Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 41(2), 2014, Pages 271-279
ISSN: 1223-6934

Socket extensions for esoteric languages

RADU DRAGOS AND DiaNA HALITA

ABSTRACT. In this paper we have advanced the first interpreter for the brainfuck (BF) esoteric
programming language, entirely written in awk, a fast text processing programming language.
However, the main objective remained introducing socket communication to brainfuck pro-
gramming language. In order to achieve that goal, we have improved the brainfuck language
with a byte long instruction through which it is allowed socket communication. For that,
we have advanced a series of procedures in order to test the compatibility of our brainfuck
interpreter.

Moreover, we have maintained brainfucks minimalism, which is one of the special char-
acteristics of this programming language. In the end, we succeeded to map a minimalistic
programming language to the client-server paradigm.

2010 Mathematics Subject Classification. 68N15 - Programming languages, 68N 20 -
Compilers and interpreters.
Key words and phrases. brainfuck, socket, interpreter, esoteric languages.

1. Introduction

This paper describes a simple interpreter for the brainfuck (BF) esoteric programming
language, written in AWK. It is compatible with almost any version of AWK that
is supplied within UNIX systems. The interpreter illustrates the use of AWK in
implementing small programs using BF language, mainly for proof of concept reasons.

1.1. Motivation. Even if BF is known for its extreme minimalism and it is designed
to challenge programmers, it is not usually suitable for practical use. However, the
motivation of developing such an application comes from the usage of a simple and
easy syntax which can help programmers to deeply understand other programming
languages and besides that, other programming paradigms.

The idea of improving BF language came from the necessity of implementing one of
the most fundamental technologies of computer networking: socket communication.

Most computer programming languages implement socket communication. Includ-
ing functional programming languages such as Lisp, Haskell or Erlang and logical
programming languages such as Prolog ([1], [2], [3], [4])-

1.2. Objectives. The main objective is to introduce socket communication to BF
programming language. In order to maintain BF’s minimalistic language properties,
we will define a single one byte new BF instruction.

In order to add socket support and to accommodate the new instruction, a BF
interpreter needed to be modified. However, we decided not to modify an existing
version, but to implement a new one using AWK programming language. Therefore,

Received August 13, 2014.

271

272 RADU DRAGOS AND DIANA HALITA

we will show how to map a minimalistic programming language to the client-server
paradigm.

2. Related Work

2.1. Esoteric languages. An esoteric programming language is a programming lan-
guage best suited for testing the boundaries of computer programming language de-
sign, as a proof of concept, as software art, or as a joke. Even if their goal is not
the usability of programming, the main purpose is to remove or replace conventional
language features while still maintaining a language that is Turing-complete.

A few examples of esoteric programming languages are: Intercal, Befunge, P”,
Brainfuck [5].

P” is a primitive computer programming language created in 1964 to describe a
family of Turing machines. This language is formally defined as a set of words on the
four-instruction alphabet R, A, (,).

P” was the first ”GOTO-less” imperative structured programming language to be
proven Turing-complete. The BF language (apart from its I/O commands) is a minor
informal variation of P”.

2.2. Brainfuck. BF esoteric programming language is, as we previously stated, a
minimalistic language, which consists in eight (one byte long) simple commands.
This programming language was created as a Turing-complete language [6], meaning
that, theoretically speaking, having access to an unlimited amount of memory, BF is
capable of computing any function or simulating any mathematical model. All BF
commands are sequentially executed and generally all other characters are ignored.
The execution of the program ends at the end of the instructions set. Bellow there
are few examples of code written in BF:

2.2.1. Hello World - version 1. This is the original ”"Hello World!” program where
the ASCII codes for each printable character in the text are generated by running the
code.

LisTiING 1. Hello World - version 1

oo < <<<— A <> >——.
4 > <= < - . >>+>++.

2.2.2. Hello World - version 2. This is a more lisible code example that will output
"hello” if you input letter "h”. It will use the ASCII code of character "h” to obtain
the ASCII code of ”e”, ”1” and ”0” by decrementing or incrementing the value at the
current memory location.

LisTING 2. Hello World - version2

p——— Attt At

2.2.3. Comparing numbers. In this example we read from stdin 2 numbers (a and b)
and the character 70”. The program will output ”0” if ¢ < b and ”1” if @ > b.

The algorithm works by setting a number of a memory locations to value 1. Then,
b of them are set to 0. If there remains locations set to 1, it means that a > b.

SOCKET EXTENSIONS FOR ESOTERIC LANGUAGES 273

TABLE 1. BF Commands

Character Meaning

increment the data pointer which will point

> to the next cell to the right;
decrement the data pointer which will point

< to the next cell to the left;

+ increment the byte at the data pointer;

- decrement the byte at the data pointer;

output the byte at the data pointer;

accept one byte of input and
, store its value in the byte at the data pointer;

if the byte at the data pointer is zero,
then instead of moving the instruction pointer
forward to the next command, jump it
[forward to the command after the matching] command.

if the byte at the data pointer is nonzero,
then instead of moving the instruction pointer
forward to the next command, jump it
] back to the command after the matching [command.

LisTiNG 3. Comparing numbers

>>, #move to location 2 and read value of a
[—[>+<—]+>] #fill a locations with 1
<[<] #go back to location 1
, #read value of b
>[-l<—[>+<-]>] #fill b locations with 0

#if location b plus 1 is 0 then a was
S><+ =] > -]l < #less than b and print 70"

#else print 717

2.3. Related BF implementations. There is a large collection of BF implemen-
tations, most of them listed in [7].

The BF implementations include:

e interpreters that use other programming languages to take BF programs as input
and execute commands in that specific programming language. There are even
some BF interpreters written in BF;

e compilers that take BF source code and generate executable code;

e hardware implementations including emultated and real CPU-s that can run BF
code directly.

274 RADU DRAGOS AND DIANA HALITA

Most of those implementations are pure proofs of concept just to show that BF
can be implemented using some particular technology. Some of them are optimizing
implementations created to run BF code as fast as possible. Some of them are notable
intentions to implement support for network communications.

The BF++ project [8] aims to extend BF with file I/O and TCP network commu-
nication. Some specifications are given but the project was discontinued and no final
implementation was provided.

NetFuck [9] introduces communication between two NetFuck programs over TCP.
The remote host and port are given to the interpreter as command line arguments
and cannot be specified within the BF code.

Another step forward toward network communication using BF was taken by an-
other NetFuck interpreter written in C# [10] which redirects standard BF I/O com-
mands (.,) to read/write into a TCP socket instead of standard I/O. The developer
also provides an IRCbot client written in NetFuck. However, the interpreter requires
the TP and remote port to be specified in the command line as arguments, and by
redirecting I/O to the connected TCP socket, no further interaction with the user is
possible.

Two distributed applications using BF are presented below.

In [11] is presented a BF module for a particular webserver implemented in PHP.
The module allows a developer to write server-side BF code and the result will be
displayed on the clients browser. The communication is performed through the web
server, so no socket facilities are provided for BF.

In [12], a NodeJS webserver implementation is extended to support writting BF
code as scripting language for client side web programming in web browsers.

Therefore, we choose to implement our own BF interpreter with general purpose
networking support using AWK programming language since there are none known BF
implementations using AWK, and because AWK has a simple to use and understand
socket abstractization layer.

3. AWK

The main purpose of AWK programming language was to allow users to write
short programs intended for fast text processing and generating reports. AWK code
is intended to be executed for each line of each processed file after applying some
input regex filters. The processing speed of various AWK implementations versus
alternatives such as Perl, Python or Ruby is beyond the scope of this document.
However, AWK is present as a main programming/scripting language in most UNIX-
like operating systems and therefore, it is studied in computer science curriculums
all around the word. While a lot of students study AWK programming and most
system administrators use it on a daily basis, few of them are aware of it’s networking
capabilities.

Our main concern was to write an efficient program through which we can access
network services. But AWK was not meant initially to be used for networking pur-
poses and it does not introduce special functions for socket access, like other languages
do. However, it treats network connections like files [13]. The special file name for
network access is made up of several mandatory fields, such as:

/inet /protocol/localport/hostname/remoteport

Network communication in AWK is implemented by creating a pipeline between
the main AWK process and a process over the network specified as a special filename.

SOCKET EXTENSIONS FOR ESOTERIC LANGUAGES 275

So, it was necessary to introduce a new operator ’|&’ to make possible communication
over a network.

An example of reading a line from a tcp server (i.e. the ssh server on localhost
listening on port 22 and presenting the ssh server welcome message) is presented
below:

$echo | AWK ’{” /inet/tcp/0/localhost/22” |& getline a; print a}’
SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntul.3

Another example is how to write a message ("hello”) to a UDP server using a

simple AWK command:

$echo | AWK ’print ”hello” |& ”/inet/udp/0/localhost /2222’

4. AWK INTERPRETER FOR BF

BF is a minimalistic esoteric programming language. Hence, as shown in the pre-
vious section, there are many interpreters and compilers for BF in most programming
languages, including a BF interpreter written in BF. However, there is none written
in AWK.

Our first task was to write a BF interpreter in AWK that can run any BF program.
There are several procedures for testing the compatibility and the performance of
BF interpreters, some of them including recursive execution of BF code using the
BF interpreter written in BF [14]. It is our main goal to write a compatible AWK
interpreter for BF, while the performance is not our concern for the moment.

Along with a lot of trivial BF programs that we tried out in order to test our
implementation, we also run a BF program that generates an ASCII Mandelbrot set.
Although it runs slower than the default Ubuntu BF interpreter, it runs successfully
as it can be seen in the Figure 1.

FOITG

ARARARAARABBBBBBBECCCCCCCCOCCCCCCCOOCCCCCCCoCCCOCccPPOEDDEDDDODDDDEEEEEEFTGHIJKE X KHHG. coccoccoa
TY zaLt

T
FroHK MEJSIJO M ROX ¥USR PLYV LHHHOGHICJOFEDDDCCCCCCCCCCCCEBBBBBBEE
o eTHR

[IG:
AR ARG CCCCECCCOCCEEECCEECCCPDOPEEEEEEEEEEEEEEEE I FT T HYV RGU GHINGGIEEEDDDCCCCCCOCCECTTRBBE
7T P

o UG I HrEDDDDCCCCCCCCCCCCCC:
TIIVE JIKITIIIIILR ¥MHIEDDDDDCCOooooooooConn
GGHIJKOU © © PR LLIJIKL SINITEDDDDDCCECCEEEEcoOoTn
ARCCCODDDDDDDDDDODEEEEEEEEEFGGGH T IMR ReLIT NT FEEDDDDDDCCCCCCTOOOTOCE
DECCCCCCOCEoaas

ABCODDDODOODDDEEEEEFFFITGIPITTIMMG e HITEEDDDDDDCCCCCCCoooooce

ADEEEEFFIGHIGGGGGOHHHNT JILNY TIHGFFEEEDDDDDDDCCCCCCCooooes
PLIMGG FFEEEDDDDDDDCCCCCCCooooee
T

ADEEEEFFFGHIGOOGGOHHHHIIILNY
ABCEEEDDEEDDODEEEEEFFITTGT PIT T JHHG e HITEEDDDEDDCCCooooooooocs
Anc waz aPR HJIGFEEDDDDDDCCCCCCEECoCEas
TR PMLa HTFEEDDDDDDCCCCCCCooCCaes

IILVE JIMITIITIILR ¥NHFEDDDDDCCCCCCCCoOOOORE
v IKRR Ug I HFEDDDDCCCCCCCCCCOCCORE
FITH T am FHHE FEEDDDECCCECCOCEEEccBnn
mau
1oHLOT ¢

a

ARAAABBRC CCCECECCEEECCCCECEcCCCEECCCCOPOODDOEEEEEEEEEEFFFIGH © TH 8 HEJKR LLGH coceeeceee
MKJIJO M OR X ¥USE PLV LHHMHGGHIOC.

IIHHHHHTITIHMA VBRIT

S e
FrogQROVOTY ZQL (MM
s

SHIMTHLE GG
ARRARAAARARALD BB BB BB B CCCCCCCCCCCCCECCCCOCCCCCCCCCoooos rrer cocccoc

FIGURE 1. Output of the BF Mandelbrot set generator

Although AWK is a fast text processing programming language [15], we will piggy-
back here it’s network communication abilities.

00N O Ut WN

276 RADU DRAGOS AND DIANA HALITA

At first, the AWK interpreter reads all commands from the BF source file, then,
they are parsed sequentially or repetitive for the ”[?,”]” pair of instructions. The
pseudocode is presented in Listing 4.

To maintain the minimalism of BF, we introduce only one new instruction, called Q.

Depending on the interpreter which is usually used, one may consider this new
instruction (i.e. our AWK interpreter) or ignore it, considering that it is a comment (as
regular interpreters do). In order to make possible the client-server communication,
we need to define some rules which specify the protocols that should be followed.

LisTING 4. Pseudocode for interpreting network capable BF

// array m used for storing 30000 bytes long virtual BF tape
// ¢ indicates current tape position
READ source code into array v

FOR i in v
CASE v [i]
RN READ a byte into mc]
”LT WRITE m| c]
R Increment m|c]
77 Decrement mc]
7> Increment tape pointer c
<7 Decrement tape pointer c
” [IF m[c] not O
THEN execute instructions up to
corresponding ”]”
ELSE GOTO corresponding ”]”
ENDIF
7] IF m[c] not 0
THEN GOTO corresponding 7 [”
ENDIF
@7 CASE m[c+1]
0: Listen TCP on port m[c+2]*10004+m[c+3]
and IP address m[c+4].m[c+5].m[c+6].m[c+T]
and WRITE m[c] when client READS
1: Listen TCP on port m[c+2]x1000+m[c+3]
and IP address m[c+4].m[c+5].m[c+6].m[c+7]
and READ m[c] when client WRITES
2: Connect to TCP on port m[c+2]*10004m[c+3]
and IP address m[c+4].m[c+5].m[c+6].m[c+T]
and WRITE m[c] when server READS
3: Connect to TCP on port m[c+2]*1000+m[c+3]
and IP address m[c+4].m[c+5].m[c+6].m[c+7]
and READ m[c] when server WRITES
4: //not used because UDP server cannot WRITE
//before READ
5: Listen UDP on port m[c+2]+x1000+m[c+3]
and IP address m[c+4].m[c+5].m[c+6].m[c+7]
and READ m[c]| when client WRITES
6: Connect to UDP on port m[c+2]*10004+m[c+3]
and IP address m[c+4].m[c+5].m[c+6].m[c+7]
and WRITE m[c] when server READS
7: //not used because UDP client cannot READ
//before WRITE
ENDCASE
ENDCASE
ENDFOR

SOCKET EXTENSIONS FOR ESOTERIC LANGUAGES 277

Memory pointer Meaning Values m[c+1]
c+0 current memory location 0 = (server, send, TCP)
c+1 case byte 1 = (server, receive, TCP)
c+2 port high byte 2 = (client, send, TCP)
c+3 port low byte 3 = (client, receive, TCP)
c+4 IP byte 1 4 = (server, send, UDP)
c+5 IP byte 2 5 = (server, receive, UDP)
c+6 IP byte 3 6 = (client, send, UDP)
c+7 IP byte 4 7 = (client, receive, UDP)
TABLE 2. TABLE 3.
Specifications for implementing @ command Cases for values of byte m[c+1]

4.1. Specifications for instruction @. This new instruction will allow the user
to send/receive a single byte through a socket. The instruction will send/receive the
byte referred by the current memory pointer (¢). The type of the socket is defined by
the value of c+1 as described in Table 2. The byte values at c+2 and c+3 are used to
define the local or remote port foc communication, and bytes c+4 to c+7 represent
the remote IPvP address (as described in Table 2).

The second byte (i.e. m[c+1]) can have only eight possible values, otherwise it will
be ignored, and the communication will not be able to take place.

It is well known that two processes can be either client or server, they can either
send or receive messages following one of the TCP or UDP protocols. Depending
on the chosen combination from the set obtained by making the cartesian product
between the above named sets: {client, server} x {send, receive} x {TCP, UDP}, the
second byte should have only the values described in Table 3.

4.2. Examples of BF network communication.

4.2.1. TCP client. The first example is a TCP client that will read the first byte
of a SMTP server welcome message running on localhost (127.0.0.1) on port 25, and
outputs on the screen the value received in the current memory location:

LisTiNG 5. TCP client

>+> #value of m(cl) set to 3
#for TCP client receive
A< > #setting m(c3) port to

#25 multiplying 5 by 5

S>> A< <<— #setting m(cd) first
#octet of IP address
#to 127=4%4x8 minus 1

>>>+ #setting octets m(cH) to
#m(c7) to 0 and 0 and 1
#move back to m(c)

<LLLLL Q. #execute socket command
#and output the byte
#read

The program prints on the screen the character ”2” which was the first byte read
from the server welcome message:

”220 athena.ubbcluj.ro ESMTP Postfix (Ubuntu)”

278 RADU DRAGOS AND DIANA HALITA

4.2.2. UDP client - server. The second example is a pair of BF programs that com-
municate with each other using UDP port 2000:

LisTING 6. BF UDP server

S>> #value of m(cl) set to 5
#for UDP server receive
+>> #setting m(c3) port to

#2000 (high octet 2,
#low octet 000)
S> A KA <A <<— #setting m(cd) first
#octet of IP address
#to 127=4%4%8 minus 1
S>>+ #setting octets m(cH)
#to m(c7) to 0 and O
#and 1
#move back to m(c)
<LLLLL Q. #execute socket command
#and output the byte
#read

LisTinGg 7. BF UDP client

s #read a byte from
#standard input

S>> #value of m(cl) set to 6
#for UDP client send
+>> #setting m(c3) port to

#2000 (high octet 2,
#low octet 000)
S>> <<— #setting m(cd) first
#octet of IP address
#to 127=4%4%8 minus 1

>>>+ #setting octets m(c5) to
#m(c7) to 0 and 0 and 1
<LKLLLL<@ #move back to m(c)

#execute socket command

4.3. Limitations. Although, a lot can be accomplished by using an application
layer protocol that transmits only byte sized payload packets, it is not an efficient
use of resources. This implementation can only transmit/receive maximum one byte
of information for every @ instruction used. This was our choice for this proof of
concept implementation in order to keep the BF extension minimalistic.

The interpreter could be easily changed to send /receive variable sized data packets
by using another byte (or two) in the memory to specify packet sizes up to 265 (65535)
bytes. But this would greatly increase the already high complexity and readability of
BF code.

5. CONCLUSIONS AND FUTURE WORK

The goal of writing a BF interpreter and extending BF for client-server communi-
cation has been realised in the most minimalistic possible way.

We hope that what we realised was indeed a proof of concept and that our ideas
will inspire others to learn how to program in AWK.

As future directions for research and development we are considering implementing
(and testing) variable packet size network communication in BF in such a way so to

SOCKET EXTENSIONS FOR ESOTERIC LANGUAGES 279

maintain the minimalistic and esoteric principles of BF. Also, based on the research
done for this paper we could also extend BF for running code in parallel so it could be
used as a didactic tool for understanding the non-sequential programming paradigm.

References

(1]
2]

(5]

(6]

[7]
(8]
9
[10]

11]
[12]
(13]
[14]
[15]

Peter Seibel, Practical Common Lisp, Apress, 2005.

J. Armstrong, Making reliable distributed systems in the presence of software errors, A Disser-
tation submitted to the Royal Institute of Technology in partial fulfilment of the requirements
for the degree of Doctor of Technology The Royal Institute of Technology Stockholm, Sweden
(2003).

G. Hutton, Programming in Haskell, Cambridge University Press, 2007.

J. Wielemaker, Z. Huang and L. van der Meij, SWI-Prolog and the Web, Theory and Practice
of Logic Programming 8 (2008), no. 3, 363-392.

M. Mateas and N. Montfort, A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthet-
ics, Proceedings of the 6 th Digital Arts and Culture Conference, I'T University of Copenhagen,
1-3 Dec 2005, 144-153.

C. Bohm and G. Jacopini, Flow diagrams, turing machines and languages with only two forma-
tion rules, Communications of the ACM 9 (1966), no. 5, 366-371.
http://esolangs.org/wiki/Brainfuck_implementations, last accessed on: 15.12.2014
http://www.jitunleashed.com/bf/index.html, last accessed on: 15.12.2014
https://bitbucket.org/shadwick/netfuck/wiki/Home, last accessed on: 16.12.2014
https://github.com/SirCmpwn/bf-irc-bot/blob/master/irc-bot.bf, last accessed on:
16.12.2014

http://nanoweb.si.kz/manual/mod_bsp.html, last accessed on: 16.12.2014
https://github.com/masylum/node-brainfuck, last accessed on: 16.12.2014

J. Kahrs, Network Administration with AWK, Linuz J. 1999 (1999), no. 60, art. 5.
http://www.nada.kth.se/kurser/kth/2D1464/awib.pdf, last accessed on: 15.12.2014

IEEE Software Staff, Improving Productivity and Quality with Awk, IEEE Software 7 (1990),
no. 2, 94-95.

(Radu Dragos, Diana Halitd) BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND
COMPUTER SCIENCE, 1 M.KOGALNICEANU ST., 400084 CLUJ-NAPOCA, ROMANIA
E-mail address: radu.dragos@cs.ubbcluj.ro, diana.halita@ubbcluj.ro

