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ABSTRACT. The main objective of this paper is a study of some generalizations of Hilbert-
Pachpatte-type inequality. We apply our general results to homogeneous functions. Also, this
paper presents improvements and weighted versions of Hilbert-Pachpatte type inequalities
involving the fractional derivatives.
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1. Introduction

Although classical, Hilbert’s inequality is still of interest to numerous mathematicians.
Through the years, Hilbert-type inequalities were discussed by numerous authors,
who either reproved them using various techniques, or applied and generalized them
in many different ways. For more details as regards Hilbert’s inequality the reader is
referred to [4], [7] and [8]. In particular, in [9], Pachpatte proved some new inequalities
similar to Hilbert’s inequality. In this paper, we establish some new integral Hilbert-
Pachpatte type inequalities.

We start with the following result of Zhongxue Lii from [11]: let p > 1, % + % =1,
s > 2 — min{p,q}, and f(x), g(y) be real-valued continuous functions defined on
[0, 00), respectively, and let f(0) = ¢g(0) = 0, and

00 T o Y
0< / / o 0| ()|Pdrdr < 00, 0 < / / y'%g(0)|9dody < oo,
o Jo o Jo

then

()|lg(y)|
/ / (qzP— 1+py‘1 Dz +y)s drdy @

B<q+; 2 P+9 % 0 Y %
< < / / 2| |pdrdx) < / / y”|g'(6>|qd5dy)
0 0

Here, B(:, ) denotes the usual Beta function. In this paper we shall consider more
general form of inequality (1). Moreover, the main objective of this paper is to deduce
Hilbert-Pachpatte type inequalities using the Taylor series of function and refinement
of arithmetic-geometric inequality from [5]. Also, this paper presents improvements
and weighted versions of Hilbert-Pachpatte type inequalities involving the fractional
derivatives. Our results will be based on the following result of Krni¢ and Pecarié¢
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(see [6]) for conjugate exponents p and gq. More precisely, they obtained the following
two equivalent inequalities:

K(z,y)f(2)g(y)dpi(z)dps(y) (2)

<[[ wwr@r@inG ] v )d/w(y)}é
and

e { [ Ko i@ s )} o) < [ P @)F @) @)dpa o),
3)

where p > 1, uq, uo are positive o-finite measures, K : Q@ x Q =R, f,g, 0,0 : Q2 = R
are measurable, non-negative functions and
K(z,y) K(z,y)
o YP(y) o ¥i(z)
On the other hand, here we also refer to a paper of Brneti¢ et al, [10], where a
general Hilbert-type inequality was obtained for [ > 2 conjugate exponents, that is,
real parameters py,...,p; > 1, such that 22:1 i = 1. Namely, let K : Q! — R and

QxQ

F(x) =

duz(y) and G(y) =

dpiy (). (4)

@i - Q@ =R, 4,5 =1,...,1, be non-negative measurable functions. If Hé,j:l ¢ij(z;) =
1, then the inequality

K(z1,... 2 Hfzxz dz; .. dxl<H</ i) (i fi)P () dze ) (5)

Ql
holds for all non-negative measurable functions fi,..., f; : @ = R, where
Fz(xz) = K ZL‘1,..., H (;5 I’] dl‘l dl’i_ldwi+1...dl‘l, (6)
@t Jj=1,j#i
fori=1,...,1.

2. Main results

In this section we shall state our main results. We suppose that all integrals
converge and shall omit these types of conditions. To obtain the main result we need
some lemmas.

Lemma 2.1. For f € C™[a,b], n € N, the Taylor series of function f is given by

T n—1 (k) a
f@) = ot [ - o (7)
a k=0 ’

(n—1)!
Define the subspace C%[a,b] of C"[a,b] as
C™a,b] = {f € C"a,b] : fF(a) =0,k=0,1,...,n—1}.
Obviously, if f € C?[a,b], then the right-hand side of (7) can be written as

f@) = oty [ @m0 (3)
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M. Krni¢ et al. in [5] proved the following refinements and converses of Young’s
inequality in quotient and difference form. For that sake, if x = (x1,x2,...,2,) and

P = (plvp?v oo »Pn)» we denote Pn = Z?leia

7'7,7 T n n
An(x) = 2%7 Gn(x) = <H xl) 3
i=1

and
W NE e Ty
(L= 27 ™ r=0

Lemma 2.2. ([5]) Let * = (x1,22,...,2,) and p = (p1,D2,...,Pn) be positive
n—tuples such that Y-, i =1, and

1 1 1
xP = (et 22, abn), pl= (,,...,).

)

A p nmin1gi§n{,%} My (xP.p~1 A P ”max1§¢§n{ﬁ}
n(X ) o < 1(X , D ) < n(X ) !
- MQ(Xp,p_l) - |G

and

n min {1} [A,(xP) — G (xP)] < My(xP,p~ 1) — Mo(xP,p 1)

1<i<n | p;

< n max {1} [An (xP) — G (xP)].

1<i<n | p;

We start with the refinement of Hilbert-Pachpatte type inequalities with the general
kernel.

Theorem 2.3. Let 1% —|—% =1 withp,g>1,and0<a <b< oo IfK: [ab] X
[a,b] — R is non-negative function, ¢(x), ¥(y) are non-negative functions on [a,b]
and f,g € C?a,b], then the following inequalities hold

// Kalf@lol

| 2(M—m)
q(M m) +(y )W)
" K(z,y f g
< L m/ U)o, ©
(x—a)i(y —a)r

=

AM=m[(n — 1)1 (/ / tP e (a:)F(ar)|f<">(t)Pdtdx>

( [ [ w-ume <y>|g<"><t>|thdy>q,
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and

/ / (1 — ()P P () F(a)| /) (1) P, (10)

where m = min{%, %}, M = max{%, %}, and F(x) and G(y) are defined as in (4).

Proof. By using (8) and Holder’s inequality, we have

[f@)l = ,/ (@ —t)"~ lf("()dt’
< ,/ (@—t)" @) - 1dt
< gty ([ @m0 l’lf”’()lpdt);</;1th>;
- L ([ peoyepa) )
and similarly
l9(a)| < H (/ y(y—t>q<"-1>|g<“><t>|wt>;. (12)

Now, from (11) and (12) we get

f@llw)| < T—pme—a)

Q=

- x ([ @) %

< ([ - nromnye (t)th>; . (13)

Applying Lemma 2.2(i) (see also [5]), we have
M Py M < (o 4yt 2T e >0,y 20, (14)

where % +% =1 withp > 1, and m = min{%, %}, M = max{%, %} From (13) and
(14) we observe that

2 f ()] o) . _@llow)|
(@ - @y + (y— gy ) T (e a)?(y a)?

1

< oo ([ e mepa)” ([ o)’

and therefore
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o [N K (2,)|f(2)] |9(v)]
v dxd
/a /a (W—a)muy—a)m)“”m) Y
" [ K(x,y) If ) g(y)|
</ / (m—a —a)p dedy (15)

<ot [ [ K (] I(m—tw"1>|f<"><t>|”dt)'l’

1
) .
<([w-orig o) asay

Applying the substitutions

hw) = ([ @=openie <t>Pdt)‘l° o) = ([0 )

and (2), we have

b T .
/ / K(x,y)fi(z)g1(y)dxdy < </ @P(x)F(x)ff(w)dg:> (/ wq(y)G(y)g(f(y)dy>
b rx
= (/ / (1’ — t)p(nI)QDP(I)F(x)|f(n)(t)|pdtdx>

( / / B Dy G (y)|g<n><t>|thdy> - (16)

By using (15) and (16) we obtain (9). The second inequality (10) can be proved by
applying (3). O

Q=

=

Now we can apply our main result on non-negative homogeneous functions. Re-
call that for homogeneous function of degree —s, s > 0, the equality K (tx,ty) =
t=°K(z,y) is satisfied. Further, we define

a) —/OOOK(l,u)uadu

and suppose that k(a) < oo for 1 — s < a < 1. To prove first application of our main
results we need the following lemma.

Lemma 2.4. If A > 0,1 - A < a <1and K : Ry xRy — R is a non-negative
homogeneous function of degree —\, then

/OOO K(z,y) (Zj)ady = 21 k(a), (17)

/OOO K(z,y) (%)a dz =y k(2 = A — ). (18)

and

Proof. We use the substitution y = ux. The proof follows easily from homogeneity of
the function K(z,y). O
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Corollary 2.5. Let % + % =1, withp,q > 1. If K : Ry x Ry — R is a non-negative
and homogeneous function of degree —X\;, X > 0, and f, g € C{[0, 00}, then the following
inequalities hold

/ / K(x,y)|f(x 1)||g§2)(|Mm) dedy (19)

xq(l\/f ™) gy P(M=m)

IA

4Mm/ | ke wlr@lswliehaoh

. (/oo/ yq(A2A1+n1)+1>\|g(n)(t)|thdy) 0 7
o Jo
/ yPm DO Fp(A=42) (/ K(z,y) (/ (w—t)p("_”lf(”)(t)lpdt> dw) dy
0 0 0

c1p [ [ 0 2
0 0

and

where Ay € (% E) Ay € (%,%), L= k(pAz)%k(2 A= qu)%, and M, m are
defined as in Theorem 2.3.

Proof. Let F(x), G(y) be the functions defined by (4). Setting p(z) = zt and
Y(y) = y™2 in (9), using the fact (x —t)P(*~1) < zP(*=1) for £ > 0 and t € [0, z], and
Lemma 2.4, we get

/Ooo /Ox(x - t)P(nfl)spp(x)F(x)|f(n)(t)|pdtdx
e (A1 —As+n—1) > z pAs2 "
< /0 /0 z? </0 K(z,y) (y) dy) |£) (t) [Pdtda

— k(pAy) /0 h /0 " P Astn =D H1-A) 600 () P dar, (21)
and similarly
[ [ -0t smewmis® oy (22)
<kz-a-qdy [ [y g0 iy,
From (9), (21) and (22), we get (19). O

We proceed with some special homogeneous functions. First, by putting K(x,y) =

In% . .
o= in Corollary 2.5, we get the following result.

Corollary 2.6. Let %+% =1, with p,q > 1. Let M, m, f, g be defined as in Corollary
2.5. Then the following inequalities hold
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/Ooo /Ooo In 2| f(z)||g(y 1)| )Z(M_m) dady

(y l‘) (xq(M ™) +yp(]VI ™)

4M m/ [ AN

(A1—As+n—1 n
4Mm O] (/ /x s Aztn=)) p( ><>|pdtdz:)
X (/ / yQ(A2—A1+YL—1)g(n)(t>|thdy> q ,

0 0
D

00 © In¥ z %
/ yP(A1=42) / r (/ (z — t)P("—1)|f(")(t)|pdt) dr | dy
0 o Y= \Jo
(o) xT
i [ [ e g,

where Ay € (0, %), Ay € (0, %), and

IN

| /\

and

Ly =n? (sinpAgw)fg (sin quﬂ')*% .

Similarly, for the homogeneous function of degree —\, A > 0, K (z,y) = (max{x,y})™?,

A=Ay = with the condition A > 2 — min{p, ¢}, we have:

q b
Corollary 2.7. Let %—&—% =1, with p,q > 1. Let M, m, f, g be defined as in Corollary
2.5. Then the following inequalities hold

[ [ et e >)| gy < g [ UL 30

;[;q(M m) _|_yp<M m)

e U T >|Pdtdx)
% (/ / y(I(n—l)+1—)\|g(n)(t)thdy) 7 ,
0 0

o0 [e'e] x % P
/ y =D ( / (max{z, y})~> ( / (x—t>p<"1>|f<")<t>|pdt) dx) dy
0 0 0
SLQ/ / P DA f ) () P,
0 0

where Ly = k(%) and k(a) =

and

A
(1—a)(A+a-1)"

In the proof of the following result we used a general Hilbert-type inequality (5) of
Brnetié¢ et al, [10].

Theorem 2.8. Let n,l € N, [ > 2, Ei:l i =1 withp; >1,i=1,...,0. Let ay,
1=1,...,1, is defined by a; = H§':1,j¢¢pj~ If K : [a,b]'! = R is non-negative function,
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¢ij(x;), 4,5 =1,...,1, are non-negative functions on [a,b], such that Hé,j:l ¢ij(z;) =
1, and f; € CTa,bl, i =1,...,1, then the following inequality holds

l

[((1‘17'"""El)l_[izl‘fi(aji)| dﬁ[}l...dﬁrl

l . \I(M-m)

(a,b) (Zz Lz —a)® i(M_m»)

1 / K(Ih---,Il)Hé:l|fi(zi)|dx1 dx;
(a,b)!

[ —
— J(M—m)l 1
1 ) Ili—l(xl —a)%
1

< o m)l (n—1)! zH( / £ G () F () £ (1) pidtdmi) ;

where m = mlnlgigl{g}, and M = maX1gigz{i}, and Fy(x;), i=1,...,1 is defined
by (6).

Obviously, Theorem 2.8 is a generalization of Theorem 2.3.

Remark 2.1. Applying the second refinement of arithmetic-geometric inequality (see
Lemma 2.2(ii)) we obtain

2P 4y 1 2
Pyl < — >0,y>0 23
.’L’y_( 9 Mm) ) r=2U,y=U, ( )

where % + % =1 with p > 1, and m = min{%, é}, M = max{%, %} If we take (23)
and proceed as in the proof of Theorem 2.3, then

/ / Kz, y)lf@)]l9(y)] dxdy</ " K(z, @I

+(y_a)%]_M£m x—a)Ey—a)P

= n—l (// (@ — )P D (2)F ($)|f(")(t)|pdtdx>
</ / q(n 1)wq() (y)g(n)(tﬂthdy)q’

where F(z) and G(y) are defined by (4).

S =

3. The fractional derivatives and applications to Hilbert-Pachpatte type
inequalities

First, we introduce some facts about fractional derivatives (see [3]). Let [a,b],
—00 < a < b < 00, be a finite interval on real axis R. By Ly[a, b], 1 < p < 0o, we denote
the space of all Lebesgue measurable functions f for which | f?| is Lebesgue integrable
on [a,b]. For f € Ly[a,b] the left-sided and right-sided the Riemann-Liouville integral
of f of order «v are defined by

I f) = gy [ @ 0r @, >

b
T8 f(w) = F(la)/ (t—2)* L f(0)dt, @ <b.

For f : [a,b] — R the left-sided the Riemann-Liouville derivative of f of order « is
defined by
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DI (@) = 4 e) = oy e [ (=0

n

Our result with the Riemann-Liouville fractional derivative is based on the following
lemma (see [1]). By AC™[a, b] we denote the space of all functions g € C™~[a, b] with
g™~ € AC[a,b], where AC[a,b] is the space of all absolutely continuous functions
fnctions on [a, b]. For a > 0, [o] denotes the integral part of .

Lemma 3.1. ([1]) Let f > a >0, m = [5]+ 1, n = [a] + 1. The composition identity
1 x
D2 = —t)fme"1pp
a+ (‘T> F(ﬂ o Oé) /0 (:L‘ t) a+f(t)dt? T e [aabL

is valid if one of the following condztzons holds:

(i) f6 S (Lala, b)) = {f : f = J, 0,0 € Lafa, b]}.

(i) J"Pf e AC™a, b) ande+kf()—0fork:1,...,m

(iii) Dﬁ 'f € ACla,b), Df_ff € Cla,b] and Dg;kf(a) =0fork=1,...,m

(iv) f € AC™[a,b], D}, f, DI f € Lifa,b], B—a ¢ N, DJ7"f(a) = 0 for k =
1,...,m andD3+k (@) =0 fork=1,...,n.

(v) f € AC™a,b], DI, f, D& f € Lifa,bl, B—a =1 € N, DI Ff(a) = 0 for
k=1,...,L

(vi) f e AC™[a,b], Dg_,_f7 D2, f € Li[a,b], and f*)(a) =0 for k=0,...,m — 2.

(vii) f € AC™]a,b], Dg+f, Dy, f € Lifa,b], B ¢ N and Dg;lf is bounded in a
neighborhood of m = a.

By using Lemma 2.2 (see also Remark 2.1) and Lemma 3.1 we obtain our first
result with the fractional derivative.

Theorem 3.2. Let o, B3, f, g be defined as in Theorem 3.1. If K : [a,b]?> — R is non-
negative function, p(x), ¥(y) are non-negative functions on [a,b], then the following
inequality holds

/ / K@D A P20y,

(@ —a)i + (y— a)¥] — 372

—m

/N/ (@ 9)ID8 S @) Do,
(@—a)i(y—a)
S — e _ 4\p(B—a=1) p o »
S NCETE ( / / (2 —1) P (x)F (z)| D, f(1)] dtdx)
by !
X (/ / (y—t)q(ﬁ—a_l)wq( YG(y )‘Da+9( )qutdy> ’

where m, M, F(z),G(y) are defined as in Theorem 2.3.

=

Proof. The proof is similar to the proof of Theorem 2.3. O

Let v>0,n=[v],and 7 =v —n, 0 <7 < 1. Let [a,b] C R and xg,z € [a,b] such
that @ > xo where zg is fixed. For f € Cla,b] the generalized Riemann-Liouville
fractional integral of f of order v is given by

nwwﬂ@ﬂwwwawm
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Further, define the subspace C [a, b] of C"[a,b] as
CY la,b] = {f € C"[a,b] : J{°L f™) € CM [z, ]}

For f € CY [a,b] the generalized Canavati v— fractional derivative of f over [xg,b] is
given by

Dy, f = DI,
where D = d/dz. Notice that

(125 ™) (@) =

exists for f € CY [a,b].
To obtain the result with generalized Canavati v—fractional derivative of f we need
the following lemma.

Lemma 3.3. ([3]) Let f € C¥ [a,b], v > 0 and f@(zg) =0, i =0,1,...
n = [v]. Then

R S A
e RCEURIICE]

Zo

1) = 1 [ o= 07 D0

0
for all x € [a,b] with © > xo.

Theorem 3.4. Let v > 0 and zo,yo € [a,b]. Let K : [a,b]*> — R is non-negative
function, ¢(x), ¥(y) are non-negative functions on [a,b]. If f € C} [a,b] and g €
Cy.la,b] such that FD(x0) = gD (o) = 0,4 = 0,1,...,n — 1, n = [v], then the
following inequalities hold

/ab /ab {qx’y)'f(m” \g(y)|l )2(M7m) dxdy

(@ = 20) T + (y - yo) T

/ " K(z,y)|f(a 2w 4, (24)

(x —x0)7(y —yo)?

S TP ( / / ey <m>F<x>|<D;0f><t>|pdtdx>
b ry
</ / <yt>q<"“wq(y)G(y)<D;Ug><t>|thdy> ,

/ e ( / K / <m—t>?<”-1><Dzof><t>|1)dt);dx> dy

/ / 1P VP () F(2)|(Dy, £) (1) Pdtda, (25)

where m = mm{;, E}’ M= max{;, %}, and F(x) and G(y) are defined by (4).

-

—4Mm

3 =

Q=

and

Proof. To prove the inequalities (24) and (25) we follow the same procedure as in the
proof of Theorem 2.3, except we use Lemma 3.3 instead Lemma 2.1. (]

In a similar manner as in the previous section, using the inequality (5) we obtain
a generalization of Theorem 3.4.
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Theorem 3.5. Let v >0 and «;, 1 = 1,...,1, is defined by o; = Hé-:w#pj, where
Zé:lﬁ =1 with p; > 1,1 = 1,...,1. Let K(x1,...,x1), ¢ij, 1,5 = 1,...,1, are

defined as in Theorem 2.8. If f; € C¥, a,b] (xéi) € [a,b]), i = 1,...,1, such that
fi(])(x((f)) =0,7=0,1,...,n— 1, n=[v], then the following inequality holds

/ K@, x) [Toey |filas)] dey ... da,
(a,b)! MONre=D] MM —m)
Sy (i —2d))™

1 K(zy,... ! ;
S (]v[ m)l / (J"17l 7"17[)1_[1,(1;[ |f1(xz)|dx1...dxl
! @b [Ty (i — g )™
i(v—1) 1 pi (e v ) i . "
= JM=m)I[D () m)l N ].__.E </ /(1) t)? b (mZ)Fl(xZ)|(Dméi)f1)(t)‘p dtd$1>
where m = minlgigl{p%}, and M = maxlgigl{i}, and Fy(x;), i=1,...,1 is defined
by (6).

For > 0, f € AC"[a,b], where n = [a] + 1 if & ¢ Ny and n = « if a € Ny,
the Caputo fractional derivative of f of order o “Dg, f (left-sided) and “Dj* f (right-
sided) are defined by

¢ o o "Z*l F®)(a)

D f( ) Da+ [f(x)kor(k+1) xa)k],
e fin o ) ,
Dbff(x)_Dbf [f(x)_kzo F(k+1)(b_$)k] 5

where D¢ ', Dy denote the left-hand sided and the right-hand sided Riemann-

Liouville derivatives.
Very recently, Andrié et al [2] proved the following result.

Theorem 3.6. Letv >~y >0,n=[v]+1, m=[y]+1 and f € AC¥[a,b], k = n if
v&Ngand k=n—1ifveNg. Let °DY,f, °D]_f € L[a,b]. Suppose that one of
the following conditions holds:

(a) v,y ¢ Ny and fD(a) =0 fori=m,...,n—1.
) veN, vy ¢ Ny and fD(a) =0 fori=m,...,n—2.
(c) v¢N,yeNg and fD(a)=0 fori=m—1,...,n— 1.
(d) veEN,yeNy and fD(a) =0 fori=m—1,...,n—2.
Then
1 x
DY@ = e [ =0 DL s

Applying Lemma 2.2(i) and Theorem 3.6 (see also [2]) we obtain the following
result.

Theorem 3.7. Let v,v, f,g be defined as in Theorem 3.6. If K : [a,b]> — R is non-
negative function, (x), ¥(y) are non-negative functions on [a,b], then the following
inequality holds
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bt K@) D@ Daew)|
1 1 2(M—m) ray
a Ja ((:c—a)m—i-(y—a)m)

y)|°Doy f(x )||“D7 ()|
< dzdy
74Mm// x—:co) (y — yo)7

/ / P b (@) F (@) DY S (1) Pdida

=

4M7m[]_"

// D) g3 () Gy DLy o) iy |

where m, M, F(z),G(y) are defined as in Theorem 2.3.
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