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Existence of solution for Liouville-Weyl Fractional
Hamiltonian systems

César E. Torres Ledesma

Abstract. In this paper, we investigate the existence of solution for the following fractional

Hamiltonian systems:

tD
α
∞(−∞D

α
t u(t)) + L(t)u(t) = ∇W (t, u(t)) (1)

u ∈ Hα(R,RN ).

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2
) is a symmetric and positive definite matrix

for all t ∈ R, W ∈ C1(R × Rn,R) and ∇W is the gradient of W at u. The novelty of this

paper is that, assuming there exists l ∈ C(R,R) such that (L(t)u, u) ≥ l(t)|u|2 for all t ∈ R,
u ∈ Rn and the following conditions on l: inft∈R l(t) > 0 and there exists r0 > 0 such that,

for any M > 0
m({t ∈ (y − r0, y + r0)/ l(t) ≤M})→ 0 as |y| → ∞.

are satisfied and W is superquadratic growth as |u| → +∞, we show that (1) possesses at

least one nontrivial solution via mountain pass theorem. Recent results in [21] are significantly

improved. We do not assume that l(t) have a limit for |t| → ∞.
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1. Introduction

Fractional differential equations appear naturally in a number of fields such as
physics, chemistry, biology, economics, control theory, signal and image processing,
and blood flow phenomena. During last decades, the theory of fractional differen-
tial equations is an area intensively developed, due mainly to the fact that fractional
derivatives provide an excellent tool for the description of memory and hereditary
properties of various materials and processes, see for example [1, 6, 7, 12, 13, 15, 18,
26]. Therein, the composition of fractional differential operators has got much atten-
tion from many scientists, mainly due to its wide applications in modeling physical
phenomena exhibiting anomalous diffusion. Specifically, the models involving a frac-
tional differential oscillator equation, which contains a composition of left and right
fractional derivatives, are proposed for the description of the processes of emptying
the silo [10] and the heat flow through a bulkhead filled with granular material [20],
respectively. Their studies show that the proposed models based on fractional calculus
are efficient and describe well the processes.

In the aspect of theory, the study of fractional differential equations including both
left and right fractional derivatives has attracted much attention by using fixed point
theory and variational methods [2, 3, 8, 21, 22, 23, 24, 25, 27, 28] and their references.
We note that, it is not easy to use the critical point theory to study the fractional
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differential equations including both left and right fractional derivatives, since it is
often very difficult to establish a suitable space and a variational functional for the
fractional boundary value problem.

Very recently in [21] the author considered the following fractional Hamiltonian
systems

tD
α
∞(−∞D

α
t u(t)) + L(t)u(t) = ∇W (t, u(t)) (2)

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2

) is a symmetric matrix valued
function for all t ∈ R, W ∈ C1(R × Rn,R) and ∇W (t, u(t)) is the gradient of W at
u. Assuming that L and W satisfy the following hypotheses:
(L) L(t) is positive definite symmetric matrix for all t ∈ R, and there exists an

l ∈ C(R, (0,∞)) such that l(t)→ +∞ as t→∞ and

(L(t)x, x) ≥ l(t)|x|2, for all t ∈ R and x ∈ Rn. (3)

(W1) W ∈ C1(R× Rn,R), and there is a constant µ > 2 such that

0 < µW (t, x) ≤ (x,∇W (t, x)), for all t ∈ R and x ∈ Rn \ {0}.

(W2) |∇W (t, x)| = o(|x|) as x→ 0 uniformly with respect to t ∈ R.
(W3) There exists W ∈ C(Rn,R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W (x)| for every x ∈ Rn and t ∈ R.

It showed that (2) has at least one nontrivial solution via Mountain pass Theorem.
In particular, if α = 1, (2) reduces to the standard second order differential equation

u′′ − L(t)u+∇W (t, u) = 0, (4)

where W : R×Rn → R is a given function and∇W (t, u) is the gradient of W at u. The
existence of homoclinic solution is one of the most important problems in the history
of that kind of equations, and has been studied intensively by many mathematicians.
Assuming that L(t) and W (t, u) are independent of t, or T -periodic in t, many authors
have studied the existence of homoclinic solutions for (4) via critical point theory and
variational methods. In this case, the existence of homoclinic solution can be obtained
by going to the limit of periodic solutions of approximating problems.

If L(t) and W (t, u) are neither autonomous nor periodic in t, this problem is quite
different from the ones just described, because the lack of compacteness of the Sobolev
embedding. In [16] the authors considered (4) without periodicity assumptions on L
and W and showed that (4) possesses one homoclinic solution by using a variant of the
mountain pass theorem without the Palais-Smale contidion. In [14], under the same
assumptions of [16], the authors, by employing a new compact embedding theorem,
obtained the existence of homoclinic solution of (4).

Motivated by this previous result, in this paper we consider the existence of non-
trivial solution to (2) under some weaker condition than (L). More precisely we
consider

(Lw) L(t) is positive definite symmetric matrix for all t ∈ R, and there exists an
l ∈ C(R,R) such that
(L1

w) inft∈R l(t) > 0,
(L2

w) There exists r0 > 0 such that, for any M > 0

m({t ∈ (y − r0, y + r0)/ l(t) ≤M})→ 0 as |y| → ∞.

and

(L(t)x, x) ≥ l(t)|x|2, for all t ∈ R and x ∈ Rn. (5)



320 C. TORRES

We note that, mountain pass theorem can be used to get existence results for (2).
However, the direct application of the mountain pass theorem is not enough since the
Palais-Smale sequences might lose compactness in the whole space R. Therefore the
main difficulty of this paper is to show that the Palais-Smale condition holds. Before
stating our results let us introduce the main ingredients involved in our approach. We
define the space

Xα =

{
u ∈ Hα(R,Rn)|

∫
R

[
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
]
dt <∞

}
,

with the inner product

〈u, v〉Xα =

∫
R

[(−∞D
α
t u(t), −∞D

α
t v(t)) + (L(t)u(t), v(t))] dt

and the corresponding norm

‖u‖2Xα = 〈u, u〉Xα .
Now we say that u ∈ Xα is a weak solution of (2) if∫ ∞

−∞
[(−∞D

α
t u(t),−∞D

α
t v(t)) + (L(t)u(t), v(t))]dt =

∫ ∞
−∞

(∇W (t, u(t)), v(t))dt,

for all v ∈ Xα. For u ∈ Xα we may define the functional

I(u) =
1

2

∫ ∞
−∞

[|−∞Dα
t u(t)|2 + (L(t)u(t), u(t))]dt−

∫ ∞
−∞

W (t, u(t))dt. (6)

which is of class C1. We say that u ∈ Xα is a weak solution of (2) if u is a critical
point of I.

Up until now, we can state our main result.

Theorem 1.1. Suppose that (Lw), (W1)− (W3) are satisfied. Then, (2) possesses at
least one nontrivial solution.

Remark 1.1. In [21], assuming (L) holds, the author introduced some compact
embedding Lemma, (see its Lemma 2.2.) In the present paper, we weaken (L) to
(Lw) and we get a new compact embedding Lemma (see Lemma 2.2 below), using
this new compact embedding lemma we can verify the Palais-Smale condition.

The rest of the paper is organized as follows: In section §2, we describe the
Liouville-Weyl fractional calculus and we introduce the fractional space that we use
in our work and some proposition are proven which will aid in our analysis. In section
§3, we prove Theorem 1.1.

2. Preliminary Results

2.1. Liouville-Weyl Fractional Calculus. In this section we introduce some basic
definitions of fractional calculus which are used further in this paper. For more details
we refer the reader to [6].

The Liouville-Weyl fractional integrals of order 0 < α < 1 are defined as

−∞I
α
x u(x) =

1

Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ (7)

xI
α
∞u(x) =

1

Γ(α)

∫ ∞
x

(ξ − x)α−1u(ξ)dξ (8)
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The Liouville-Weyl fractional derivative of order 0 < α < 1 are defined as the left-
inverse operators of the corresponding Liouville-Weyl fractional integrals

−∞D
α
xu(x) =

d

dx
−∞I

1−α
x u(x) (9)

xD
α
∞u(x) = − d

dx
xI

1−α
∞ u(x) (10)

The definitions (9) and (10) may be written in an alternative form:

−∞D
α
xu(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x− ξ)
ξα+1

dξ (11)

xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x+ ξ)

ξα+1
dξ (12)

We establish the Fourier transform properties of the fractional integral and fractional
differential operators. Recall that the Fourier transform û(w) of u(x) is defined by

û(w) =

∫ ∞
−∞

e−ix.wu(x)dx.

Let u(x) be defined on (−∞,∞). Then the Fourier transform of the Liouville-Weyl
integral and differential operator satisfies

̂−∞Iαx u(x)(w) = (iw)−αû(w), ̂
xIα∞u(x)(w) = (−iw)−αû(w) (13)

̂−∞Dα
xu(x)(w) = (iw)αû(w), ̂

xDα
∞u(x)(w) = (−iw)αû(w) (14)

2.2. Fractional Derivative Spaces. In this section we introduce some fractional
spaces for more detail see [4].
Let α > 0. Define the semi-norm

|u|Iα−∞ = ‖−∞Dα
xu‖L2

and norm

‖u‖Iα−∞ =
(
‖u‖2L2 + |u|2Iα−∞

)1/2

, (15)

and

Iα−∞(R,Rn) = C∞0 (R)
‖.‖Iα−∞ .

Now we define the fractional Sobolev space Hα(R,Rn) in terms of the fourier trans-
form. For 0 < α < 1, let the semi-norm

|u|α = ‖|w|αû‖L2 (16)

and norm

‖u‖α =
(
‖u‖2L2 + |u|2α

)1/2
,

and

Hα(R,Rn) = C∞0 (R,Rn)
‖.‖α

.

We note a function u ∈ L2(R,Rn) belong to Iα−∞(R,Rn) if and only if

|w|αû ∈ L2(R,Rn). (17)

Especially
|u|Iα−∞ = ‖|w|αû‖L2 . (18)

Therefore Iα−∞(R,Rn) and Hα(R,Rn) are equivalent with equivalent semi-norm and
norm. Analogous to Iα−∞(R,Rn) we introduce Iα∞(R,Rn). Let the semi-norm

|u|Iα∞ = ‖xDα
∞u‖L2
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and norm

‖u‖Iα∞ =
(
‖u‖2L2 + |u|2Iα∞

)1/2

, (19)

and

Iα∞(R,Rn) = C∞0 (R,Rn)
‖.‖Iα∞ .

Moreover Iα−∞(R,Rn) and Iα∞(R,Rn) are equivalent, with equivalent semi-norm and
norm [4]. We recall the Sobolev Lemma.

Theorem 2.1. [21] If α > 1
2 , then Hα(R,Rn) ⊂ C(R,Rn) and there is a constant

C = Cα such that

sup
x∈R
|u(x)| ≤ C‖u‖α (20)

Remark 2.1. From Theorem 2.1, we now that if u ∈ Hα(R,Rn) with 1/2 < α < 1,
then u ∈ Lq(R) for all q ∈ [2,∞), because∫

R
|u(x)|qdx ≤ ‖u‖q−2

∞ ‖u‖2L2 .

In what follows, we introduce the fractional space in which we will construct the
variational framework of (2). Let

Xα =

{
u ∈ Hα(R,Rn)|

∫
R

[
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
]
dt <∞

}
,

then Xα is a reflexive and separable Hilbert space with the inner product

〈u, v〉Xα =

∫
R

[(−∞D
α
t u(t), −∞D

α
t v(t)) + (L(t)u(t), v(t))] dt

and the corresponding norm

‖u‖2Xα = 〈u, u〉Xα .

Similar to Lemma 2.1 in [21], we have the following conclusion.

Lemma 2.2. Suppose L satisfies (Lw). Then Xα is continuously embedded in Hα(R,Rn).

Proof. Let lmin = inft∈R l(t) > 0, so we have

(L(t)u(t), u(t)) ≥ l(t)|u(t)|2 ≥ lmin|u(t)|2, ∀t ∈ R.

Then

lmin‖u‖2α = lmin

(∫
R
|−∞Dα

t u(t)|2 + |u(t)|2dt
)

≤ lmin

∫
R
|−∞Dα

t u(t)|2dt+

∫
R

(L(t)u(t), u(t))dt.

So

‖u‖2α ≤ K‖u‖2Xα , (21)

where K = max{lmin,1}
lmin

. �

Lemma 2.3. Suppose L satisfies (Lw). Then the imbedding of Xα in L2(R,Rn) is
compact.
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Proof. We note first that by Lemma 2.2 and Remark 2.1 we have

Xα ↪→ L2(R,Rn) is continuous.

Now, let (uk) ∈ Xα be a sequence such that uk ⇀ u in Xα. We will show that
uk → u in L2(R,Rn). Suppose, without loss of generality, that uk ⇀ 0 in Xα. The
Banach-Steinhaus theorem implies that

A = sup
k
‖uk‖Xα < +∞.

For any y ∈ R, ∀M > 0 set

IM (y) = {t ∈ (y − r, y + r)/ l(t) ≤M},
IM (y) = {t ∈ (y − r, y + r)/ l(t) > M}.

Choose {yi} ⊂ R such that R ⊂ ∪∞i=1(yi − r, yi + r) and each t ∈ R is covered by at
most 2 such intervals. Then, for any M > 0 and R > 2r, we have∫

(−R,R)c
|uk(t)|2dt ≤

∞∑
|yi|≥R−r

∫
(yi−r,yi+r)

|uk(t)|2dt

≤
∞∑

|yi|≥R−r

[∫
(yi−r,yi+r)∩IM (yi)

|uk(t)|2dt+

∫
(yi−r,yi+r)∩IM (yi)

|uk(t)|2dt

]

≤
∞∑

|yi|≥R−r

[∫
IM (yi)

|uk(t)|2dt+
1

M

∫
(yi−r,yi+r)

l(t)|uk(t)|2dt

]

≤
∞∑

|yi|≥R−r

[
( sup
(yi−r,yi+r)

|uk(t)|)2m(IM (yi)) +
1

M

∫
(yi−r,yi+r)

l(t)|uk(t)|2dt

]

≤
∞∑

|yi|≥R−r

[
Cm(IM (yi))‖uk‖2Xα(yi−r,yi+r) +

1

M

∫
(yi−r,yi+r)

l(t)|uk(t)|2dt

]

≤ 2‖uk‖2Xα

[
C sup
|y|≥R−r

(m(IM (y))) +
1

M

]

≤ 2A2

[
C sup
|y|≥R−r

(m(IM (y))) +
1

M

]
.

For any ε > 0, taking M and R large enough, we can obtain that∫
(−R,R)c

|uk(t)|2dt ≤ ε

2
.

By Sobolev Theorem, uk → 0 uniformly on [−R,R]. Then, for such R > 0, there
exists k0 > 0 such that ∫

[−R,R]

|uk(t)|2dt ≤ ε

2
, for all k ≥ k0.

Hence, by the arbitrary of ε we can obtain that uk → 0 in L2(R,Rn). �

Lemma 2.4. [21] There are constants c1 > 0 and c2 > 0 such that

W (t, u) ≥ c1|u|µ, |u| ≥ 1 (22)

and
W (t, u) ≤ c2|u|µ, |u| ≤ 1. (23)
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Remark 2.2. By Lemma 2.4, we have

W (t, u) = o(|u|2) as u→ 0 uniformly in t ∈ R. (24)

In addition, by (W2), we have, for any u ∈ Rn such that |u| ≤M1, there exists some
constant d > 0 (dependent on M1) such that

|∇W (t, u(t))| ≤ d|u(t)|. (25)

Similar to Lemma 2.4 of [21], we can get the following result.

Lemma 2.5. Suppose that (Lw), (W1)-(W2) are satisfied. If uk ⇀ u in Xα, then
∇W (t, uk)→ ∇W (t, u) in L2(R,Rn).

Proof. Assume that uk ⇀ u in Xα. Then there exists a constant d1 > 0 such that,
by Banach-Steinhaus Theorem and (20),

sup
k∈N
‖uk‖∞ ≤ d1, ‖u‖∞ ≤ d1.

By (W2), for any ε > 0 there is δ > 0 such that

|uk| < δ implies |∇W (t, uk)| ≤ ε|uk|
and by (W3) there is M > 0 such that

|∇W (t, uk)| ≤M, for all δ < uk ≤ d1.

Therefore, there exists a constant d2 > 0 (dependent on d1) such that

|∇W (t, uk(t))| ≤ d2|uk(t)|, |∇W (t, u(t))| ≤ d2|u(t)|
for all k ∈ N and t ∈ R. Hence,

|∇W (t, uk(t))−∇W (t, u(t))| ≤ d2(|uk(t)|+ |u(t)|) ≤ d2(|uk(t)− u(t)|+ 2|u(t)|),
Since, by Lemma 2.3, uk → u in L2(R,Rn), passing to a subsequence if necessary, it
can be assumed that

∞∑
k=1

‖uk − u‖L2 <∞.

But this implies uk(t)→ u(t) almost every where t ∈ R and
∞∑
k=1

|uk(t)− u(t)| = v(t) ∈ L2(R,Rn).

Therefore
|∇W (t, uk(t))−∇W (t, u(t))| ≤ d2(v(t) + 2|u(t)|).

Then, using the Lebesgue’s convergence theorem, the Lemma is proved. �

Now we introduce more notations and some necessary definitions. Let B be a
real Banach space, I ∈ C1(B,R), which means that I is a continuously Fréchet
differentiable functional defined on B. Recall that I ∈ C1(B,R) is said to satisfy the
(PS) condition if any sequence {uk}k∈N ∈ B, for which {I(uk)}k∈N is bounded and
I ′(uk)→ 0 as k → +∞, possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0 and
∂Br denote its boundary. We obtain the existence of weak solutions of (2) by use of
the following well-known Mountain Pass Theorems, see [17].

Theorem 2.6. Let B be a real Banach space and I ∈ C1(B,R) satisfying (PS)
condition. Suppose that I(0) = 0 and

i. There are constants ρ, β > 0 such that I|∂Bρ ≥ β, and
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ii. There is and e ∈ B \Bρ such that I(e) ≤ 0.
Then I possesses a critical value c ≥ β. Moreover c can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s))

where

Γ = {γ ∈ C([0, 1],B) : γ(0) = 0, γ(1) = e}.

3. Proof of Theorem 1.1

Now we are in position to proof Theorem 1.1. Although its proof is just the
repetition of the process of Theorem 1.1 in [21], for the reader’s convenience, we give
the details.

Define the functional I : Xα → R by

I(u) =

∫
R

[
1

2
|−∞Dα

t u(t)|2 +
1

2
(L(t)u(t), u(t))−W (t, u(t))

]
dt

=
1

2
‖u‖2Xα −

∫
R
W (t, u(t))dt. (26)

Lemma 3.1. Under the conditions of Theorem 1.1, we have

I ′(u)v =

∫
R

[(−∞D
α
t u(t),−∞Dα

t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))] dt

(27)
for all u, v ∈ Xα, which yields that

I ′(u)u = ‖u‖2Xα −
∫
R

(∇W (t, u(t)), u(t))dt. (28)

Moreover, I is a continuously Fréchet differentiable functional defined on Xα, i.e.,
I ∈ C1(Xα,R).

Proof. We firstly show that I : Xα → R. By (24), there is a δ > 0 such that |u| ≤ δ
implies that

W (t, u) ≤ ε|u|2 for all t ∈ R. (29)

Let u ∈ Xα, then u ∈ C(R,Rn), the space of continuous function u ∈ R such that
u(t)→ 0 as |t| → +∞. Therefore there is a constant R > 0 such that |t| ≥ R implies
|u(t)| ≤ δ. Hence, by (29), we have∫

R
W (t, u(t)) ≤

∫ R

−R
W (t, u(t))dt+ ε

∫
|t|≥R

|u(t)|2dt < +∞. (30)

Combining (26) and (30), we show that I : Xα → R.
Now we prove that I ∈ C1(Xα,R). Rewrite I as follows

I = I1 − I2,

where

I1 =
1

2

∫
R

[|−∞Dα
t u(t)|2 + (L(t)u(t), u(t))]dt, I2 =

∫
R
W (t, u(t))dt.

It is easy to check that I1 ∈ C1(Xα,R) and

I ′1(u)v =

∫
R

[(−∞D
α
t u(t),−∞Dα

t v(t)) + (L(t)u(t), v(t))] dt. (31)
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Thus it is sufficient to show this is the case for I2. In the process we will see that

I ′2(u)v =

∫
R

(∇W (t, u(t)), v(t))dt, (32)

which is defined for all u, v ∈ Xα. For any given u ∈ Xα, let us define J(u) : Xα → R
as follows

J(u)v =

∫
R
(∇W (t, u(t)), v(t))dt, ∀v ∈ Xα.

It is obvious that J(u) is linear. Now we show that J(u) is bounded. Indeed, for any
given u ∈ Xα, by (25), there is a constant d3 > 0 such that

|∇W (t, u(t))| ≤ d3|u(t)|,

which yields that, by the Hölder inequality and Lemma 2.2

|J(u)v| =

∣∣∣∣∫
R

(∇W (t, u(t)), v(t))dt

∣∣∣∣ ≤ d3

∫
R
|u(t)||v(t)|dt

≤ d3

lmin
‖u‖Xα‖v‖Xα . (33)

Moreover, for u and v ∈ Xα, by Mean Value theorem, we have∫
R
W (t, u(t) + v(t))dt−

∫
R
W (t, u(t))dt =

∫
R

(∇W (t, u(t) + h(t)v(t)))dt,

where h(t) ∈ (0, 1). Therefore, by Lemma 2.3 and the Hölder inequality, we have∫
R
(∇W (t, u(t) + h(t)v(t)), v(t))dt−

∫
R

(∇W (t, u(t)), v(t))dt

=

∫
R

(∇W (t, u(t)) + h(t)v(t)−∇W (t, u(t)), v(t))dt→ 0 (34)

as v → 0 in Xα. Combining (33) and (34), we see that (32) holds. It remains to
prove that I ′2 is continuous. Suppose that u→ u0 in Xα and note that

sup
‖v‖Xα=1

|I ′2(u)v − I ′2(u0)v| = sup
‖v‖Xα=1

∣∣∣∣∫
R

(∇W (t, u(t))−∇W (t, u0(t)), v(t))dt

∣∣∣∣
≤ sup

‖v‖Xα=1

‖∇W (., u(.))−∇W (., u0(.))‖L2‖v‖L2

≤ 1√
lmin

‖∇W (., u(.))−∇W (., u0(.))‖L2

By Lemma 2.3, we obtain that I ′2(u)v − I ′2(u0)v → 0 as ‖u‖Xα → ‖u0‖Xα uniformly
with respect to v, which implies the continuity of I ′2 and I ∈ C1(Xα,R). �

Lemma 3.2. Suppose that (Lw), (W1) − (W2) are satisfied. I satisfies the (PS)
condition.

Proof. Assume that (uk)k∈N ∈ Xα is a sequence such that {I(uk)}k∈N is bounded
and I ′(uk)→ 0 as k → +∞. Then there exists a constant C1 > 0 such that

|I(uk)| ≤ C1, ‖I ′(uk)‖(Xα)∗ ≤ C1 (35)

for every k ∈ N.



FHS 327

We firstly prove that {uk}k∈N is bounded in Xα. By (26), (28) and (W1), we have

C1 + ‖uk‖Xα ≥ I(uk)− 1

µ
I ′(uk)uk

=

(
1

2
− 1

µ

)
‖uk‖2Xα −

∫
R
[W (t, uk(t))− 1

µ
(∇W (t, uk(t)), uk(t))]dt

≥
(

1

2
− 1

µ

)
‖uk‖2Xα . (36)

Since µ > 2, the inequality (36) shows that {uk}k∈N is bounded in Xα. So passing
to a subsequence if necessary, it can be assumed that uk ⇀ u in Xα and hence, by
Lemma 2.3, uk → u in L2(R,Rn). It follows from the definition of I that

(I ′(uk)− I ′(u))(uk − u)

= ‖uk − u‖2Xα −
∫
R

[∇W (t, uk)−∇W (t, u)](uk − u)dt. (37)

Since uk → u in L2(R,Rn), we have (see Lemma 2.5) ∇W (t, uk(t))→ ∇W (t, u(t)) in
L2(R,Rn). Hence∫

R
(∇W (t, uk(t))−∇W (t, u(t)), uk(t)− u(t))dt→ 0

as k → +∞. So (37) implies

‖uk − u‖Xα → 0 as k → +∞.

�

Now we are in the position to give the proof of theorem 1.1. We divide the proof into
several steps.

Proof. Step 1. It is clear that I(0) = 0 and I ∈ C1(Xα,R) satisfies the (PS) condition
by lemma 3.1 and 3.2.
Step 2. We show that there exist constant ρ > 0 and β > 0 such that I satisfies the
condition (i) of Theorem 2.6. By Lemma 2.3, there is a C0 > 0 such that

‖u‖L2 ≤ C0‖u‖Xα .

On the other hand by Theorem 2.1, there is Cα > 0 such that

‖u‖∞ ≤ Cα‖u‖Xα .

By (24), for all ε > 0, there exists δ > 0 such that

W (t, u(t)) ≤ ε|u(t)|2 wherever |u(t)| < δ.

Let ρ = δ
Cα

and ‖u‖Xα ≤ ρ; we have ‖u‖∞ ≤ δ
Cα
.Cα = δ. Hence

|W (t, u(t))| ≤ ε|u(t)|2 for all t ∈ R.

Integrating on R, we get∫
R
W (t, u(t))dt ≤ ε‖u‖2L2 ≤ εC2

0‖u‖2Xα

So, if ‖u‖Xα = ρ, then

I(u) =
1

2
‖u‖2Xα −

∫
R
W (t, u(t))dt ≥ (

1

2
− εC2

0 )‖u‖2Xα = (
1

2
− εC2

0 )ρ2.
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And it suffices to choose ε = 1
4C2

0
to get

I(u) ≥ ρ2

4C2
0

= β > 0. (38)

Step 3. It remains to prove that there exists an e ∈ Xα such that ‖e‖Xα > ρ and
I(e) ≤ 0, where ρ is defined in Step 2. Consider

I(σu) =
σ2

2
‖u‖2Xα −

∫
R
W (t, σu(t))dt

for all σ ∈ R. By (22), there is c1 > 0 such that

W (t, u(t)) ≥ c1|u(t)|µ for all |u(t)| ≥ 1. (39)

Take some u ∈ Xα such that ‖u‖Xα = 1. Then there exists a subset Ω of positive
measure of R such that u(t) 6= 0 for t ∈ Ω. Take σ > 0 such that σ|u(t)| ≥ 1 for
t ∈ Ω. Then by (39), we obtain

I(σu) ≤ σ2

2
− c1σµ

∫
Ω

|u(t)|µdt. (40)

Since c1 > 0 and µ > 2, (40) implies that I(σu) < 0 for some σ > 0 with σ|u(t)| ≥ 1
for t ∈ Ω and ‖σu‖Xα > ρ, where ρ is defined in Step 2. By Theorem 2.6, I possesses
a critical value c ≥ β > 0 given by

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s))

where

Γ = {γ ∈ C([0, 1], Xα) : γ(0) = 0, γ(1) = e}.
Hence there is u ∈ Xα such that

I(u) = c, I ′(u) = 0.

�
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