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Existence of renormalized solution for a class of doubly nonlinear
parabolic equations with nonstandard growth

Badr Lahmi, Khalid El Haiti, and Adil Abbassi

Abstract. We prove the existence of a renormalized solution to a class of doubly nonlinear
parabolic equation

∂b(x, u)

∂t
− div(a(x, t, u,∇u) + Φ(u)) = f − div(F ) in Q,

where−diva(x, t, u,∇u) is a Leray-Lions operator which is coercive and which grows like |∇u|p(x)−1

with respect to ∇u, but which is not restricted by any growth condition with respect to u and

where b(x, u) is an C1(R)-function strictly increasing with respect u. The data f , F and u0

respectively belong to L1(Q), (Lp′(·)(Q))N and L1(Ω).
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1. Introduction

We consider the following doubly nonlinear parabolic equation:
∂b(x, u)

∂t
− div(a(x, t, u,∇u) + Φ(u)) = f − div(F ) in Q

u(x, t) = 0 on ∂Ω× (0, T )
b(x, u(x, 0)) = b(x, u0(x)) in Ω.

(1)

In the problem (1) Ω is a bounded domain of RN (N ≥ 2), with a Lipschitz boundary,
T is a positive real number, Q = Ω × (0, T ) and −div(a(x, t, u,∇u)) is a Leray-Lions
operator acting from the space X defined as in [7] and [26] by

XT = X :=
{
u ∈ Lp

−
(0, T ;W

1,p(x)
0 (Ω)); ∇u ∈ (Lp(x)(Q))N

}
, (2)

to its dual X ′ for some variable exponent p(·) : Ω→ [1,+∞[ which is assumed Log-Hölder
continuous function only dependent on the space variable x (see definitions below), b is
a Carathéodory function such that for every x ∈ Ω, b(x, ·) is a strictly increasing C1-
function, Φ is a function which just assumed to be continuous on R. The initial data u0

is in L1(Ω) such that b(·, u0) belongs to L1(Ω). The source terms f belongs to L1(Q)

and F is in (Lp
′(·)(Q))N .

Under our assumptions, problem (1) does not admit a weak solution since the field
a(x, t, u,∇u) do not belong to (L1

loc(Q))N in general. In order to overcome this difficulty,
we work with the framework of renormalized solutions. The notion of renormalized
solutions was introduced by R.-J. DiPerna and P.-L. Lions in [14] for the study of the
Boltzmann equation. It was adapted by many authors in the framework of a constant
exponent p(·) = p to the study of some nonlinear elliptic or parabolic problems (see e.g.
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[11],[8],[23]). In the framework of a variable exponent p(·) satisfying the so-called Log-
Hölder condition, the existence and uniqueness of renormalized solutions for parabolic
equation involving p(x)-Laplacien for b(x, u) = u, Φ = 0 and F = 0 has been established
by Bendahmane et al. in [7] and by Zhang and Zhou in [26].

Recently, doubly nonlinear parabolic problem with variable exponents have attracted
attention. We refer to the works [4],[2] and [9]. In [5] Azroul et al. obtained the existence
of renormalized solution for the problem (1) with F = 0 by assuming that p− ≥ 2. The
aim of this work is to extend the result of [23] for the case of variable nonlinearity and
also extend the result [5] by working with b which depend to (x, u) and F an element

of (Lp
′(·)(Q))N with F 6= 0 and by assuming that H(x, t, u,∇u) = −div(Φ(u)) and that

p− >
2N

N + 2
. Note that

2N

N + 2
≤ 2 for a dimension N ≥ 2.

Due to the recent developments in the studies related to differential equations with
p(·)-grows, a great interest has arisen in the space Lp(·) and Wm,p(·) with variable expo-
nent. We refer e.g. [13, 16, 17, 19] for fundamental properties of these spaces. One of
the motivations behind the study of (1) comes from electro-rheological fluids called also
smart fluids (more details can be found in [24],[12],[1]). Another important motivations
are related to image processing (see [10]) and elasticity (see [28]) and also the so-called
porous media equation which has been studied for instance in [3].

The plan of the paper is as follows: After this section, we recall in section 2 a basic
background of Lebesgue and Sobolev spaces with variable exponents. In Section 3, we
set a basic assumptions. In Section 4 we give the definition of solution of problem (1),
finally in section 5 we prove the existence of such a solution.

2. Preliminaries

Throughout this section, we suppose that the variable exponent p(x) : Ω→ [1,+∞[ is
only dependent on the space variable x and is log-Hölder continuous on Ω, that is there

is a real constant C > 0 such that for every x, y ∈ Ω, x 6= y with |x− y| ≤ 1

2
one has

|p(x)− p(y)| ≤ C

− log |x− y|
(3)

and satisfying

1 < p− ≤ p(x) ≤ p+ < +∞. (4)

where p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x) < +∞.

We recall some definitions and basic properties of spaces Lp(x)(Ω), W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω). (see e.g. [13, 19, 28] for more details and results).

The variable exponent Lebesgue space Lp(·)(Ω) is defined as

Lp(·)(Ω) = {u : Ω→ R; u is measurable with ρp(x)(u) :=

∫
Ω

|u(x)|p(x) dx < +∞}.

Equipped with the so-called Luxemburg norm

‖u‖Lp(·)(Ω) = inf
{
λ > 0 : ρp(x)

(u
λ

)
≤ 1
}
,

Lp(·)(Ω) is a reflexive Banach space if p− > 1. The dual space of Lp(·)(Ω) can be identified

with Lp
′(·)(Ω), where

1

p(·)
+

1

p′(·)
= 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the Hölder
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type inequality ∫
Ω

|uv| dx ≤
(

1

p−
+

1

p′−

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω) (5)

holds true.

Lemma 2.1.
(i) For any u ∈ Lp(x)(Ω), we have

min{‖u‖p
−

Lp(x)(Ω)
, ‖u‖p

+

Lp(x)(Ω)
} ≤ ρp(x)(u) ≤ max{‖u‖p

−

Lp(x)(Ω)
, ‖u‖p

+

Lp(x)(Ω)
}.

(ii) If p1(x) ≤ p2(x) for any x ∈ Ω, then Lp2(x)(Ω) ↪→ Lp1(x)(Ω) and the embedding is
continuous.
(iii) ‖u‖p

−

Lp(x)(Ω)
− 1 ≤ ρp(x)(u) ≤ ‖u‖p

+

Lp(x)(Ω)
+ 1.

Lemma 2.2. Let p(·) satisfying (3) and (4), we have:
(i) ‖u‖Lp(x)(Ω) < 1 (= 1;> 1)⇔ ρp(x)(u) < 1 (= 1;> 1),

(ii) ‖u‖Lp(x)(Ω) < 1⇒ ‖u‖p
+

Lp(x)(Ω)
≤ ρp(x)(u) ≤ ‖u‖p

−

Lp(x)(Ω)
,

(iii) ‖u‖Lp(x)(Ω) > 1⇒ ‖u‖p
−

Lp(x)(Ω)
≤ ρp(x)(u) ≤ ‖u‖p

+

Lp(x)(Ω)
,

(iv) ‖u‖Lp(x)(Ω) → 0⇔ ρp(x)(u)→ 0 and ‖u‖Lp(x)(Ω) →∞⇔ ρp(x)(u)→∞.

The variable Sobolev space W 1,p(·)(Ω) is defined in the following sense

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)}.

It is a Banach space under the norm

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω)

Under the condition (3), smooth functions are dense in variable exponent Sobolev spaces

and there is no confusion to define the Sobolev space with zero boundary values W
1,p(·)
0 as

W
1,p(·)
0 (Ω) := C∞c (Ω)

W 1,p(·)(Ω)
with respect to the norm ‖ · ‖W 1,p(·)(Ω). Assuming p− > 1

the spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are reflexive and separable Banach spaces. The

dual space (W
1,p(·)
0 (Ω))∗ is denoted by W−1,p′(·)(Ω) equipped with the norm

‖v‖W−1,p′(·)(Ω) = inf
∑
|α|≤1

‖vα‖Lp′(·)(Ω)

where the infinimum is taken on all possible decompositions

v =
∑
|α|≤1

(−1)|α|Dαvα, vα ∈ Lp
′(·)(Ω).

Let us exhibit Poincaré and Sobolev type inequalities (see [16, 17]).

Lemma 2.3. Let Ω be a bounded domain in RN with smooth boundary ∂Ω.
(i) If (3) holds, then there exists a constant C > 0 depending only on Ω and the function
p such that

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω) for all u ∈W 1,p(·)
0 (Ω).

In particular, the space W
1,p(·)
0 (Ω) has a norm ‖ · ‖p(·) given by

‖u‖p(·) = ‖∇u‖Lp(·)(Ω) for all u ∈W 1,p(·)
0 (Ω),

which equivalent to ‖ · ‖W 1,p(·)(Ω).
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(ii) If p ∈ C(Ω), 1 < p− ≤ p+ < N, q : Ω → [1,+∞) is measurable and infx∈Ω(p∗(x) −
q(x)) > 0 with p∗(x) := Np(x)/(N−p(x)), then W 1,p(·)(Ω) is continuously and compactly
embedded in Lq(·)(Ω). Moreover, a real constant C > 0 exists such that

‖u‖Lq(·)(Ω) ≤ C‖u‖W 1,p(·)(Ω) for all u ∈W 1,p(·)(Ω).

In particular, the embedding W
1,p(·)
0 (Ω) ↪→ Lp(·)(Ω) is compact.

Extending a variable exponent p : Ω → [1,+∞[ to Q → [1,+∞[ by setting p(x, t) =
p(x) for all (x, t) ∈ Q, we may also consider the generalized Lebesgue space which shares
the same type of properties as Lp(x)(Ω):

Lp(x)(Q) =
{
u : Q→ R measurable with

∫
Q

|u(x, t)|p(x)dxdt <∞
}
.

We consider the functional space X defined in (2) which is a separable and reflexive
Banach space endowed with the norm

‖ u ‖X :=‖ u ‖
Lp− (0,T ;W

1,p(x)
0 (Ω))

+ ‖ ∇u ‖Lp(x)(Q),

Or, the equivalent norm

|u|X =‖ ∇u ‖Lp(x)(Q) .

The equivalence of the two norms is a consequence of Poincaré inequality and the con-

tinuous embedding Lp(x)(Q) ↪→ Lp
−

(0, T ;Lp(x)(Ω)) (see [7]). Since 0 < |Ω| < +∞, we
can see, by using the Hölder inequality, that the space X is continuously embedded in
L1(Q).
The elements of the dual space of X denoted by X ′ can represent as follows: if Ψ ∈ X ′,
then there exists Φ = (φ1, · · · , φN ) ∈ (Lp

′(x)(Q))N such that Ψ = divΦ and

〈Ψ,Θ〉X,X′ =

∫ T

0

∫
Ω

Φ.DΘ dx dt for any Θ ∈ X.

By lemma 3.1. in [7], the following continuous and dense embedding

X ↪→d L
p−(0, T ;W

1,p(x)
0 (Ω)), X ′ ↪→ L(p+)′(0, T ;W−1,p′(x)(Ω)),

and also the following continuous imbedding holds

{u ∈ X;ut ∈ X ′ + L1(Q)} ↪→ C([0, T ];L1(Ω)). (6)

We recall some basic results that will be used later

Lemma 2.4. (see [18],[22]) Suppose that 1 ≤ p(x) < ∞. Let {vn}n be bounded in
Lp(x)(Ω). If vn → v a.e. in Ω, then vn ⇀ v weakly in Lp(x)(Ω).

Lemma 2.5. (see [15]) Let (un)n be a sequence in L1(Ω) and u ∈ L1(Ω) such that

un → u a.e. in Ω, un, u ≥ 0 a.e. and

∫
Ω

un dx→
∫

Ω

u dx. Then un → u in L1(Ω).

Lemma 2.6. (see [27]) Let Ω ⊂ RN be measurable with finite Lebesgue measure.
Suppose that {cn(x)} ⊂ L∞(Ω) and {bn(x)} ⊂ L1(Ω) are two sequences such that

cn → c a.e. in Ω and cn ⇀ c weak- ∗ in L∞(Ω),

and

bn ⇀ b weakly in L1(Ω).

Then

cnbn ⇀ cb weakly in L1(Ω).
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3. Basic assumptions

Throughout this paper, we assume that the following assumptions hold true: The
variable exponent p(·) : Ω→ [1,+∞[ such that

p(·) is Log-Hölder continuous satisfying
2N

N + 2
< p− ≤ p(x) ≤ p+ < +∞. (7)

b : Ω× R 7→ R is a Carathéodory function such that for every x ∈ Ω, (8)

b(x, .) is a strictly increasing C1(R)-function with b(x, 0) = 0 and for any k > 0, there
exists a constant λ > 0 and functions Ak ∈ L∞(Ω) and Bk ∈ Lp(·)(Ω) such that for
almost every x in Ω

λ ≤ ∂b(x, s)

∂s
≤ Ak(x) and

∣∣∣∇x(∂b(x, s)
∂s

)∣∣∣ ≤ Bk(x) ∀s, |s| ≤ k. (9)

Here, ∇x
(∂b(x, s)

∂s

)
denote the gradient of

∂b(x, s)

∂s
defined in the sense of distributions.

a : Q × R × RN → RN be a Carathéodory function such that there is α > 0 and for
any k > 0, there exists νk > 0 and a function hk ∈ Lp

′(·)(Q) such that ∀s ∈ R , |s| ≤ k,
∀ξ ∈ RN ,

|a(x, t, s, ξ)| ≤ νk
(
hk(x, t) + |ξ|p(x)−1

)
, (10)

a(x, t, s, ξ)ξ ≥ α|ξ|p(x) (11)

(a(x, t, s, ξ)− a(x, t, s, η))(ξ − η) > 0 for all ξ 6= η. (12)

Φ : R→ RN is a continuous function, (13)

For the source term and initial data we assume that:

f ∈ L1(Q), F ∈ (Lp
′(·)(Q))N , (14)

u0 ∈ L1(Ω) such that b(x, u0) ∈ L1(Ω). (15)

4. Main results

Definition 4.1. A measurable function u defined on QT is called a renormalized solution
of (1) if

b(x, u) ∈ L∞(0, T ;L1(Ω)), (16)

Tk(u) ∈ X for any k > 0, (17)

lim
h→+∞

∫
{(x,t)∈Q: h≤|u(x,t)|≤h+1}

a(x, t, u,∇u) · ∇u dx dt = 0, (18)

and if for every function S in W 2,∞(R) which is piecewise C1 and such that S′ has a
compact support, we have in the sense of distributions:

∂BS(x, u)

∂t
− div

(
S′(u)a(x, t, u,∇u)

)
+ S′′(u)a(x, t, u,∇u) · ∇u+ div (Φ(u)S′(u))

− S′′(u)Φ(u) · ∇u = fS′(u) + div (S′(u)F )− S′′(u)F · ∇u (19)

and

BS(x, u)(t = 0) = BS(x, u0) in Ω, (20)

where BS(x, z) =

∫ z

0

∂b(x, s)

∂s
S′(s)ds.
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Remark 4.1. Equation (19) is formally obtained through pointwise multiplication of
equation (1) by S′(u). Recall that for a renormalized solution, due to (17), each term
in (19) has a meaning in L1(Q) + X ′. Indeed, since |Tk(u)| ≤ k, we can choose k such
that supp(S′) ⊂ [−k, k]. Then by properties of S, the functions S′ and S′′ are bounded
in R. Moreover, by using (9) we can see that Bs(x, u) ∈ L∞(Q), S(u)a(x, t, u,∇u) ∈
(Lp

′(·)(Q))N and S′(u)a(x, t, u,∇u).∇u ∈ L1(Q). For the term S′(u)a(u,∇u) for exam-
ple, it is identified with S′(u)a(Tk(u),∇Tk(u)) as a consequence of (10), (16) and the
fact that S′(u) belongs to L∞(Q). Thus

S′(u)a(Tk(u),∇Tk(u)) ∈ (Lp
′(·)(Q))N ,

by consequent, div (S′(u)a(u,∇u)) ∈ X ′. We can prove similarly to [5] and to [23] that
each term in (19) belongs either in X ′ or in L1(Q). (for the other terms see step 4. in
section 5. Thus,

∂BS(x, u)

∂t
belongs to X ′ + L1(Q). (21)

BS(x, u) belongs to X. (22)

which implies by using (6) that BS(x, u) belongs to C0([0, T ];L1(Ω)), so the initial con-
dition (20) makes sense.

Theorem 4.1. Assume that (7)–(15) hold true, then there exists at least renormalized
solution of problem (1).

5. Existence of renormalized solution

5.1. Proof of the Theorem 4.1.

Step 1: The approximate problem. Let us define the following approximations (n ∈
N∗)

bn(x, s) = b(x, Tn(s)) +
1

n
s a.e.x ∈ Ω, s ∈ R,

an(x, t, s, ξ) = a(x, t, Tn(s), ξ) a.e.x ∈ Q, s ∈ R, ξ ∈ RN ,

fn ∈ C∞0 (Q) ∩X ′, fn → f in L1(Q) with ‖fn‖L1(Q) ≤ ‖f‖L1(Q),

u0n ∈ C∞0 (Ω), bn(x, u0n)→ b(x, u0) in L1(Ω) with ‖bn(x, u0n)‖L1(Ω) ≤ ‖b(x, u0)‖L1(Ω).

Φn is a a Lipschitz continuous function which converges uniformly to Φ on any com-
pact subset of R.

Let us consider the following approximate regularized problem
∂bn(x, u)

∂t
− div(an(x, t, u,∇u) + Φn(u)) = fn − div(F ) in Q

un(x, t) = 0 on ∂Ω× (0, T )
b(x, un(x, 0)) = b(x, u0n(x)) in Ω.

(23)

Note that bn verifies (9) and that an is a Carathéodory function verifying (10),(11) and

(12), which implies that there exists βn > 0 and a function Cn ∈ (Lp
′(·)(Q)) such that

|an(x, t, s, ξ)| ≤ Cn(x, t) + βn|ξ|γ−1 a.e. in Q, s ∈ R, ξ ∈ RN ,

with γ = p− if |ξ| ≤ 1 and γ = p+ if |ξ| > 1. By using classical results (see e.g. [22]), we
can see that the problem (23) admits a least weak solution un ∈ X.
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Step 2: Some estimations. Throughout this work, C denote various positive constant
not depending on n and k which may vary from line to line.
For k > 0 and τ ∈ [0, T ], if we take Tk(un)χ(0,τ) as a test function in (23), one obtain∫

Ω

B
n

k (x, un)(τ)dx+

∫
Qτ

an(x, t, Tk(un),∇Tk(un)) · ∇Tk(un)dxdt+∫
Qτ

F · ∇Tk(un)dxdt

=

∫
Qτ

Φn(Tk(un)∇Tk(un)dxdt+

∫
Qτ

fnTk(un)dxdt+

∫
Ω

B
n

k (x, u0n)dx, (24)

where B
n

k (x, r) =
∫ r

0
Tk(s)

∂bn(x, s)

∂s
ds, note that 0 ≤ Bnk (x, un) and

0 ≤ Bnk (x, u0n) ≤ k
∫

Ω

|bn(x, u0n)| dx ≤ k‖b(x, u0)‖L1(Ω),

The Lipschitz character of Φn and Stokes’ formula together with the boundary condition
in (23) make it possible to obtain∫ τ

0

∫
Ω

Φn(un).∇Tk(un) dx dt = 0, a.e. τ ∈]0, T [,

by using Young’s inequality and (11) we obtain

α

∫
Qτ

|∇Tk(un)|p(x)dxdt ≤ k(‖fn‖L1(Q) + ‖bn(x, u0n)‖L1(Ω))+

α

2

∫
Qτ

|∇Tk(un)|p(x)dxdt+ Cα

∫
Qτ

|F |p
′(x)dxdt

≤ Ck +
α

2

∫
Qτ

|∇Tk(un)|p(x) dx dt+ Cα

∫
Qτ

|F |p
′(x)dxdt

≤ Ck +
α

2

∫
Qτ

|∇Tk(un)|p(x) dx dt, (25)

where Cα denote a positive constant which depends to p+ and p− but not depending on
n and k. (25) implies that

∫
Qτ
|∇Tk(un)|p(x) dx dt ≤ Ck and by virtue of lemma (2.1),

‖∇Tk(un)‖Lp(·)(Qτ ) ≤ Ck
1

p− , (26)

by consequent

‖Tk(un)‖X ≤ Ck
1

p− . (27)

Taking in mind (24), we deduce that∫
Ω

B
n

k (x, un)(τ) dx ≤ C. (28)

We have by Hölder inequality for k > 1,

k meas
{

(x, t) : |un| > k
}

=

∫
{|un|>k}

|Tk(un)| dx dt ≤
∫
QT

|Tk(un)| dx dt

≤ 2‖1‖Lp′(x)(QT ).‖Tk(un)‖Lp(x)(QT )

≤ 2(|QT |+ 1)
1

p′− ‖Tk(un)‖X

≤ Ck
1

p− ,
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by consequent

lim
k→∞

meas
{
|un| > k

}
= 0 uniformly with respect to n. (29)

If we multiply in (23) by γ′k(bn(x, un)) where γ is a C2(R) nondecreasing function such

that γ(s) = s for |s| ≤ k
2 and γ(s) = k for |s| > k, remark that γ′k and γ′′k has compact

support. we can deduce with a similar manner to that of [5] that γk(bn(x, un)) is bounded

in X and
∂γk(bn(x, un))

∂t
is bounded in X ′ + L1(Q) independently of n. Note that the

condition (7) ensures that
(
W

1,p(x)
0 (Ω), L2(Ω),W−1,p′(x)(Ω)

)
is a Gefland triple. An

Aubin’s type lemma (see corollary 4. in [25]) implies that for any k > 1 and any n ≥ k,
γk(bn(x, un)) lies in a compact set in L1(Q). Proceeding as in [5], we deduce that there
is a measurable function u defined on Q such that bn(x, un) → b(x, u) a.e. in Q and
un → u a.e. in Q for a subsequence. consequently Tk(un)→ Tk(u) a.e.in Q.
On the other hand, by (27) (Tk(un))n is bounded in X, then for a subsequence

Tk(un) ⇀ Tk(u) weakly in X.

Also, we can deduce by (10) that the sequence (a(x, t, Tk(un),∇Tk(un))n is bounded in

(Lp
′(·)(Q))N .

Summing up, there exists ak ∈ (Lp
′(·)(Q))N

un → u a.e. in Q,

bn(x, un)→ b(x, u) a.e. in Q,

Tk(un) ⇀ Tk(u) weakly in X,

a(x, t, Tk(un),∇Tk(un)) ⇀ ak weakly in (Lp
′(·)(Q))N . (30)

Moreover, due to the almost everywhere convergence of un and b(x, un) to u and b(x, u)
in Q, we can pass to the lim inf in (28) as n tends to ∞, to obtain

1

k

∫
Ω

Bk(x, u) dx ≤ C.

The definition of Bk and the fact that
1

k
Bk(x, u) converges pointwise to b(x, u) as k tends

to ∞, implies that

b(x, u) ∈ L∞(0, T ;L1(Ω)).

Let h > 0, taking Th+1(un)− Th(un) as a test function in (23) we obtain∫
Ω

Bnh (x, un)(T ) dx+

∫
Q

a(x, t, un,∇un) · (∇Th+1(un)−∇Th(un)) dx dt

+

∫
Q

Φn(un).∇(Th+1(un)− Th(un)) dx dt+

∫
Q

F.∇(Th+1(un)− Th(un)) dx dt

=

∫
Q

fn(Th+1(un)− Th(un)) dx dt+

∫
Ω

Bnh (x, u0n) dx,

where Bnh (x, un)(r) =
∫ r

0

∂bn(x, s)

∂s
(Th+1(s)− Th(s)) ds.

Note that Th+1 − Th is Lipschitz continuous function verifying ∇(Th+1(un)− Th(un)) =
χ{h≤|un|≤h+1}∇un, ‖Th+1 − Th‖L∞(R) ≤ 1 and Th+1(s)− Th(s) →

h→∞
0 for any s.

The Lipschitz character of Φn and Stokes’ formula together with the boundary condition
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in (23) make it possible to obtain again∫ τ

0

∫
Ω

Φn(un) · ∇(Th+1(un)− Th(un)) dx dt = 0, a.e. τ ∈]0, T [.

Since Bnh (x, r) ≥ 0 and

an(x, t, un,∇un).∇(Th+1(un)− Th(un)) = a(x, t, un,∇un).∇(Th+1(un)− Th(un))

= a(x, t, un,∇un).∇(un)χ{h≤|un|≤h+1},

hence for a.e. (x, t) ∈ Q and h+ 1 ≤ n, we can write∫
{h≤|un|≤h+1}

a(x, t, un,∇un) · ∇(un)dxdt

≤
∫
Q

fn(Th+1(un)− Th(un))dxdt+

∫
Q

F.∇(Th+1(un)− Th(un))dxdt+

∫
Ω

Bnh (x, u0n)dx.

(31)

With the help of (27) we can write

Th+1(un)− Th(un) ⇀
h→∞

Th+1(u)− Th(u) weakly in X.

Thus ∫
Q

F.∇(Th+1(un)− Th(un)) dx dt →
h→∞

0.

which implies by using (30) and Lebesgue’s convergence theorem that

lim sup
n→∞

∫
{h≤|un|≤h+1}

a(x, t, un,∇un) · ∇(un) dx dt ≤∫
Q

f(Th+1(u)− Th(u))dxdt+

∫
Ω

Bh(x, u0)dx,

the convergence everywhere of Th+1 − Th to 0 as h tends to ∞, (9) and the fact that
b(x, u0) ∈ L1(Ω) and allows us by using Lebesgue’s convergence theorem,to conclude that

lim
h→∞

lim sup
n→∞

∫
{h≤|un|≤h+1}

a(x, t, un,∇un) · ∇(un) dx dt = 0. (32)

and by (11)

lim
h→∞

lim sup
n→∞

∫
{h≤|un|≤h+1}

|∇un|p(x) dx dt = 0. (33)

Step 3: Convergence of the gradient of truncations. Our aim is to prove that

ak = a(x, t, Tk(un),∇Tk(un)) a.e. in Q, (34)

and that as n tends to infinity

a(x, t, Tk(un),∇Tk(un)) · ∇Tk(un) ⇀ a(x, t, Tk(u),∇Tk(u)) · ∇Tk(u) weakly in L1(Q).
(35)

For this end, we need to apply the following lemma, which is more general than e.g. the
version in [21].

Lemma 5.1. Assuming that (10)- (12) holds, and let (vn)n be a sequence of X such that

(vn) is bounded in X such that vn → v weakly in X and a.e. in Q. (36)

and ∫
Q

(
a(x, t, vn,∇vn)− a(x, t, vn,∇v)

)
· (∇vn −∇v)dxdt −→

n→∞
0. (37)
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Then
vn → v strongly in X.

Proof. Let Dn =
(
a(x, t, vn,∇vn)− a(x, t, vn,∇v)

)
· (∇vn−∇v), thanks to (12) we have

Dn is a positive function. In view of (37) and lemma (2.5), we get Dn → 0 in L1(Q) as
n → ∞. Extracting a subsequence still denoted by vn such that: vn ⇀ v in X, vn → v
a.e in Q, and Dn → 0 a.e in Q. Then there exists a subset B in Q with measure zero
such that

|vn(x, t)| <∞, |∇vn(x, t)| <∞, vn(x, t)→ v(x, t) and Dn(x, t)→ 0,∀(x, t) ∈ Q \B.
It follows that there is a constant Cx,t without dependence on n such that

Dn =
(
a(x, t, vn,∇vn)− a(x, t, vn,∇v)

)
· (∇vn −∇v)

≥ α|∇vn|p(x) − Cx,t
(

1 + |∇vn|p(x)−1 + |∇vn|
)
,

thus, we obtain

Dn ≥ |∇vn|p(x)
(
α− Cx,t
|∇vn|p(x)

− Cx,t
|∇vn|

− Cx,t
|∇vn|p(x)−1

)
.

The sequence (∇vn)n is bounded almost everywhere in Q. Indeed, if |∇vn| → ∞ in a
measurable subset E ∈ Q then

lim
n→∞

∫
Q

Dn dx dt ≥ lim
n→∞

∫
E

|∇vn|p(x)
(
α− Cx,t
|∇vn|p(x)

− Cx,t
|∇vn|

− Cx,t
|∇vn|p(x)−1

)
dx dt =∞,

which is absurd since Dn → 0 in L1(Q) . Let ξ∗ a cluster point of (∇vn)n, we have
|ξ∗| <∞ and by the continuity of the Carathéodory function a(x, t, ·, ·), we obtain(

a(x, t, vn, ξ
∗)− a(x, t, v,∇v)

)
· (ξ∗ −∇v) = 0,

thanks to (12), we have ξ∗ = ∇v, the uniqueness of the cluster point means that for the
whole sequence

∇vn → ∇v a.e in Q. (38)

Since vn is bounded in X, we can easily prove that (a(x, t, vn,∇vn))n is bounded in

(Lp
′(·)(Q))N and that a(x, t, vn,∇vn) → a(x, t, v,∇v) a.e in Q, in view of the Lemma

(2.4) we can establish that

a(x, t, vn,∇vn) ⇀ a(x, t, v,∇v) in (Lp
′(·)(Q))N . (39)

Remark that a(x, t, vn,∇vn) ·∇vn ≥ 0 and a(x, t, vn,∇vn) ·∇vn → a(x, t, v,∇v) ·∇v a.e.
in Q. By using (36), (37), Vitali’s theorem and (39), we deduce that∫

Q

a(x, t, vn,∇vn) · ∇vndxdt −→
∫
Q

a(x, t, v,∇v) · ∇vdxdt. (40)

We set yn = a(x, t, vn,∇vn) · ∇vn and y = a(x, t, v,∇v) · ∇v. By using (38) and (40) we
deduce that

yn ≥ 0, yn → y a.e. in Q, y ∈ L1(Q), and

∫
Q

yn →
∫
Q

y.

Using lemma(2.5), we obtain yn → y in L1(Q) i.e.

a(x, t, vn,∇vn) · ∇vn → a(x, t, v,∇v) · ∇v in L1(Q). (41)

According (41) to the condition (11), we obtain, using Vitali’s theorem

∇vn → ∇v in (Lp(·)(Q))N ,

thus, vn → v in X, which finishes our proof. �
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In order to deal with the time derivative of truncations, we introduce for fixed k > 0
a time regularization of the function Tk(u) . This kind of regularization has been first
introduced by Landes [22]. Namely, for a fixed µ > 0 and a given w ∈ X, we set

wµ(x, t) = µ

∫ t

−∞
w(x, s)exp(µ(s− t))ds where w(x, s) = w(x, s)χ(0,T )(s).

Applying this regularization to the truncation Tk(u), following [7, 26] we have

(Tk(u))µ ∈ X ∩ L∞(Q) with ||Tk(u))µ||L∞(Q) ≤ k,
(Tk(u))µ → Tk(u) a.e. in Q, weak− ∗ in L∞(Q) and strongly in X as µ→∞. (42)

Moreover,

∂(Tk(u))µ
∂t

= µ(Tk(u)− (Tk(u))µ) and Tk(u))µ(t = 0) = vµ0 , (43)

where the sequence vµ0 ⊂ L∞(Ω) ∩W 1,p(·)
0 (Ω) such that vµ0 → Tk(u0) a.e. in Q. Remark

that by (43), we have
∂(Tk(u))µ

∂t
∈ X.

We set wnµ = (Tk(un)− (Tk(u))µ). In view of (30) and (42), we have

wnµ ∈ X ∩ L∞(Q) with ||wnµ ||L∞(Q) ≤ 2k, (44)

wnµ →
n→∞

Tk(u)− (Tk(u))µ a.e. in Q, weak- ∗ in L∞(Q) and strongly in X.

Fix k > 0, for h > k we consider the function Sh ∈ C∞(R) such that:
Sh(0) = 0, S′h(r) = 1 if |r| ≤ h, supp(S′h) ⊂ [−h− 1, h+ 1] and ‖(S′′h)‖L∞(R) ≤ 1.
We test in (23) by S′h(un)wnµ(we denote a(x, t, u,∇u) by a(u,∇u) for simplicity) to obtain∫ T

0

∫ t

0

〈∂bn(x, un)

∂t
, S′h(un)wnµ〉 ds dt+

∫ T

0

∫ t

0

∫
Ω

S′h(un)an(un,∇un) · ∇wnµdxdsdt

+

∫ T

0

∫ t

0

∫
Ω

S′′h(un)wnµan(un,∇un) · ∇undxdsdt

+

∫ T

0

∫ t

0

∫
Ω

S′h(un)Φn(un) · ∇wnµdxdsdt+

∫ T

0

∫ t

0

∫
Ω

S′′h(un)wnµΦn(un) · ∇undxdsdt

=

∫ T

0

∫ t

0

∫
Ω

fnS
′
h(un)wnµdxdsdt+

∫ T

0

∫ t

0

∫
Ω

S′h(un)F · ∇wnµdxdsdt

+

∫ T

0

∫ t

0

∫
Ω

S′′h(un)wnµF · ∇undxdsdt. (45)

Firstly, with the same proof as in [23], lemma 3.2, we can prove the following estimate

lim inf
µ→∞

lim
n→∞

∫ T

0

∫ s

0

〈∂bn(x, un)

∂t
,H(un)(Tk(un)− (Tk(u))µ)〉 dt ds ≥ 0. (46)

where H is a positive function with compact support belonging to W 1,∞(R) and 〈, 〉
denotes the duality pairing between X ∩ L∞(Q) and X ′ + L1(Q).
In view of (46) and by taking H = S′h for a fixed h ≥ k, we have

lim inf
µ→∞

lim
n→∞

∫ T

0

∫ s

0

〈∂bn(x, un)

∂t
, S′h(un)(Tk(un)− (Tk(u))µ)〉 dt ds ≥ 0. (47)

Since S′h is smooth and bounded with supp(S′h) ⊂ [−h − 1, h + 1], one has by (44) for
n ≥ h+ 1

S′h(un)Φn(un) · ∇wnµ = S′h(un)Φn(Th+1(un)) · ∇wnµ , a.e. in Q,
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by the convergence a.e. of un to u in Q, the character of Φn and (44), we deduce that

S′h(un)Φn(Th+1(un)) →
n→∞

S′h(u)Φ(Th+1(u)), a.e. in Q, ∗-weak in L∞(Q). (48)

By help to (44), we deduce that

lim
µ→∞

lim
n→∞

∫ T

0

∫ s

0

∫
Ω

S′h(un)Φn(un) · ∇wnµ dx dt ds

= lim
µ→∞

∫ T

0

∫ s

0

∫
Ω

S′h(u)Φ(Th+1(u)) · ∇(Tk(u)− (Tk(u))µ) dx dt ds = 0 (49)

Also we have

S′′h(un)wnµΦn(un) · ∇un = S′′h(un)wnµΦn(Th+1(un)) · ∇Th+1(un), a.e. in Q,

by similar arguments as for (49), we deduce that

lim
µ→∞

lim
n→∞

∫ T

0

∫ s

0

∫
Ω

S′′h(un)wnµΦn(un) · ∇un dx dt ds

= lim
µ→∞

∫ T

0

∫ s

0

∫
Ω

S′′h(u)(Tk(u)− (Tk(u))µ)Φ(Th+1(u)) · ∇Th+1(u) dx dt ds

= 0 (50)

by definition of fn and Sh,the fact that un → u a.e. in Q and by help to (44), we have

lim
µ→∞

lim
n→∞

∫ T

0

∫ s

0

∫
Ω

fnS
′
h(un)wnµ dx dt ds

= lim
µ→∞

∫ T

0

∫ s

0

∫
Ω

fS′h(u)(Tk(u)− (Tk(u))µ) dx dt ds = 0 (51)

and

lim
µ→∞

lim
n→∞

∫ T

0

∫ s

0

∫
Ω

S′h(un)F · ∇wnµ + S′′h(un)wnµF · ∇un dx dt ds

= lim
µ→∞

∫ T

0

∫ s

0

∫
Ω

S′h(u)F · ∇(Tk(u)− (Tk(u))µ)

+ S′′h(u)(Tk(u)− (Tk(u))µ)F · ∇Th+1(u) dx dt ds.

The fact that S′h(u)F ∈ (Lp
′(·)(Q))N and that S′′h(u)F · ∇Th+1(u) ∈ L1(Q) (since

∇Th+1(u) ∈ Lp(·)(Q) ) implies with (42) that

lim
µ→∞

∫ T

0

∫ s

0

∫
Ω

S′h(u)F · ∇(Tk(u)− (Tk(u))µ)

+ S′′h(u)(Tk(u)− (Tk(u))µ)F · ∇Th+1(u) dx dt ds = 0. (52)

On other hand, we have supp(S′′h) ⊂ [−h− 1,−h] ∪ [h, h+ 1] which implies that

|
∫ T

0

∫ t

0

∫
Ω

S′′h(un)wnµan(un,∇un) · ∇un dx ds dt|

≤ T‖S′′h‖L∞(R)‖wnµ‖L∞(Q)

∫
{h≤|un|≤h+1}

an(un,∇un) · ∇un dx dt

≤ 2kT

∫
{h≤|un|≤h+1}

an(un,∇un) · ∇un dx dt.
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The above inequality with (32) make it possible to have

lim
h→∞

lim sup
µ→∞

lim sup
n→∞

|
∫ T

0

∫ t

0

∫
Ω

S′′h(un)wnµan(un,∇un) · ∇un dx ds dt|

≤ C lim
h→∞

lim sup
n→∞

∫
{h≤|un|≤h+1}

an(un,∇un) dx dt = 0. (53)

Where C is a constant independent of n and h.
Due to (47)–(53), we are in a position to pass to the limit-sup when n tends to infinity,
then to the limit-sup when µ tends to infinity and then to the limit as h tends to infinity
in (45). We obtain by using (44)

lim
h→∞

lim sup
µ→∞

lim sup
n→∞

∫ T

0

∫ t

0

∫
Ω

S′h(un)an(un,∇un) · ∇(Tk(un)− (Tk(u))µ)dxdsdt ≤ 0.

By definition of the function Sh, we can write for k ≤ n and k ≤ h the following identi-
fication: S′h(un)an(un,∇un)∇Tk(un) = a(un,∇un)∇Tk(un). Thus, the above inequality
implies that

lim sup
n→∞

∫ T

0

∫ t

0

∫
Ω

an(un,∇un) · ∇Tk(un) dx ds dt

≤ lim
h→∞

lim sup
µ→∞

lim sup
n→∞

∫ T

0

∫ t

0

∫
Ω

S′h(un)an(un,∇un) · ∇(Tk(u))µ dx ds dt. (54)

For the right side term of (55), we have for n ≥ h+ 1:
S′h(un)an(un,∇un) = a(Th+1(un),∇Th+1(un)) a.e. in Q and due to (30) it follows that

S′h(un)an(un,∇un) ⇀ S′h(u)ah+1, weakly in (Lp
′(·)(Q))N when n→∞.

The strong convergence of (Tk(u))µ →
µ→∞

Tk(u) in X allows us to write

lim
µ→∞

lim
n→∞

∫ T

0

∫ t

0

∫
Ω

S′h(un)an(un,∇un) · ∇(Tk(u))µ dx ds dt

=

∫ T

0

∫ t

0

∫
Ω

S′h(u)ah+1 · ∇Tk(u) dx ds dt

=

∫ T

0

∫ t

0

∫
Ω

ah+1 · ∇Tk(u) dx ds dt. (55)

But for k ≤ h, we have

a(Th+1(un),∇Th+1(un))χ{|un|<k} = a(Tk(un),∇Tk(un))χ{|un|<k} a.e. in Q.

Passing to the limit as n tends to ∞ to obtain

ah+1χ{|u|<k} = akχ{|u|<k} a.e. in Q,

and by consequent,

ah+1 · ∇(Tk(u)) = ak · ∇(Tk(u)) a.e. in Q.

Thus, we have the following key estimate

lim sup
n→∞

∫ T

0

∫ t

0

∫
Ω

a(un,∇Tk(un)) · ∇Tk(un)dxdsdt ≤
∫ T

0

∫ t

0

∫
Ω

ak · ∇(Tk(u))dxdsdt.

(56)
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On other hand, we deduce with the help of (12) that

0 ≤
∫ T

0

∫ t

0

∫
Ω

[
a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))

]
·
[
∇Tk(un)−∇Tk(u)

]
dxdsdt

=

∫ T

0

∫ t

0

∫
Ω

a(Tk(un),∇Tk(un)) · ∇Tk(un) dx ds dt

−
∫ T

0

∫ t

0

∫
Ω

a(Tk(un),∇Tk(un)) · ∇Tk(u) dx ds dt

−
∫ T

0

∫ t

0

∫
Ω

a(Tk(un),∇Tk(u)) · (∇Tk(un)−∇Tk(u)) dx ds dt

= J1
n + J2

n + J3
n. (57)

Using (56) we have

lim sup
n→∞

J1
n = lim sup

n→∞

∫ T

0

∫ t

0

∫
Ω

a(un,∇Tk(un)) · ∇Tk(un)dxdsdt

≤
∫ T

0

∫ t

0

∫
Ω

ak · ∇(Tk(u))dxdsdt. (58)

In view of (30), we deduce that

lim
n→∞

J2
n = −

∫ T

0

∫ t

0

∫
Ω

ak · ∇(Tk(u))dxdsdt. (59)

Since un → u a.e. in Q and a(x, t, ·, ·) is continuous, we have a(Tk(un),∇Tk(u) →
a(Tk(u),∇Tk(u)) a.e. in Q as n → ∞, and by (10), |a(Tk(un),∇Tk(u)| ≤ νk

(
hk(x, t) +

|∇Tk(u)|p(x)−1
)

a.e. in Q uniformly with respect to n. It follows by using lemma (2.5)

and Lebesgue’s theorem that

a(Tk(un),∇Tk(u)→ a(Tk(u),∇Tk(u)) strongly in (Lp
′(·)(Q))N . (60)

Thanks to this strong convergence and the weak convergence of ∇Tk(un) to ∇Tk(u) in
(Lp(·)(Q))N it is possible to pass to the limit-sup as n tends to ∞ in the term J3

n to
obtain

lim
n→∞

J3
n = 0. (61)

By combining (58), (59) and (61), we conclude that

lim
n→∞

∫ T

0

∫ t

0

∫
Ω

[
a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))

]
·[

∇Tk(un)−∇Tk(u)
]
dxdsdt = 0. (62)

We apply now the lemma (5.1) to conclude that for all k > 0,

Tk(un)→ Tk(u) strongly in X
∇Tk(un)→ ∇Tk(u) strongly in (Lp(·)(Q))N ,

a(x, t, Tk(un),∇Tk(un)) ⇀ a(x, t, Tk(u),∇Tk(u)) weakly in (Lp
′(·)(Q))N .

(63)

Thus (34) and (35) holds true.
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Step 4: u is a renormalized solution. For any fixed h > 0, for all n ≥ h+ 1, we
have by using (35) and the estimate (32)

lim
n→∞

∫
{h≤|un|≤h+1}

an(un,∇un) · ∇undxdt

= lim
n→∞

∫
Q

an(Th+1(un),∇Th+1(un)) · ∇Th+1(un)dxdt

−
∫
Q

an(Th(un),∇Th(un)) · ∇Th(un)dxdt

=

∫
Q

a(Th+1(u),∇Th+1(u)) · ∇Th+1(u)dxdt−
∫
Q

a(Th(u),∇Th(u)) · ∇Th(u)dxdt

=

∫
{h≤|u|≤h+1}

a(u,∇u) · ∇udxdt. (64)

which implies that u satisfies (18).
Let S be a function in W 2,∞(R) with compact support ⊂ [−k, k] for some k > 0. The
multiplication of (23) by S′(un) leads, in the sense of distributions, to

∂BnS(x, un)

∂t
− div

(
S′(un)a(x, t, un,∇un)

)
+ S′′(un)a(x, t, un,∇un).∇un

+ div(Φ(un)S′(un))− S′′(un)Φ(un).∇un = fS′(un) + div (S′(un)F )− S′′(un)F.∇un,
(65)

where BnS(x, z) =
∫ z

0

∂bn(x, r)

∂r
S′(r)dr.

Since S′ is bounded and bn(x, ·) is C1(R)-function satisfying (9), BnS(x, ·) is continuous
and bounded. Then the convergence un → u a.e. in Q implies that BnS(x, un)→ BnS(x, u)
a.e. in Q and in L∞(Q) weak-∗. Therefore

∂BnS(x, un)

∂t
→ ∂BnS(x, u)

∂t
in D′(Q) as n→∞. (66)

The fact that supp(S) ⊂ [−k, k] implies that for n ≥ k,

S′(un)an(un,∇un) = S′(un)an(Tk(un),∇Tk(un)) a.e. in Q.

and

S′′(un)an(un,∇un) · ∇un = S′′(un)a(Tk(un),∇Tk(un)) · ∇Tk(un) a.e. in Q.

The convergence of un to u a.e. in Q, the bounded character of S′ and (63) implies that

S′(un)an(un,∇un) ⇀ S′(u)a(Tk(u),∇Tk(u)) weakly in (Lp
′(·)(Q))N as n→∞. (67)

Remark that S′(u) = 0 for |u| ≥ k, hence

S′(u)a(Tk(u),∇Tk(u)) = S′(u)a(u,∇u) a.e. in Q.

As mentioned below Definition (4.1), the term S′(u)a(Tk(u),∇Tk(u)) can be identified
by S′(u)a(u,∇u) in equation (19). On other hand, the almost everywhere convergence
of S′′(un) to S′′(u) in Q, the bounded character of S′′ and (35) imply, by lemma (2.6),
that

S′′(un)an(un,∇un)·∇un ⇀ S′′(u)a(Tk(u),∇Tk(u))·∇Tk(u) weakly in L1(Q) as n→∞.
(68)

The term S′′(u)a(Tk(u),∇Tk(u)) · ∇Tk(u) can be identified with S′′(u)a(u,∇u) · ∇u.
Since supp(S′) ⊂ [−k, k], we can write

S′(un)Φn(un) = S′(un)Φn(Tk(un)) a.e. in Q.
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The Lipschitz character of Φn, the continuity of Tk(·) and the pointwise convergence of
un to u in Q imply that S′(un) is bounded and converges almost everywhere in Q and
that Φn(Tk(un)) is uniformly bounded with respect n and converges a.e. to Φ(Tk(u)).
Thus

S′(un)Φn(un)→ S′(u)Φ(Tk(u)) strongly in L1(Q) as n→∞. (69)

The term S′(u)Φ(Tk(u)) is identified with S′(u)Φ(u) in (19).
Moreover, we have

S′′(un)Φn(un) · ∇un = Φn(Tk(un)) · ∇S′(un) a.e. in Q.

taking in mind that S′ ∈ W 1,∞(R) and in view of (63) that ∇S′(un) converges weakly
in (Lp(·)(Q))N to ∇S′(u) and since Φn(Tk(un)) is uniformly bounded with respect n and
converges a.e. to Φ(Tk(u)), we can write

S′′(un)Φn(un) · ∇un ⇀ Φ(Tk(u)) · ∇S′(u) weakly in Lp(·)(Q) as n→∞. (70)

We can identifies the term Φ(Tk(u)) · ∇S′(u) with Φ(u) · ∇S′(u) in (19).
the pointwise convergence of S′(un) to S′(u) and the L1(Q)– strong convergence of fn
to f yield

fnS
′(un)→ fS′(u) stronly in L1(Q) as n→∞. (71)

Recalling that F ∈ Lp′(·)(Q) and that S′(un) is bounded and converges almost everywhere
in Q makes it possible to obtain

div (FS′(un))→ div (FS′(u)) stronly in X ′ as n→∞. (72)

Finally, we recall that∇S′(un)→ ∇S′(u) weakly in (Lp(·)(Q))N . Then the term S′′(un)F ·
∇un which is equal to F · ∇S′(un) verifies the following convergence result

S′′(un)F · ∇un ⇀ F · ∇S′(u) weakly in L1(Q) as n→∞. (73)

We can identifies the term F · ∇S′(u) with S′′(u)F · ∇u in (19).
As a consequence of the convergence results (66)–(73), we are in a position to pass to
the limit as n tends to ∞ in (65) and to conclude that u satisfies (19).
It remains to show that BS(x, u) satisfies the initial condition (20). To this end, we take
in mind the convergence results (66)–(73) of the terms of equation (65), which imply that

∂BnS(x, un)

∂t
is bounded in X ′ + L1(Q).

Due to (9), we deduce that

∂S(un)

∂t
is bounded in X ′ + L1(Q).

while S(un) being bounded in L∞(Q). Then by (6), we conclude that S(un) lies in
C([0, T ];L1(Ω)). It follows that

S(un)(t = 0) = S(u0n)→ S(u0) strongly in L1(Ω). (74)

If We turn back to condition (9) which is verified by bn and properties of S (S′ is
bounded), one has

|BnS(x, r)−BnS(x, r′)| ≤ Ak|S(r)− S(r′)| ∀r, r′. (75)

Which implies, with the fact that bn(x, u0n)→ b(x, u0) strongly in L1(Ω) , that

BnS(x, un)(t = 0) = BnS(x, u0n)→ BS(x, u0) strongly in L1(Ω).

Hence (20) is fulfilled. Thus, the proof of theorem 4.1 is complete.



316 B. LAHMI, K. EL HAITI, AND A. ABBASSI

References

[1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fuids, Arch. Ration.

Mech. Anal. 164 (2002), 213–259.

[2] S. Antontsev and S. Shmarev, Parabolic equations with double variable nonlinearities, Math. Com-
put. Simulation 81 (2011), 2018–2032.

[3] S.N. Antontsev and S.I. Shmarev, A model porous medium equation with variable exponent of
nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60

(2005), 515–545.

[4] G. Akagi, Doubly nonlinear evolution equations governed by time-dependent subdifferentials in
reflexive Banach spaces, J. Differential Equations 231 (2006), 32-56.

[5] E. Azroul, M.B. Benboubker, H. Redwane, and C. Yazough, Renormalized solutions for a class of

nonlinear parabolic equations without sign condition involving nonstandard growth, An. Univer.
Craiova Ser. Math. Inform. 41(1) (2014), 69-87.

[6] E. Azroul, A. Barbara, M.B. Benboubker, and S. Ouaro, Renormalized solutions for a p(x)-Laplacian

equation with Neumann nonhomogeneous boundary conditions and L1-data, An. Univ. Craiova Ser.
Mat. Inform. 40 (1) (2013), 9–22.

[7] M. Bendahmane, P. Wittbold, and A. Zimmermann, Renormalized solutions for a nonlinear par-

abolic equation with variable exponents and L1-data, J. Differential Equations 249(6) (2010),
1483-1515.

[8] D. Blanchard, F. Murat, and H. Redwane, Existence and uniqueness of a renormalized solution

for a fairly general class of nonlinear parabolic problems , J. Differential Equations 177(2) (2001),
331–374.

[9] T.M. Bokalo and O.M. Buhrii, Doubly nonlinear parabolic equations with variable exponents of
nonlinearity, Ukrainian Math. J. 63 (2011), 709-728.

[10] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration,

SIAM J. Appl. Math. 66 (2006), 1383–1406.
[11] G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, Renormalized solutions of elliptic equations with

general measure data, Ann. Scuala Norm. Sup. Pisa Cl.Sci. 28 (1999), 741–808.

[12] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, University
of Freiburg, 2002.
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les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97–107.
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