U (8)) do — /Q%(uo’" — ugm) de.

Concerning the terms on the left-hand side of (72), since VTi(up — tum) = (Vu, —
VU)X {|un—um|<1}> then

/ / a(z,t,Vuy,) — a(z,t, Vum)) (Vg = V) X{jup—um|<1} d dt >0, (73)

also, we have

s
/ / (\un|p(g”)_2un - \um|p($)_2um)T1 (up, — Up,) dx dt > 0, (74)
0o Jo

and in view of (71), we obtain

‘ / / gn t, Uy, vun) - gm(:r, t, U, vum))Tl (un - Um) dx dt

f |gn (2, t, tUn, Vug) — gm (2, t, U, Vupy)| dedt — 0 as  n,m — co.
Qr

For the terms on the right-hand side of (72), since

(75)

’// — fm) 11 (tp — U, dxdt‘ / |fo—fm|ldxdt — 0 as  n,m — oo. (76)

Qr

and since (see Appendix), we have

/OS/Q (qﬁn(un) - ¢m(um)> VT (U, — up) dzdt — 0 as  n,m — oo. (77)

By combining (72) — (77), and the fact that |ug, — uom| — 0 in L'(Q), we conclude
that

/ ©1(un(s) —um(s))de — 0 as n,m — forany 0<s<T. (78)
Q

On the other hand, we have

/ e (5) —um(s)|2dz+/ () — 1y (5)| der
{| gy =t | <1} {lun—um|>1} (79)

<2 | o1(un(s) — um(s)) dz,
Q
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and
/ fun(3) — tum(s)| dz = / 1 (3) — 11 (5)] dz
Q {Iun_u'mlgl}

+ |un(s) — um(s)| dx
{Jun—tum|>1} (80)

|t (8) — U (5)]? da?) * . (meas(Q))

N[

<

( {lun —um|<1}

+ |un(s) — um(s)| dz,
{Jun—tm|>1}

In view of (78) — (80), we deduce that
/ |tun(s) — um(s)|de — 0 as  m,n — oco. (81)
Q

Hence (uy) is a Cauchy sequence in C([0,T]; L'(Q2)), thus u € C([0,7]; L*(©2)) and we
have u,(s) — u(s) in L'(Q) for any 0 < s <T.

Step 7 : Passage to the limit.
Let ¢ € VNL*®(Qr) with %—T’f € V*+ LY (Qr). By taking Ty (u, — 1) as a test function
in (20), we obtain

T
»/O <8(9L:’Tk(un_¢)> dt+/ a(x’tyvun) VTk(un_d}) dx dt

T

—|—/ gn (@, b, Vup) Ty (uy — ) do dt + 5/ \un\p(z)fzunTk(un — ) dxdt
QT QT
= fnTk(Un - 1/)) dx dt + ¢n(u71) : VTk(un - 1;[}) dx dt
QT QT
(82)
Taking M = k + |[¢|| o (Qr)- If [un| > M then |u, — | > |u,| — [|[¢]|cc > k, therefore
{Jun — Y| <k} C {|u,| < M}, which implies that

/ a(x,t, Vuy,) - VI (un — ) do dt
= a(z, t, VT (up)) - (VTa(up) — Vo) d dt

= / (a(z,t, VT (un)) — alz,t, V) - (VT (uy) — V) da dt
{lun—|<k}

+ a(z,t, V) - (VI (uy) — Vo) dx dt
{lun—1|<k}

since VT (u,) — VTar(u) in (LP@)(Qr))N, and in view of Fatou’s Lemma, we obtain

n—-+oo

liminf/ a(x,t, Vuy,) - VT (un, — ) da dt

> i (a(z,t, VTp(u)) — alz, t, V) - (VIn(u) — V) de dt
{lu—v|<k} (83)
+ a(x,t, V) - (VT (u) — V) dx dt
{lu—v|<k}
= / a(z,t,Vu) - VT (u — ¢) dzx dt.
Qr
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On the other hand, for the first term on the left-hand side of (82), we have
Ouy, a(un - 1/1) 51/)

o = Q5 + a0 then
T ou, T 0(un — ) T oy
/0 <W7Tk(un —))dt = / <76t T (upn — ) dt +/0 (E,Tk(un — ) dt
= /;@k(un —)(T) dz — /Q ok (uo,n — ¥(0)) da
o
+ o ETk(un — 1) dz dt,
since u, — u in C([0,T]; L*(Q)) then wu,(T) — w(T) in L(Q), it follows that
[ rtunn —6@) do — [ euu - v(0) (s4)
Q Q
and
[ ortun =)@ do — [ - 0)T) do. (85)
Q Q

We have %—f € V* + LY(Qr), since Ti(u, — 1) — Ti(u —¢) in V and weak—x in

L>(Qr), then

/QT %Tk(un — ) dr dt — o %Tk(u — ) dx dt, (86)
and
Tk (up — ) do dt — fTe(u— ) dz dt. (87)
Qr Qr

in view of (71), we deduce that

/ |t [P 200, T (1, — ) daz dt —> [u[P@ =2y Ty, (u — ) dz dt, (88)
T Qr

and

/ gn(‘r» ly Un, vun)Tk(un - /(/)) d dt — g(ac, l,u, VU)Tk(’LL - w) dx dt. (89)
T Qr

On the other hand, since ¢y, (Tar(un)) = ¢(Tar(uy,)) for n large enough (n > M), then

lm [ ¢n(un) - VIg(u, — ) de dt= lim d(Tar(un)) - (VT (uy) =V) de dt

n0 JQr 20 J{ Jun —1p| <k}

= H(Trr(w)) - (VT (u) — Vi) dz dt

lu—y|<k}
= / d(u) - VI (v — ) dz dt.

Qr (90)

By combining (82) — (90), we deduce that

/ or(u—)(T) dw—/gok(u—@[})(O) dz + %Tk(u—w) dx dt

Q Q Qr
+/ a(x,t,Vu) - VI, (u — ) dx dt + / g(x,t,u, Vu)Ti(u — ) de dt
Qr Qr
+5/ [ulP@ =2y Th(u— ) dedt < | fTi(u—)dedt+ | ¢(u)- VTi(u— ) de dt,
Qr Qr Qr

which conclude the proof of the Theorem 6.1.
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7. Appendix

Lemma 7.1. The operator B, = A + G,, + R,, is pseudo-monotone from V into V*.
Moreover, B, is coercive in the following sense
fOT<an, v) dt
Tl — +00 as ||v|ly — 40 for velV.
v||v

Proof of Lemma 7.1.  Using the Holder’s type inequality and the growth condition (10)
we can show that the operator A is bounded, and by using (21) and (22), we conclude
that B, bounded. For the coercivity, thanks to (22) we have for any u € V,
(Bru,u) = (Au,u) + (Gpu,u) + (Rpu,u)
= / a(z,t,Vu) - Vu dz dt + / gn(x,t,u, Vu)u dx dt + 5/ [u[P@) dz dt
Qr Qr T
—/ On(u) - Vudr dt

QT
> a /Q VP do dt -+ /Q 0P d dt — 206 (W) oy | Vel oo @y
T T
> a(IVulZ; gy — 1) + oul 1) = Cr.lullv
min(c, )
> )
I — |

we deduce that

p— _
Lr(@) (Qr)

[ully7 —a =6 = Cylullv,

fOT<Bnu,u> dt
[[ullv

It remain to show that B, is pseudo-monotone. Let (uy)r by a sequence in V' such
that

— 400 as |ully = +oo.

U — U in V,
Bpug — xn in V¥, (91)
lim sup(Buk, ug) < (Xn,u).

k—o0

We will prove that
Xn = Bpu and (Bhpug,ur) — (xn,u) as k— +oo.

Using the compact embedding (6), we have u, — u in L'(Qr) for a subsequence still
denoted (ug)k -
By the growth condition, it’s clear that (a(z,t, Vug)), is bounded in (LP'®)(Qr))Y,
therefore, there exists a function ¥ € (L? ) (Qr))Y such that

a(z,t,Vug) =9 in  (L"O(Qr)N as k — oo. (92)
and
D72y — Ju|P@ 2y, in  L"®(Qr). (93)

Similarly, we have (g, (z,t,up, Vuy))x is bounded in LP(®)(Qr), then there exists a
function 1, € L’ ®)(Qp) such that

|uk‘p(

gn (b, ug, Vug) = b, in - LP@(Qr) as k — oo, (94)

and since ¢,(-) = ¢ o T,,(-) is a bounded continuous function, using the Lebesgue
dominated convergence theorem we have T, (uy) — Ty, (u) in LP®)(Qr), then

bnlur) — dp(u) in (L@ Q)N as k — oco. (95)
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For all v € V, we have

(Xn,vy = lim (Bpug,v)
k—oc0
= lim a(z,t,Vug) - Vo dx dt + lim / gn(x,t, ug, Vug)v dx dt

k—o0 Or k—o0 T

+ lim (5/ Jup [P ~2up da dt — lim ﬁ On(ug) - Vo dz dt
k—oo QT k—o0 QT

= O-Vodedt+ | ¢pvdedt+6 [ |uffD2uwdedt— [ ¢n(u)- Vodzdt.
Qr Qr Qr Qr

(96)
By using (91) and (96), we obtain

lim sup (B, (ug), ux) = limsup { / a(x,t,Vug) - Vug de dt + / gn (X, t, ug, Vug )ug da dt
Q

k—o0 k—o0 T Qr
+4d |uk\p("”) dx dt — / On(ug) - Vug dz dt
Qr Qr
< ﬁ-Vudxdt—i—/ Ypu dz dt+6/ u[P@) dz dt—/ Pn(u) - Vu dz dt.
QT T Qr Qr

(97)
Thanks to (94) and (95), we have

/ gn (2, t, ug, Vug )ugdadt — | Ypudzdt and On(ug)-Vurdedt — | ¢p(u)-Vudzdt,
T Qr Qr Qr
(98)

therefore

limsup{/ a(z,t, Vug)-Vugdrdt+9 |uk\p(m)dxdt} §/19~Vudxdt+6 [u[P®) da:dt.
Qr

k—o0 T Qr Qr
(99)
On the other hand, using (12) we have
/ (a(z,t, Vuy) — a(z,t,Vu)) - (Vug, — Vu) de dt
Qr (100)

+4 (Jug P20, — [uP®=20) (ug, — u) dz dt > 0,
Qr

then

/ a(x,t,Vuy) - Vuy dz dt+5/ |ug [P da dt

T T

2/ a(az,t,Vuk)~Vuda?dt+5/ g [P 2w da dt
T

T

+ a(x,t,Vu) - (Vug, — Vu) dx dt + 5/ [P =20 (uy, — u) de dt,
QT T

in view of (92) and (93), we get
liminf{/ a(x,t, Vug)-Vugdrdt+4§ \uk|p(x)dzdt} z/ﬂ'Vudxdt—HF |ulP®) dzdt,
k=00 T Qr T Qr

this implies, thanks to (99), that
lim {/ a(z,t, Vug)-Vugdrdt+4d

k—o0 T QT

|uk|p(””)dxdt} = / O-Vudzdt+6 | |ulP™ dzdt,
T Qr
(101)
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thanks to (98), we obtain (B,uk,ur) = (Xn,u) as k — +oo.
Now, by (101) we can obtain

k—-+o00

lim {/QT (a(z,t, Vug) — a(z,t, Vu)) - (Vuy, — Vu) de dt

+6 (Jug [P 20y, — |uP®~20) (ug, — u)dz dt} =0,
Qr
in view of the Lemma 5.4, we get

up, —uw in V and Vup — Vu a.e in Qr,

it follows that
a(x,t, Vug) = a(z,t,Vu) in (LP@(Qq))N,
and
gn(x, t, uk, Vug) = gn(x,t,u,Vu) in Lp/(‘”)(QT),
we deduce that x,, = B,u, which completes the proof of Lemma 7.1. [l

Proof of the convergence (77). Let h >0 and n, m large enough. We have

[ [ (@atitn) = G m) - (1 = )

= |6(Th(un)) = ¢(Th(um))| [V Th(un) = VT (um)| dedt— (102)
{lup|Sh}N{jurm|<h}

+ |¢n(un) - ¢m(um)| |vun - vum‘-X{\un—um\gl} dr dt
{lun[>h}U{|um|>h}
Concerning the first term on the right-hand side of (102), since VT},(uy,) and VT (ty,)
converge strongly to V7T},(u) in (LP@)(Qr))Y, and since |, (Th(un)) — ¢n(Th(um))| is
bounded in L? (*)(Qr), then

/ |o(Th(un)) — d(Th(wm))| |VTh(tn) — VT (um)| dx dt — 0, (103)
{|un|§h}ﬁ{\um\gh}

as m and n tend to infinity. Concerning the second term, we have ¢, () is a continuous
function, then there exists M; > 1 such that sup |¢(s) — ¢(r)| < M. Also, it’s clear
lr—s|<1
that
Vse€ IR and VMy>1 wehave |d,(s)— ¢m(s)| < My for m,n > ng(s, Ms).

Taking m and n large enough, By using (31), (43) and Young’s inequality, we obtain

/ ‘an(un) - (bm(um)‘ |vun - V’U"rn|~X{|unfum|§1} dx dt
{lun|>h}U{lum|>n}

<

/ |61 (tn) — G (W) [P X (<1} da dt
{Jtun] >R} O]t >R}

- / |60 (tm) = G ()P Xy <1y v dt
{lun|>h}U{|um|>h}
+ 2/ |VUn - vum|p(fl’).x{|un_um|§1} dl’ dt
{\un|>h}u{|um|>h}

< (M7* 4 My H)meas ({|un| > b} U {|um| > h})

+ 2P+ / |Vt |P®) da dt
{lun|>h71}ﬂ{|un|71S|u7n|§|un|+1}
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+2°+ / |V, [P®) dedt — 0 as h—oco. (104)
{lum|>h=1}0{|wm | = 1< un | <|wm|+1}

By combining (102) — (104), we get
S
/ / (60 (un) = G (um)) - VI (up — t) dodt — 0 as  n,m — oo. (105)
0 JQ
U
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