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Abstract. In this paper a survey on existing distributed approaches to swarm intelligence

approaches for graph search problems is presented. In particular we reviewed papers on Ant
Colony Optimization (ACO) and Bee Colony Optimization (BCO). The comparison criteria
that have been used are computational efficiency and speedup. The conclusion of this study
is that the coarse grained master-slave model is the most studied. However, we found a large

amount of papers sustaining that the island approach offers better solution quality. The added
flexibility of the communication strategy between the islands makes this model preferred by
the most recent papers.
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1. Introduction

Before going into the subject of this paper, we first introduce a few recurrent terms
that will be used throughout the following sections.

SwarmIntelligence(SI) is the emergence of coherent functional global patterns
from the collective behaviors of entities interacting locally [48]. Two families of SI
algorithms are Ant Colony Optimization(ACO) and Bee Colony Optimization (BCO).

Entity is a general term used to refer to a unit of the Swarm Intelligence population,
such as an ant, bee, particle, bird, fish etc.

Agraph is a set of objects and the pairwise relations between them. In [28] the ob-
jects are named vertices (singular: vertex) while the relations are called edges. Edges
are actually considered to be connections between the vertices and are graphically
represented as lines while vertices are represented as dots or ovals.

We define the term computingnode as an abstraction of a computer or machine,
physical or virtual, having its own or allocated processor and memory. This term
is used in the subject of distributed applications [65] and adopted by distributed
computing support systems [106].

SI is inspired by natural bio systems consisting of populations of simple beings
such as: ants, bees, birds, fish etc. The main characteristic of these is the inher-
ently distributed way they solve problems. This suggests SI algorithms should allow
straightforward mapping directly onto distributed software systems.

Based on our literature review we found that existing approaches rely on running
multiple instances of sequential SI algorithms using parallel and highperformance
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computing architectures. SI computational approaches [48] are used to solve high
complexity problems, such as NP-hard problems. These approaches are heuristic [47]
by nature. Basically they provide an optimal solution, or one that is close to an
optimum, to a high complexity problem in reasonable time. This is accomplished by
using a population of entities that interact locally with each other and/or with the
environment. There are two approaches to the interaction model:

1) the entities interact in the problem environment in order to guide each other to
better solutions. For example, such a SI approach is Ant Colony Optimization [45],
Bee Colony Optimization [116]

2) the entities interact in the solution space of the problem in order to improve
existing initial solutions given as an output of an additional algorithm. For example,
such a SI approach is Particle Swarm Optimization (PSO) [27], Cat Swarm Opti-
mization (CSO) [24]. This type of SI is generally designed for continuous solution
space that is given as input. Discrete adaptations exist [83], however, they require an
additional algorithm, especially tailored to each problem to be solved, that outputs
the vicinity of a solution which can be modeled as a graph vertex. Therefore this
type of SI algorithm is not well suited for ”graph search”, the type of problem we are
trying to solve.

There is a certain level of abstraction at which SI systems can be modeled as
distributed computational systems composed of interacting artificial entities. Thus,
we would expect distributed computing, including multiagent middleware, to have a
lot of potential for the application of SI approaches.

The rest of this paper presents a survey on the subject of distributing SI and in
particular ACO and BCO but also introduces the background knowledge required for
the proper understanding of the said survey.

2. Graph Search Problems Formalization

SI algorithms using the first interaction model, mentioned previously in this pa-
per, are very well suited for graph search problems. Consequently, these algorithms
are usually tested on the benchmark problem of the NP-hard Traveling Salesman
Problem (TSP), which falls in this category of problems. We now present a formal
mathematical description of the problem type we are addressing. Let G = (V,E) be
a directed graph, where V is a set of vertices and E is a set of edges [59]. An edge is
defined as an ordered pair of vertices (x, y). The size of the set of vertices is labeled
n = |V |.

A path p = (v1, v2, ..., vn), k > 0 in the graph G is an ordered sequence of vertices
such that for any two subsequent vertices vi and vi+1 there is an edge (vi, vi+1) ∈ E.
We label the totality of paths in a graph with P . Any graph search problem can
be formalized as minimizing or maximizing a function f : P ‘ → R where P ‘ ⊆ P ,
i.e. P ‘ is P restricted by some constraints. As an example, we now formalize the
Traveling Salesman Problem (TSP). We first define a weight function w that assigns
a real number to an edge of the graph. TSP can be formulated mathematically as
the minimization of the function:

f : P ‘ → R; f(p) =
n−1∑
i=1

w1,1+1 + wn,1 (1)

where p is a path that is evaluated; wi,i+1 is the weight of the edge (i, i + 1) ; P ‘ is
the totality of Hamiltonian cycles.
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Other examples of problems that can be described in this manner include: graph
flow problems [59], generalized TSP [3], pickup and delivery problem [90] etc. There-
fore each of these problems can be defined as the minimization of a function f over a
subset of paths P ‘ ⊆ P . An approach that can solve one of them can be adapted to
solve all graph search problems.

2.1. Ant Colony Optimization(ACO). ACO [45] refers to a family of SI opti-
mization algorithms that get their inspiration from the metaphor of real ants search-
ing for food. When ants search for food, they secrete pheromone on their way back
to the anthill. Other colony members sense the pheromone and become attracted by
marked paths; the more pheromone is deposited on a path, the more attractive that
path becomes.

The pheromone is volatile, i.e. disappears over time. Evaporation erases pheromone
on longer paths as well as on the paths that are not of interest anymore. However,
shorter paths are more quickly refreshed, thus having the chance of being more fre-
quently explored. Intuitively, ants will converge towards the most efficient path, as
that path gets the strongest concentration of pheromone.

In the SI approach called ACO, artificial ants are programmed to mimic the be-
havior of real ants while searching for food. The ants’ environment is modeled as a
graph and the path to the food becomes the solution to a given graph search prob-
lem. Artificial ants originate from the anthills that are vertices in the environment
and travel between vertices to find optimal solutions, following ACO rules. When a
solution is found, ants mark the solution with pheromone by retracing their path.

At the core of ACO algorithms there are rules that determine the amount of
pheromone deposited on edges traversed by ants, the edge chosen by each ant on
its way, and how fast the deposited pheromone evaporates. Ants randomly choose
to travel across edges with a probability proportional to the pheromone-weight ra-
tio. Ant a located at vertex i decides to move to vertex j with the probability pi,j
computed as follows:

pi,j =
(τi,j)

α(ηi,j)
β

Σj(τi,j)α(ηi,j)β
(2)

where:
• α is a parameter to control the influence of τi,j
• β is a parameter to control the influence of ηi,j
• j represents a node reachable from node i that was not visited yet
• τi,j is the amount of pheromone deposited on edge (i, j)
• ηi,j is the desirability of edge (i, j) computed as the inverse of the edge weight,
i.e. 1/wi,j

• Ni represents the set of neighbors of node i
Better solutions need to be marked with more pheromone. So whenever an ant k

determines a new tour Vk of cost Lk the ant will increase pheromone strength on each
edge of the tour with a value that is inversely proportional to the cost of the solution.

∆τki,j =

{
1/Lk&if edge (i, j) belongs to found tour Vk

0&otherwise
(3)

where Lk is the cost of the k-th ant’s tour.
As pheromone is volatile, if a real ant travels more, pheromone will have more time

to evaporate, thus favoring better solutions to be discovered in the future. When an
ant completes a solution it will retrace its steps marking the edges on the way with
pheromone. The update will also take into account pheromone evaporation. Both
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evaporation and pheromone updates are implemented as follows:

τi,j = (1− ρ)τi,j + ρ∆τki,j (4)

where ρ is the evaporation rate 0 ≤ ρ < 1.
All ants use formula 2 to probabilistically determine their next step. Therefore

they will often choose the edge with the highest pheromone, i.e. the exploration of
less probable edges is lower. The solution is to decrease the pheromone on edges
chosen by ants, i.e. apply a local evaporation process. This has the effect of making
them less desirable, increasing the exploration of the edges that have not been picked
yet. Whenever an ant traverses an edge it applies local evaporation by updating
pheromone as follows:

τi,j = (1− ξ)τi,j + ξτ0 (5)

where:
• ξ is the local evaporation rate 0 ≤ ξ < 1.
• τ0 is the initial amount of pheromone on each edge
A good heuristics to initialize pheromone trails is to set them to a value slightly

higher than the expected amount of pheromone deposited by the ants on a solution;
a rough estimate of this value can be obtained by setting τ0 = 1/(nC), where n
is the number of nodes, and C is the tour cost generated by a reasonable solution
approximation procedure [45]. For example we can set C = nwavg where wavg is the
average edge cost.

2.2. Bee Colony Optimization (BCO). Bee Colony refers to a family of SI opti-
mization algorithms that get their inspiration from the metaphor of real bees searching
for food. Bee colonies forage for pollen sources by moving randomly in the physical
environment. When a bee finds a rich food source, starts to perform the so called
”waggle dance” [46] upon its return to the hive. The purpose of this dance is to
inform the other bees about the direction and distance to the food source [12]. The
other bees from the swarm will then be inclined to explore the indicated location.

In the SI approach Bee Colony, artificial bees are programmed to mimic the behav-
ior of real bees while searching for food. The bees environment is modeled as a graph
while the path to the food becomes the solution to a given graph search problem. In
[101] the authors present a survey of Bee Colony algorithms among them the basic
”Bee Colony Optimization” (BCO) algorithm and its mathematical model which we
will now detail. In BCO a bee randomly moves across edge (i, j) according to the
transition probability formally defined in the following equation.

Pi,j =
(pi,j)

α(ηi,j)
β

Σj(pi,j)α(ηi,j)β
(6)

where:
• p it the fitness function of edge (i, j)
• α is a parameter to control the influence of pi,j
• β is a parameter to control the influence of ηi,j
• j represents a node reachable from node i that was not visited yet
The fitness of a particular edge is calculated according to the ”preferred path”

suggested by other bees that found a solution. The edge (µ, σ) in the ”preferred
path” that originates in the current vertex µ where the bee is located has the fitness
pµ,σ = λ. The other edges originating have the fitness pµ,σ = (1 − λ)/ϕ where ϕ
is the number of unvisited vertices apart from the ”preferred path” next vertex σ.
Concretely, if the bee has to choose between the unvisited vertices (ν1, ν2, ..., νk, σ)
the probabilities of choosing each vertex will be (1−λ

ϕ , 1−λ
ϕ , ..., 1−λ

ϕ , λ) respectively.
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However, if the preferred vertex σ has already been visited or a ”preferred path” does
not exist yet, the fitness of the edge (µ, σ) automatically becomes null, i.e. pµ,σ = 0.
Intuitively, the bees will explore variations of the best solutions while notifying the
other bees about the improved solutions found using ”waggle dance”.

2.3. Using Local Search To Improve Solutions. ”Local Search” [62] is an al-
gorithm used to improve suboptimal solutions to graph search problems found by
heuristic approaches. This algorithm chooses k distinct edges of the path represent-
ing the solution and tries to reorganize them in such a way that the quality of the
solution improves. In this algorithm k is a natural number smaller than the solution
size that is given as a parameter.

Depending on the number k, Local Search algorithms are called 2 − opt, 3 − opt
and so on up to k − opt. Basically, k edges from the solution are replaced such that
a lower cost solution is generated. We will now present a very general version of the
k-opt local search algorithm LOCAL-SEARCH(solution, k) where:

• ”solution” is the path that the algorithm operates on,
• k is the number of considered edges,
• CHOOSE-EDGES(solution, k) randomly chooses the k distinct edges,
• REORGANIZE(edges) generates a new solution by reorganizing the k edges,
• SOL-ACCEPTABLE(solution) returns true if the solution is improved by an
acceptable amount

• SOL-IMPROVED(solution) returns true when the solution is improved by reor-
ganizing the edges,

• MAX-ITERATIONS() returns true is a predefined number of iterations have
been executed with no improvement.

The complexity of this algorithm depends on the parameter k and how fast an im-
provement is achieved, however it has been experimentally shown that 2-opt local
search performs just as well as 3-opt or higher values for k, while using a lot less CPU
time [62]. Therefore there is little or no incentive to use a value higher than k = 2.

LOCAL-SEARCH(solution, k)

1. initialSolution=solution

2. for all groups of k edges of solution

3. edges=CHOOSE-EDGES(solution, k)

4. for all solution=REORGANIZE(edges)

5. if SOL-ACCEPTABLE(solution)return solution

6. if SOL-IMPROVED(solution)

7. initialSolution=solution

8. if MAX-ITERATIONS() return initialSolution

Using local search has been shown to improve the performance of SI algorithms
[45, 48, 111]. Therefore, SI approaches sometimes use 2-opt local search on solutions
before ”advertising” it by using ”waggle dance”, pheromone deposits etc.

2.4. Distributed Approach Performance Measures. During our review of the
literature on the topic we discovered several distributing models (independent runs,
master-slave, island and hybrid), some general purpose distributed frameworks de-
signed to distribute any heuristic algorithm, inherently distributed agent-based ap-
proaches and several isolated combinations of existing models..

The reviewed papers present various scalability experiments solving multitude of
graph search problems. Performing a fair comparison of the different approaches
to distributing various SI algorithms requires some common normalized measures
to put side by side. For this reason we introduce here the notions of speedup and
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computational efficiency. The speedup metric of a distributed application measures
how much faster the application runs when more computing nodes are used as opposed
to a single computing node. The computational efficiency metric normalizes the value
of the speedup to the number of computing nodes. The equations for computing the
two metrics are:

Sc =
T1

Tc
(7)

ec =
Sc

c
(8)

where
c is the number of computing nodes used
Sc is the speedup of the application
T1 is the execution time of the application on a single computing node
Tc is the execution time of the application on c computing nodes
ec is the efficiency of running the application on c computing nodes

3. State of the Art in Distributing ACO and BCO

A very recent overview and classification of parallel computing approaches to Ant
Colony Optimization (ACO) was reported by [87]. The authors propose an interest-
ing and novel classification scheme for parallel ACO algorithms. The classification
includes: master-slave model, cellular model, independent runs model, island model
and hybrid models. However, the authors do not include agent-based approaches
which, they consider, are not specifically designed to take advantage of multi proces-
sor architectures.

The cellular model mentioned in [87] is actually the author’s own work [86] which
proposes splitting ACO search space into overlapping neighborhoods each one with its
own pheromone matrix. The good solutions gradually spread from one neighborhood
to another through diffusion. This approach requires the search space to be parti-
tioned in such a way that each set contains a continuous part of the optimal solution.
The problem with this is that if the search space is not partitioned in this manner,
an optimal solution can never be reached. The authors are the only ones that have
ever implemented and tested this model based on the cell diffusion approach.

In the case of BCO we could find four papers [88, 89, 102, 103] that collectively offer
a good classification of BCO parallel approaches. Interestingly, these papers identify
the same general taxonomy of approaches for BCO as [87] does for ACO: master-slave
model, independent runs model, island model and hybrid models. Therefore in the
following subsections we identify and describe the research done using master-slave
model, independent runs model, island model, hybrid models and the agent-based
models. But because these terms are not standardized we must first define what we
mean by them.

3.1. The Basic Taxonomy of Distributed SI Approaches. The master-slave
model of distributing SI requires a central ”master” computing node that manages
a global best-so-far solution while multiple ”slave” computing nodes find candidate
solutions.

This model can be further divided into:
• fine grained master-slave model, where the slaves do atomic actions such as move
one ant or find one solution. This requires a large amount of communication with
the master.



DISTRIBUTED APPROACHES TO SI FOR GRAPH SEARCH PROBLEMS 257

• coarse grained master-slave model, in which the slaves do complex actions such
as find multiple solutions and communicate the best one to the master.

In the fine grained version the slaves have to communicate with the master after
each tiny task they are asked to execute and then they wait for new requests from
the master. This overloads the master computing node and introduces large wait
times when many slaves are used. In the coarse grained version the slaves find whole
solutions or even sets of solutions before reporting to the master. Since in most
implementations that is all the slaves do, they actually do not need to be explicitly
told what to do next. Evidently the coarse grained master-slave model puts less stress
on the master and therefore is a lot more scalable.

The independent runs model uses many instances of the SI algorithm that solve
the problem independently and the best solution is chosen. SI approaches are inher-
ently heuristic therefore they cannot guarantee finding the optimal solution, however,
running an SI algorithm multiple times increases the chances of getting a very good
quality solution. The fact that no communication is used but more than one instance
of the algorithm is executed entails three consequences:

• faster execution time and implicitly better efficiency than any other implemen-
tation that requires communication, but only if the same number of solutions
are explored in all considered implementations,

• better quality of solutions than a single sequential run,
• less qualitative solutions than implementations that use communication.
The island model of distributing SI requires running a separate group of entities,

referred to as an ”island”, on each available computing node. Each group has its
own map of the search space, therefore can be considered a sequential implemen-
tation of the SI algorithm. At predetermined points in time, with fixed frequency,
solutions are communicated and the best solution over all is marked as required by
the SI algorithm. Solutions can also be communicated asynchronously. This type of
collaboration between the islands sets it apart from the master-slave model and the
independent runs model.

When implementing the island model there are at least two issues to consider: i) the
communication topology of the islands where the unidirectional ring (on the left) and
full mesh topology (on the right) are depicted, ii) the frequency with which the islands
communicate solutions to each other and whether this should be done synchronously
or asynchronously. When the ring communication topology is used, each island sends
a single message containing a solution to a predefined island. When using the mesh
topology, any given island can broadcast its solution to all other islands.

This model is also called the ”multi-colony model” in the case of ACO and the
”multi-hive model” for BCO. This model is even more scalable than the coarse-grained
master-slave since there is no master computing node to cause a ”bottleneck”. The
existence of a master decreases performance when too many slaves try to communicate
at once.

The hybrid model is a combination of the island with the master-slave model. An
example of the hybrid model could be an island model where each island is actually a
master-slave model instead of a simple sequential implementation of the SI algorithm.

Before going into each model separately, we present a quick overview of the taxon-
omy papers that will be referred multiple times in the current subsection. The work
introduced in [88] and continued in [89] differentiates between the master-slave model,
hybrid model and the island model of BCO. Experiments were done with each model
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implemented using the message passing interface (MPI) library [82], and tested on nu-
merical benchmark functions: Rastrigin, Griewank and generalized Schaffer. The im-
plementations were executed using 11 computing nodes for the master-slave approach
and 4 computing nodes for the island and hybrid model. The authors concluded that
the island approach offers better quality solutions in less time, closely followed by
the master-slave approach. No scalability tests were done on any of the models, the
network delay was not taken into account. Furthermore, in papers [102, 103] the au-
thors identify the model of independent runs additionally to the master-slave model,
hybrid model and the island model of BCO. The authors also identify two variants
on the island model: i) communicating just one solution and ii) the complete solution
matrix. Their experiments were run in a simulated environment. The conclusion was
that the independent serial runs approach was the fastest, however, the models that
used communication offered the best quality of solutions.

3.2. Fine Grained Master-Slave Model. Implementing a scalable fine grained
master-slave model is not trivial, as the first attempts show. Paper [79] analyzes
the amount of communication needed by the fine grained model of ACO, concluding
that it is not feasible. The first successful attempt at achieving scalability by using a
hierarchy of master computing nodes was published in [13], however, their approach
did not scale very well. In paper [96] a fine grained master-slave model of ACO
is analyzed and the maximum efficiency obtained, of 0.8, was when using only two
processors. Bullnheiner et al. in [15] made an attempt at the same model. The
authors concluded that ”acceptable execution time can be achieved” for TSP problems
larger than 200 vertices. In the papers [36, 37] the distributed approach from [15] is
revisited using a shared memory machine in the experiments reaching the maximum
efficiency when employing 8 nodes. In such an architecture the access to the memory
is concurrent, i.e. there is a shared memory and each process uses it one at a time
in order to centralize its knowledge. No other modifications have been made to the
architecture. The authors continue their work in [38] by comparing their approach
from [36] to implementations that use synchronized messages instead of a shared
memory. The access to the shared memory is much faster than messaging, which
also requires broadcasting the current solution. This allows the ants to benefit sooner
from the improvements found by the other population members. The conclusions
were that their approach offers better solutions in less time. The authors obtained
a speedup of 5.45 using 16 nodes, therefore resulting in an efficiency of merely 0.34.
The most recent approach we could find on the fine-grained master-slave model is
[55]. The authors of this paper used up to 240 GPUs to solve TSP using ACO and
they succeeded in obtaining speedups of up to 30. The small amount of research
using this model and the conflicting opinions about its effectiveness suggest that it is
being abandoned as a viable model and is not, in fact, the state of the art approach
to distributing SI.

3.3. Coarse Grained Master-Slave Model. The coarse grained master-slave model,
unlike the fine grained one, is not plagued by conflicting opinions about its effective-
ness. [74] implemented the coarse grained master-slave model for BCO and obtained
near optimal solutions surpassing the quality of the results offered by the sequential
approach. In paper [104] the authors present their approach to the coarse grained
master-slave model called ”ANTabu” which offers high quality solutions to the Qua-
dratic Assignment Problem (QAP) [14]. Peng et al. presented their experiments with
the coarse grained model [91, 92] that offered better quality solutions than evolution-
ary algorithms in the case of two different problems. In paper [75] groups of ants are
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used on each slave resulting in better performance than sequential ACO. However,
no comparison was made with the case of using only one ant per slave. Although
these experiments used more than one computing node, these papers did not study
the computational efficiency of their approaches.

We found several papers describing scalable implementations of the coarse grained
master-slave model. In the work started in [9] and continued in [10] the authors
implement the coarse master-slave and the hybrid models for BCO and test their
implementations on a cluster of computers. The best execution time was achieved by
the master-slave while the hybrid model obtained better quality of solutions. In [69]
the authors present experiments showing that the coarse grained master-slave model
is more efficient than the independent runs model. Their approach obtained efficiency
of 0.8 using up to 16 processors. Papers [70] and [56] present experimental results
where this model offers a speedup of up to 1.72 on dual core computers when running
the slaves on separate threads, which means 0.86 efficiency.

Very good results were obtained using graphical processing units (GPU processors)
for the slaves. One example is the already mentioned paper [55]. Another would be
[16] that implemented a coarse grained master-slave where the master executed on
the CPU and the slaves executed on the 8 pixel processors of a graphics card. The
execution time depended heavily on the number of ACO entities used.

We also researched the problem of synchronous versus asynchronous centralization
to the master computing node. The authors of [6] have implemented their version of
this model for BCO and concluded that asynchronous centralization more efficient.
Paper [16] compares the two approaches to coarse grained master-slave model for
ACO and found them to offer similar speedup. On the other hand papers [110] and
[63] found the asynchronous approach to be much faster for their respective imple-
mentations of ACO. The synchronous implementation from [45] offers an efficiency of
0.7 using 8 computing nodes, while the asynchronous approach from [21] boasts 0.9
efficiency on 8 nodes. We can conclude that in most cases an asynchronous imple-
mentation has better performance.

3.4. Independent Runs Model. The independent runs model is found to be used
rarely. Experiments in [95] confirm that the independent runs model is more efficient
than the coarse grained approach and offers slightly better solution quality than se-
quential implementations. Papers [1] and [2] also concluded that it is more efficient
than coarse grained master-slave, synchronous and asynchronous island model. How-
ever, at the same time they confirm the fact that the independent runs model offers
less qualitative solutions than implementations that use communication. These re-
sults are confirmed in the case of BCO by the authors of [102, 103], described earlier in
this subsection. Therefore the implementations that require communication on top of
constructing and validating solutions will automatically have longer execution times.
However, the models that use communication offer better solutions sooner than the
independent runs model. Thus, it is our conclusion that better alternatives to the
independent runs model have already been developed.

3.5. The Hybrid Model. The hybrid model was implemented and studied in just a
few publications. In papers [37, 71] each colony becomes the master of multiple slaves.
This type of approach was tested in [37] on a cluster of 9 heterogeneous machines.
The papers reported modest speedup values and slight improvements in quality of
solutions when compared to other models. On the other hand, papers such as [64, 99]
propose that the solutions of an island model should be collected and processed by a
master computing node. Both papers lack efficiency analysis.
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3.6. The Island Mode. The island model is a very popular research topic. We
will first present the research conducted on the main features to be considered in this
model: (i) the communication topology and (ii) the synchronization intervals.

On the subject of the communication topology to be used in the island model, the
authors of [111] thoroughly analyze multi-colony ACO algorithms applied on TSP,
experimenting with different communication policies and variable synchronization fre-
quency, used as input parameters. They tested the communication topologies in terms
of execution time and solution quality, with focus on maximizing the latter. The au-
thors of paper [111] found that a ring topology outperforms the sequential approach to
ACO and other tested topologies, confirming through independent experimentation
the results of [76, 94, 79, 25]. Although, [23] sustains that the star topology offers the
best results, their conclusions are, by far, less rigorously supported by experimental
data than those in paper [111]. In all of these approaches the colonies distribute their
solutions synchronously.

Experiments concerning point (ii), the synchronization intervals for the island
model can also be found in the literature. In papers [34, 35] the authors analyze
implementations of BCO using: the independent run model, a fine grained, coarse
grained master-slave model and an island asynchronous implementation, using a ring
communication topology. The experimental results show that the island asynchronous
implementation outperformed all other models in both execution time and solution
quality. [18, 20] found that the island model can remain scalable up to 25 computing
nodes with self-adaptation but efficiency is worse than without self-adaptation. Ex-
periments in [73] present that asynchronous solution updating between the colonies
offers better scalability. The authors experimented on a cluster of 72 dualcore ma-
chines using one thread per island. We can conclude that in most cases an asyn-
chronous implementation and larger intervals between synchronizations offer better
performance.

Scalability and effectiveness of the island model was also extensively studied. A
distributed version of the island model is presented and compares it with the sequential
version of their BCO algorithm in [6]. The conclusions drawn by the authors were
that the distributed approach is superior in both the quality of solutions and the
execution time. In paper [84] the island model for BCO is implemented. The authors
use shared memory to synchronize the solutions obtained by the separate hives and
boast execution time decrease when increasing the number of computing nodes. [120]
presents experimental data on island model ACO tests on up to 64 computing nodes,
however, they do show a dramatic decrease in speedup for more than 8 nodes. In
papers [17, 19] and [20], although the results were less than ideal, good execution
time was still obtained when increasing the number of CPUs up to 25. In [68] the
island model experiments show better execution times and higher quality of solutions
than genetic algorithms (GA) [58] and sequential models of ACO. In paper [25] the
authors claim that multi-colony is faster than the master-slave model. Their approach
was tested on up to 5 computing nodes. Paper [121] confirms that multi-colony is more
efficient than sequential ACO when using up to 8 computing nodes. The experiments
show that for given TSP problem sizes there is always a number of colonies above
which efficiency decreases.

Many authors noted that island model offers an increase of solution quality com-
pared to sequential implementations. In [111] it is stated that the island model
consistently offers better solutions than the sequential implementations of the same
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ACO algorithm. On the other hand, [122] found that the island model offers ”com-
petitive” solutions when compared with other approaches. In paper [100] the authors
experiment with exchanging full pheromone matrices instead of just one best-so-far
solution. Their conclusion was that this greatly affected the execution time of the
approach but slightly improved the quality of the solutions. Given the large number
of papers written on the subject and the outstanding results, it is clear that the island
approach is the current state of the art model of distributing SI.

3.7. Variations of the Master-slave Model. Some approaches to the master-
slave model use the slaves only to perform local search on the solutions generated by
the master. In [72] this idea is implemented for ACO using one thread per slave on
two dualcore machines. The authors obtained speedup in their experiments, however,
the hardware used did not facilitate detailed testing of their approach. Paper [108]
tested a multi-threading implementation of ACO on two quad-core computing nodes.
The experiments showed significant improvement in execution time. Continuing their
work in [109] using two dual core machines, they obtained better results than a syn-
chronous communication island model and an independent parallel runs model. [115]
experimented with this model of ACO on 47 non-dedicated machines, they concluded
that larger problems generate better speedup values. In paper [29] the authors used
their parallel framework for master-slave approaches to implement similarly asyn-
chronous ACO. They achieved very good speedup values up to 25 computing nodes,
however, efficiency decreased directly proportional to the resources used.

3.8. Agent-based Approaches to Distributing SI. Papers [112, 113, 114] present
and improve an agent based approach to the Vehicle Routing Problem (VRP) [57]
inspired by BCO called ”BeeJamA”. The authors use two types of bee agents to
disseminate routing cost information using BCO rules. Their approach is evaluated
only in terms of quality using a simulation in MATSim [77], no scalability or efficiency
study was performed.

Paper [105] presents a potential application of BCO in road traffic implemented
as a multi-agent system. The authors propose a reactive agent system that leads to
good results through the nature of the BCO algorithm. This is a practical application
with a high interest in quality of solutions and adaptability, however, not efficiency
during distributed execution. The work in [101] describes a purely theoretical overview
on multi-agent optimization based on BCO. The authors describe the bees formally
as reactive agents. The paper consists of detailed descriptions on how to program
the bee agents to respect different BCO algorithm rules. No real implementation is
mentioned.

The authors of [98] present a multi-agent system [8] implementation of ACO apply-
ing their solution to TSP. In their approach, graph vertices and ants are implemented
as JADE [8] agents. Ants centralize the information about pheromone deposits and
vertices’ best tour cost through a single message exchange per vertex. This procedure
adds up to 2n messages per tour for each ant, where n is the number of vertices. Each
ant has to notify the vertex about its next hop and the cost of its tour for the vertex
to be able to update its pheromone levels. This generates other n messages. When
an ant completes a tour, it compares the tour cost with the collected best tours from
the vertices. A best tour synchronization is triggered for all the vertices if a better
tour has been found. This brings an additional overhead of n messages. Hence this
approach requires 4n messages per tour per ant. Unfortunately, the authors provide
no experimental data to support their claim of ”good results”.
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In [50] the authors compare a distributed form of ACS with the flooding algorithm
applied to resource discovery problem using ns2 network simulation tool [85]. They
show that ACS is the better approach in terms of: best success rate, least number of
hops and least traffic. The detailed algorithm and ACO parameters are not presented
in order to duplicate their approach for a realistic comparison. The main charac-
teristics of their approach are: (i) resource queries are handled centrally at a single
computing node, thus introducing single point of failure, (ii) they do not take edge
weights into account as they are trying to solve the resource discovery problem, and
(iii) ants are implemented as ns2 mobile agents. Moreover, in practice very often
there is no need for code mobility as every ant is governed by the same behavioral
rules.

In the article [33] the authors present a fully distributed approach to ACO that
models both vertices and ants as agents. Their proposal uses multiple vertices that
play the role of anthills, generating colored ants modeled as mobile agents. They test
their proposal on the problem of load balancing in distributed systems and compare it
with the workstealing approach. The article concludes that the proposed architecture
is more efficient in terms of the number of busy vertices and the elapsed time until a
load distribution of 50% is reached. No efficiency study is made on the approach and
in this case too there is no need for code mobility either, since all ants are governed
by the same rules.

In the article [22] the authors present an agent-based distributed approach similar
to the fine grained master-slave model from [37] but implemented with agents with
learning capabilities. This papers main goal is not to use the distributed architecture
to improve the efficiency of [37] but to improve other performance measures by the
use of a knowledge base. As a consequence, this approach inherits the efficiency
shortcomings of its predecessor.

In paper [78] the authors present a hybrid ACO/PSO (Particle Swarm Optimiza-
tion) control algorithm for distributed swarm robots applied on the resource finding
problem. A virtual pheromone is used in the form of messages. The messages contain
the two-dimensional coordinates of the resource, its size and quality reflected in the
quantity of pheromone. All robots have to manage their own map and pheromone
deposits. PSO is used to avoid convergence to a local optima. The experiments are
done in a virtual sequential environment. No scalability studies have been made.

Paper [119] proposes a JADE-based [8] multi-agent environment for dynamic man-
ufacturing scheduling that combines intelligent techniques of ACO and multi-agent
coordination. There is no globally accessible map, hence each agent needs to manage
their own map and pheromone deposits. However, the focus in [119] is to evaluate
the impact of ACO intelligence on multi-agent coordination, rather than to utilize
multi-agent middleware for improving ACO. Therefore ACO intelligence is embedded
into job and machine agents that have the role of ants.

We are aware of only one agent-based approach that was studied in terms of com-
putational efficiency: the ACODA approach from [123]. The authors model subsets
of the search graph vertices as agents and execute them on separate computing nodes.
Ants are modeled are software objects passed from one vertex to another via a lo-
cal queue or agent message. The authors boast an e=0.98 efficiency value on 11
computing nodes.

3.9. General-purpose Distributed Frameworks. During our review of the work
done on distributing Si we have also found a few general-purpose distributed frame-
works designed for any algorithms .
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Paper [32] proposes JABAT (JADE-Based A-Team) - a JADE [8] based middle-
ware for collaborative problem solving using asynchronous teams known as A-teams.
JABAT supports distributed implementation and collaboration of population-based
optimization algorithms. JABAT agents represent sequential improvement algorithms
that cooperate in order to solve a given problem in a distributed manner. Unfortu-
nately, we could not find scalability studies of the JABAT distributed architecture.
Earlier, a similar approach was introduced in [30, 31] using an object oriented ap-
proach [118] to run several sequential algorithms in parallel. In this case the authors
impose a master-slave organization system between the processes. The framework is
tested for image processing using ACO.

The scalable distributed constraint architecture called DisChoco is described in the
paper [49]. In this approach, agents manage parts of the problem domain as well as
the constraints specific to their partition. The agents propose, propagate or refuse
partial solutions to each other.

Paper [61] proposes a purely theoretical framework for multi-agent systems. No
experiments or implementations are mentioned in this work. The authors present
a distributed form of ACO based on so called smart messages approach to multi-
agent systems. Agent mobility is used to implement complex communication over
dynamic networks. They use delegate multi-agent systems to manage these smart
messages in order to design a multi-agent approach for ACO. No ways of modeling
the environment, determining convergence or stopping condition of ACO experiments
are presented.

The frameworks presented in papers [31, 7, 32] are designed for the coarse grained
master-slave approach. The [61] approach is much better suited for the distribution
of the search space then migrating entities in the form of messages, according to the
particular SI rules. However, this does not motivate the use of code mobility since all
entities are governed by the same behavioral rules.

3.10. Partitioned Search Space Approaches. Briefly mentioned at the begin-
ning of this subsection, the cellular approach from [86] proposes splitting ACO search
space into overlapping neighborhoods, each one with its own pheromone matrix. The
good solutions gradually spread from one neighborhood to another through diffusion.
The authors obtained the efficiency of 0.9 on 4 nodes.

A similarly interesting approach [81] to distributed ACO divides the search space
between the available and merges the solutions offered by the slaves at a central com-
puting node. The authors boast exponential decrease of execution time. Another
approach that divides the search space called ”D-ant” is introduced in [41] and con-
tinued in [42] which was reported to outperform a multi-colony and a coarse grained
implementation of ACO. The efficiency of the approach peaked at 0.7 when using 8
computing nodes. However these approaches would need to be inherently synchro-
nized, which has negative effects on performance of implementations with a central
computing node. Most research conducted on the matter agrees that asynchronous
messages offer better execution time than synchronous ones. Another criticism that
can be brought to these implementations is the fact that they are not purely ACO
since they are using a different algorithm to merge the partial solutions.

4. Conclusions

The independent runs model is rarely used by the scientific community. When
many instances of the SI algorithm solve the problem independently and the best
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solution is chosen in the end increases the chances of getting a higher quality solution.
We draw two conclusions from the work on the subject: i) this model is faster, however,
it offers worse solutions than any other distribution model and ii) it provides better
quality of solutions than a single sequential run.

The hybrid models and other variations of the master-slave model are isolated
attempts to improve the execution time of the existing approaches. Although they
sometimes boast better results taking advantage of hardware architecture such as
multiple GPUs they are not widely accepted as best approach to distributing SI.

In the case of fine grained master-slave model the communication overhead that is
necessary to exchange solutions is too large. The small amount of research using this
model and the conflicting opinions about its effectiveness suggests that it is being
abandoned as a viable model and is not, in fact, the state of the art approach to
distributing SI.

Most authors focus on the coarse grained master-slave model or the island ap-
proach. Obtaining top efficiency when distributing their implementations on 8 to 25
nodes distribution. The approaches that were tested on TSP generally used graphs
from the benchmark library TSPLIB [97] consisting of up to 500 vertices. The ex-
ception is the work presented in [120], where an island model was tested on a 15
000 vertex TSP instance of TSPLIB. However, efficiency peaked at 8 nodes. The
most scalable approach in all the considered papers was presented in [20], an island
model that reached peak efficiency at 25 nodes. This was tested on a 318 vertex TSP
instance. However, the peak efficiency was inferior to maximum efficiency we encoun-
tered of 0.9 , obtained in paper [21] using 8 computing nodes. We found significant
research sustaining the superior asynchronous communication for the island model.
It is our conclusion supported by the large number of papers written on the subject
and the outstanding results, that the island approach is the current state of the art
model of distributing SI. These distributing models of SI may be criticized for not
being especially designed for SI approaches. Therefore they do not take advantage of
the inherently distributed nature of the SI approaches they are using.

In the case of agent-based approaches to distributed SI, the authors model entities
and vertices as agents. Although this type of modeling is fully distributed, the separa-
tion of SI entities and search environment results in a large amount of messaging. All
the necessary actions are done through messages: visiting a vertex, current solutions
update any other SI specific action. Agents can run on the same computing node or
on separate nodes. In the latter messaging between agents is slower due to network
connection delay.

The frameworks presented in papers [7, 32, 31] are designed for the coarse grained
master-slave approach. On the other hand, [61] is much better suited for the imple-
mentation of a distributed environment that migrates entities in the form of ”smart
messages”, according to the particular SI rules. However, again, this does not moti-
vate the use of code mobility since all entities are governed by the same behavioral
rules. [61] presents a purely theoretical design, on the other hand, the somewhat sim-
ilar distributed constraint architecture called ”DisChoco” from paper [49] has been
tested and proved to be scalable.
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[5] C. Bădică, S. Ilie, and M. Ivanović, Optimizing Communication Costs in ACODA Using Sim-
ulated Annealing: Initial Experiments, In Computational Collective Intelligence, Technologies

and Applications, Lecture Notes in Computer Science 7653, Springer Berlin, Heidelberg, 2012,
298–307.

[6] A. Banharnsakun, T. Achalakul, and B. Sirinaovakul, Artificial bee colony algorithm on dis-
tributed environments, in Nature and Biologically Inspired Computing (NaBIC), 2010 Second

World Congress on, IEEE, 13–18.
[7] D. Barbucha, I. Czarnowski, P. Jedrzejowicz, E. Ratajczak, and Iza Wierzbowska, Jade-based

a-team as a tool for implementing population-based algorithms. In Proc. 6th International Con-
ference on Intelligent Systems Design and Applications: ISDA2006, IEEE Computer Society,

2006, 144–149.
[8] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with JADE,

John Wiley & Sons Ltd, 2007.
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