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Multiple positive periodic solutions for a delayed
predator-prey system with Beddington-DeAngelis functional
response and harvesting terms
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Abstract. In this paper, a delayed predator-prey system with Beddington-DeAngelis func-

tional response and harvesting terms is studied. By using Mawhin’s continuation theorem, the
sufficient conditions are established for the existence of at least four positive periodic solutions.

Finally, an example is presented to illustrate the effectiveness of the results.
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1. Introduction

In the past decades, various mathematical models with delays have been proposed
in the study of population dynamics([1-20]). Among these models, predator-prey sys-
tems play an important role in population theory. One of the most popular predator-
prey models is the one with a Beddington-DeAngelis functional response which was
originally proposed by Beddington [1] and DeAngelis et al. [2], independently. The
dynamics of this model is described by differential equations in the form

ẋ = rx(t)
(

1− x(t)
K

)
− bx(t)y(t)

1+nx(t)+my(t) ,

ẏ = y(t)
(
−d+ fbx(t)

1+nx(t)+my(t)

)
.

Recently, predator-prey systems with a Beddington-DeAngelis functional response
were widely investigated ([3,4,10,12,14,15,17]). For example, in [3], the authors stud-
ied the following nonautonomous delayed predator-prey model with the Beddington-
DeAngelis functional response

ẋ = x(t)[a(t)− b(t)x(t− τ(t, x(t), y(t))]− c(t)x(t)y(t)
1+nx(t)+my(t) ,

ẏ = y(t)
[

f(t)x(t−σ(t,x(t),y(t)))
1+nx(t−σ(t,x(t),y(t)))+my(t−σ(t,x(t),y(t))) − d(t)

]
.

In addition, since the exploitation of biological resources and the harvest of popula-
tion species are commonly practiced in fishery, forestry, and wildlife management, the
study of population dynamics with harvesting is an important subject in mathematical
bioeconomics (see [5-7,11,13,16,18-20], for example). This motivates us to consider the
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following nonautonomous delayed predatory-prey system with Beddington-DeAngelis
functional response and harvesting terms:

ẋ(t) = a(t)x(t)
(

1− x(t)
K

)
− b(t)x(t)y(t)

f(t)+m(t)x(t)+n(t)y(t) − h1(t),

ẏ(t) = y(t)(c(t)− d(t)y(t))− r(t)x(t−τ(t))y(t)
f(t)+m(t)x(t−τ(t))+n(t)y(t−τ(t)) − h2(t),

(1)

where x(t) and y(t) denote prey and predator population, respectively, a(t), b(t),
c(t), d(t), f(t), m(t), n(t), hi(t) (i = 1, 2), τ(t) are all positive continuous ω-periodic
functions, K is a positive constant. Here a(t), c(t) represent the intrinsic growth
rate and K the carrying capacity of the prey, d(t) is the death rate of the predator,
m(t), n(t) is the conversion factor denoting the number of newly born predators for
each captured prey. hi(t), i = 1, 2 is the i-th species harvesting terms standing for
the harvests, τ(t) is the state dependent delay.

The rest of the paper is arranged as follows. In Section 2, we present Mawhin’s
continuation theorem and establish existence of four positive periodic solutions. In
section 3, we give an example to illustrate the effectiveness of the results.

2. Existence of four positive periodic solutions

In this section, by using Mawhin’s continuation theorem, we shall show the exis-
tence of positive periodic solutions of (1). To do so, we need to make some prepara-
tions.

Let X and Z be real normed vector spaces. Let L : DomL ⊂ X → Z be a linear
mapping and N : X × [0, 1]→ Z be a continuous mapping.

The mapping L will be called a Fredholm mapping of index zero if dimKer L =
codim ImL <∞ and ImL is closed in Z.

If L is a Fredholm mapping of index zero, then there exist two continuous projectors
P : X → X and Q : Z → Z such that ImP = Ker L and KerQ = ImL = Im (I −
Q), and X = Ker L⊕Ker P and Z = ImL⊕ ImQ. It follows that L|DomL∩KerP :
(I − P )X → ImL is invertible and its inverse is denoted by KP .

Set Ω is a bounded open subset of X, if QN Ω̄× [0, 1] is bounded and KP (I−Q)N :
Ω̄× [0, 1]→ X is compact, then the mapping N is called L-compact on Ω̄× [0, 1].

Because ImQ is isomorphic to Ker L, there exists an isomorphism J : ImQ →
Ker L.

The Mawhin’s continuous theorem [8, p. 40] is given as follows.

Lemma 2.1. ([8]) Let L be a Fredholm mapping of index zero and let N be L-compact
on Ω̄× [0, 1]. Assume
(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ) is such that x 6∈ ∂Ω∩DomL;
(b) QN(x, 0) 6= 0 for each x ∈ ∂Ω ∩ kerL;
(c) deg(JQN(x, 0),Ω ∩ kerL, 0) 6= 0.
Then, Lx = N(x, 1) has at least one solution in Ω ∩DomL.

Lemma 2.2. Let x > 0, y > 0, z > 0 and x > 2
√
yz. For the functions f(x, y, z) =

x−
√
x2−4yz
2y and g(x, y, z) =

x+
√
x2−4yz
2y , the following assertions hold.

(i) f(x, y, z) is monotonically decreasing on the variable x ∈ (0,∞), monotonically
increasing on the variable y ∈ (0,∞), monotonically increasing on the variable z ∈
(0,∞), respectively.
(ii) g(x, y, z) is monotonically increasing on the variable x ∈ (0,∞), monotonically
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decreasing on the variable y ∈ (0,∞), monotonically decreasing on the variable z ∈
(0,∞), respectively.

Proof. By the relationship of the derivative and the monotonicity, the above assertions
are easily proved, and we omit them. �

For the sake of convenience, we denote

f l = min
t∈[0,ω]

f(t), fM = max
t∈[0,ω]

f(t), f̄ =
1

ω

∫ ω

0

f(t)dt,

here f(t) is a continuous ω-periodic function.
Throughout this paper, we need the following assumptions.

(A1) al > 2

√
aM

K

(
hM1 +

bMH1

ml

)
, and aM > 2

√
alhl1
K

,

(A2) cl >
rM l+1

f l1 +mll−1
+ 2
√
dMhM2 .

Our main result is stated as follows.

Theorem 2.3. Assume that (A1) and (A2) hold. Then, system (1) has at least four
positive ω-periodic solutions.

Proof. By making the substitution x(t) = exp{u1(t)}, y(t) = exp{u2(t)}, system
(1) can be reformulated as

u̇1(t) = a(t)
(

1− eu1(t)

K

)
− b(t)eu2(t)

f(t)+m(t)eu1(t)+n(t)eu2(t) − h1(t)e−u1(t),

u̇2(t) = c(t)− d(t)eu2(t) − r(t)eu1(t−τ(t))

f(t)+m(t)eu1(t−τ(t))+n(t)eu2(t−τ(t)) − h2(t)e−u2(t).

(2)

Let

X = Z = {u = (u1, u2)T ∈ C(R,R2) : u(t+ ω) = u(t)},
and define

‖ u ‖=
2∑
i=1

max
t∈[0,ω]

|ui(t)|, u ∈ X or Z.

Equipped with the above norm ‖ · ‖, X and Z are Banach spaces. For u ∈ X, let

N(u, λ) =

 a(t)(1− eu1(t)

K )− λ b(t)eu2(t)

f(t)+m(t)eu1(t)+n(t)eu2(t) − h1(t)e−u1(t)

c(t)− d(t)eu2(t) − λ r(t)eu1(t−τ(t))

f(t)+m(t)eu1(t−τ(t))+n(t)eu2(t−τ(t)) − h2(t)e−u2(t)

 ,

Lu = u̇ =
du(t)

dt
.

We put

Pu =
1

ω

∫ ω

0

u(t)dt, u ∈ X; Qz =
1

ω

∫ ω

0

z(t)dt, z ∈ Z.

Thus, it follows that Ker L = R2, ImL = {z ∈ Z :
∫ ω
0
z(t)dt = 0} is closed in

Z, dimKer L = 2 = codim ImL, and P, Q are continuous projectors such that

ImP = Ker L, KerQ = ImL = Im (I −Q).
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Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) KP : ImL→ Ker P ∩DomL is given by

KP (z) =

∫ t

0

z(s)ds− 1

ω

∫ ω

0

∫ t

0

z(s)dsdt.

Then

QN(u, λ) =

 1
ω

∫ ω
0
F1(s, λ)ds

1
ω

∫ ω
0
F2(s, λ)ds


and

KP (I−Q)N(u, λ) =

 ∫ t0 F1(s, λ)ds− 1
ω

∫ ω
0

∫ t
0
F1(s, λ)dsdt+ ( 1

2 −
t
ω )
∫ ω
0
F1(s, λ)ds∫ t

0
F2(s, λ)ds− 1

ω

∫ ω
0

∫ t
0
F2(s, λ)dsdt+ ( 1

2 −
t
ω )
∫ ω
0
F2(s, λ)ds

,
where

F1(s, λ) = a(s)(1− eu1(s)

K )− λ b(s)eu2(s)

f(s)+m(s)eu1(s)+n(s)eu2(s) − h1(s)e−u1(s),

F2(s, λ) = c(s)− d(s)eu2(s) − λ r(s)eu1(s−τ(s))

f(s)+m(s)eu1(s−τ(s))+n(s)eu2(s−τ(s))) − h2(s)e−u2(s).

Obviously, QN and KP (I−Q)N are continuous and, moreover, QN(Ω×[0, 1]),KP (I−
Q)N(Ω× [0, 1]) are relatively compact for any open bounded set Ω ⊂ X by using the
Arzela-Ascoli theorem. Hence, N is L-compact on Ω× [0, 1], with any open bounded
set Ω ⊂ X.

In order to use Lemma 2.1, we have to find at least four appropriate open bounded
subsets in X. Corresponding to the operator equation Lu = λN(u, λ), λ ∈ (0, 1), we
have

u̇1(t) = λ
(
a(t)(1− eu1(t)

K )− λ b(t)eu2(t)

f(t)+m(t)eu1(t)+n(t)eu2(t) − h1(t)e−u1(t)
)
,

u̇2(t) = λ
(
c(t)− d(t)eu2(t) − λ r(t)eu1(t−τ(t))

f(t)+m(t)eu1(t−τ(t))+n(t)eu2(t−τ(t)) − h2(t)e−u2(t)
)
.

(3)
Assume that u ∈ X is an ω-periodic solution of system (3) for some λ ∈ (0, 1). Then,
there exist ξi, ηi ∈ [0, ω] such that

ui(ξi) = max
t∈[0,ω]

ui(t), ui(ηi) = min
t∈[0,ω]

ui(t), i = 1, 2.

It is clear that u̇i(ξi) = 0, u̇i(ηi) = 0, i = 1, 2. From this and (3), we have

a(ξ1)
(

1− eu1(ξ1)

K

)
− λ b(ξ1)e

u1(ξ1)

f(ξ1)+m(ξ1)eu1(ξ1)+n(ξ1)eu2(ξ1) − h1(ξ1)e−u1(ξ1) = 0,

c(ξ2)− d(ξ2)eu2(ξ2) − λ r(ξ2)e
u1(ξ2−τ(ξ2))

f(ξ2)+m(ξ2)eu1(ξ2−τ(ξ2))+n(ξ2)eu2(ξ2−τ(ξ2)) − h2(ξ2)e−u2(ξ2) = 0,

(4)
and

a(η1)
(

1− eu1(η1)

K

)
− λ b(η1)e

u2(η1)

f(η1)+m(η1)eu1(η1)+n(η1)eu2(η1) − h1(η1)e−u1(η1) = 0,

c(η2)− d(η2)eu2(η2) − λ r(η2)e
u1(η2−τ(η2))

f(η2)+m(η2)eu1(η2−τ(η2))+n(η2)eu2(η2−τ(η2)) − h2(η2)e−u2(η2) = 0.

(5)
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According to the first equation of (4), we have

al

K e
u1(ξ1) + hl1e

−u1(ξ1) ≤ a(ξ1)e
u1(ξ1)

K + λ b(ξ1)e
u1(ξ1)

f(ξ1)+m(ξ1)eu1(ξ1)+n(ξ1)eu2(ξ1) + h1(ξ1)e−u1(ξ1)

= a(ξ1) ≤ aM ,
namely,

al

K
e2u1(ξ1) − aMeu1(ξ1) + hl1 < 0,

which implies that
ln l−1 < u1(ξ1) < ln l+1 , (6)

where

l±1 =
aM ±

√
a2M − 4alhl1

K

2al/K
.

Similarly, by the first equation of (5), we obtain

ln l−1 < u1(η1) < ln l+1 . (7)

Denote c+1 = cl − rM l+1
f l+mll−1

. The second equation of (4) gives

dMe2u2(ξ2) + hM2 > d(ξ2)e2u2(ξ2) + h2(ξ2) > c+1 e
u2(ξ2),

that is,

dMe2u2(ξ2) − c+1 eu2(ξ2) + hM2 > 0,

which implies that
u2(ξ2) > ln l+2 , or u2(ξ2) < ln l−2 , (8)

where

l±2 =
c+1 ±

√
(c+1 )2 − 4dMhM2

2dM
.

Similarly, by the second equation of (5), we get

u2(η2) > ln l+2 or u2(η2) < ln l−2 . (9)

Denote H1 = cM

dl
. Then from the second equation of (4), we have

dleu2(ξ2) ≤ d(ξ2)eu2(ξ2) < d(ξ2)eu2(ξ2) + h2(ξ2)e−u2(ξ2) < cM ,

that is,

u2(ξ2) < ln
cM

dl
= lnH1. (10)

Similarly, denote H2 =
hl2
cM
, then from the second equation of (5), we obtain

hl2e
−u2(η2) ≤ h2(η2)e−u2(η2) < h2(η2)e−u2(η2) + d(η2)eu2(η2) < cM ,

which implies that
u2(η2) > lnH2. (11)

We claim that ln l+2 < lnH1, lnH2 < ln l−2 . In fact,

l+2 =
c+1 +
√

(c+1 )2−4dMhM2
2dM

<
c+1
dM

< cl

dM
< cM

dl
= H1,

l−2 =
c+1 −
√

(c+1 )2−4dMhM2
2dM

=
2hM2

c+1 +
√

(c+1 )2−4dMhM2
>

hM2
c+ >

hl2
cl
>

hl2
cM

= H2.

From (8)-(11), we have

lnH2 < u2(η2) < u2(ξ2) < ln l−2 or ln l+2 < u2(η2) < u2(ξ2) < lnH1. (12)
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According to the first equation of (4), we have

aM

K eu1(ξ1) + hM1 e
−u1(ξ1) + bMH1

ml
e−u1(ξ1)

> a(ξ1)e
u1(ξ1)

K + h1(ξ1)e−u1(ξ1) + λ b(ξ1)e
u(ξ1)

f(ξ1)+m(ξ1)eu1(ξ1)+n(ξ1)eu2(ξ1) − h1(ξ1)e−u1(ξ1)

= a(ξ1) ≥ al,

namely,

aM

K
e2u1(ξ1) − aleu1(ξ1) +

(
hM1 +

bMH1

ml

)
> 0,

which implies that

u1(ξ1) > lnA+, u1(ξ1) < lnA−, (13)

where

A± =
al ±

√
a2l − 4a

M

K (hM1 + bMH1

ml
)

2aM/K
.

Similarly, by the first equation of (5), we obtain

u1(η1) > lnA+, u1(η1) < lnA−. (14)

We claim that ln l−1 < lnA−, lnA+ < ln l+1 . In fact, employing Lemma 2.2, we have

l−1 =
aM −

√
a2M − 4alhl1

K

2al/K
= f(aM ,

al

K
,hl1)

< f(al,
aM

K
,hM1 ) =

al −
√
a2l − 4aMhM1

K

2aM/K
<
al −

√
a2l − 4aM

K (hM1 + bMH1

ml
)

2aM/K
= A−,

l+1 =
aM +

√
a2M − 4alhl1

K

2al/K
= g(aM ,

al

K
,hl1)

> g(al,
aM

K
,hM1 ) =

al +

√
a2l − 4aMhM1

K

2aM/K
>

(al +
√
a2l − 4a

M

K (hM1 + bMH1

ml
)

2aM/K
= A+.

From (6), (7), (13) and (14), we obtain

lnA+ < u1(η1) < u1(ξ1) < ln l+1 or ln l−1 < u1(η1) < u1(ξ1) < lnA−. (15)

By (12) and (15), we have for all t ∈ R,

lnA+ < u1(t) < ln l+1 or ln l−1 < u1(t) < lnA−, (16)

and

lnH2 < u2(t) < ln l−2 or ln l+2 < u2(t) < lnH1. (17)

Clearly, ln l±1 , lnA±, lnH1 and lnH2 are independent of λ. Now, let

Ω1 = {u = (u1, u2)T ∈ X : ln l−1 < u1(t) < lnA−, lnH2 < u2(t) < ln l−2 },

Ω2 = {u = (u1, u2)T ∈ X : lnA+ < u1(t) < ln l+1 , lnH2 < u2(t) < ln l−2 },

Ω3 = {u = (u1, u2)T ∈ X : ln l−1 < u1(t) < lnA−, ln l+2 < u2(t) < lnH1},

Ω4 = {u = (u1, u2)T ∈ X : lnA+ < u1(t) < ln l+1 , ln l+2 < u2(t) < lnH1}.
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Then, Ωi(i = 1, 2, 3, 4) are bounded open subsets of X, Ωi ∩Ωj = φ for i 6= j. Thus,
Ωi(i = 1, 2, 3, 4) satisfy the requirement (a) in Lemma 2.1.

Now, we show that (b) of Lemma 2.1 holds, i.e., we prove that when u ∈ ∂Ωi ∩
kerL = ∂Ωi∩R2, we have QN(u, 0) 6= (0, 0)T , i = 1, 2, 3, 4. If it is not true, then when
u ∈ ∂Ωi∩Ker L = ∂Ωi∩R2, constant vector u = (u1, u2)T with u ∈ ∂Ωi, i = 1, 2, 3, 4,
satisfies ∫ ω

0
a(t)(1− eu1

K )dt−
∫ ω
0
h1(t)e−u1dt = 0,∫ ω

0
c(t)dt−

∫ ω
0
d(t)eu2dt−

∫ ω
0
h2(t)e−u2dt = 0.

In terms of differential mean value theorem, there exist two points ti, i = 1, 2 such
that

a(t1)(1− eu1

K
)− h1(t1)e−u1 = 0, (18)

c(t2)− d(t2)eu2 − h2(t2)e−u2 = 0. (19)

Following the arguments of (6)-(17), we have

lnA+ < u1 < ln l+1 or ln l−1 < u1 < lnA−, (20)

lnH2 < u2 < ln l−2 or ln l+2 < u2 < lnH1. (21)

Moreover, by (18), we have

u±1 = ln
a(t1)±

√
(a(t1))2 − 4h1(t1)a(t1)/K

2a(t1)/K
.

In the light of Lemma 2.2, we obtain

ln l−1 < u−1 < lnA− < lnA+ < u+1 < ln l+1 . (22)

Then, u ∈ Ω1 ∩R2 or u ∈ Ω2 ∩R2 or u ∈ Ω3 ∩R2 or u ∈ Ω2 ∩R2. This contradicts
the fact that u ∈ ∂Ωi ∩R2, i = 1, 2, 3, 4. This proves (b) in Lemma 2.1 holds.

Finally, we show that (c) in Lemma 2.1 holds. Note that the system of algebraic
equations

a(t1)− a(t1)
K ex − h1(t1)e−x = 0,

c(t2)− d(t2)ey − h2(t2)e−y = 0

has four distinct solutions since (A1)and (A2) hold:

(x∗1, y
∗
1) = (lnx−, ln y−), (x∗2, y

∗
2) = (lnx−, ln y+),

(x∗3, y
∗
3) = (lnx+, ln y−), (x∗4, y

∗
4) = (lnx+, ln y+),

where

x± =
a(t1)±

√
(a(t1))2 − 4h1(t1)a(t1)/K

2a(t1)/K
, y± =

c(t2)±
√

(c(t2))2 − 4d(t2)h2(t2)

2d(t2)
.

It is easy to verify that

ln l−1 < lnx− < lnA− < lnA+ < lnx+ < ln l+1 .

and

lnH2 < ln y− < ln l−2 < ln l+1 < ln y+ < lnH1.

Therefore,

(x∗1, y
∗
1) ∈ Ω1, (x∗2, y

∗
2) ∈ Ω2, (x∗3, y

∗
3) ∈ Ω3, (x∗4, y

∗
4) ∈ Ω4.
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Since Ker L = ImQ, we can take J = I. In the light of the definition of the
Leray-Schauder degree, a direct computation gives for i =1,2,3,4,

deg{JQN(u, 0),Ωi ∩KerL, (0, 0)T } = sign

∣∣∣∣∣ −a(t1)K x∗ + h1(t1)
x∗ 0

0 −d(t2)y∗ + h2(t2)
y∗

∣∣∣∣∣
= sign

[(
−a(t1)K x∗ + h1(t1)

x∗ )(−d(t2)y∗ + h2(t2)
y∗

)]
.

Since

a(t1)− a(t1)

K
x∗ +

h1(t1)

x∗
= 0, and c(t2)− d(t2)y∗ +

h2(t2)

y∗
= 0,

then

deg{JQN(u, 0),Ωi ∩KerL, (0, 0)T } = sgn

[(
a(t1)− 2a(t1)

K
x∗
)

(c(t2)− d(t2)y∗)

]
,

i = 1, 2, 3, 4. Thus

deg{JQN(u, 0),Ω1 ∩KerL, (0, 0)T } = sgn[(a(t1)− 2a(t1)
K x−)(c(t2)− d(t2)y−)] = 1,

deg{JQN(u, 0),Ω2 ∩KerL, (0, 0)T } = sgn[(a(t1)− 2a(t1)
K x−)(c(t2)− d(t2)y+)] = −1,

deg{JQN(u, 0),Ω3 ∩KerL, (0, 0)T } = sgn[(a(t1)− 2a(t1)
K x+)(c(t2)− d(t2)y−)] = −1,

deg{JQN(u, 0),Ω4 ∩KerL, (0, 0)T } = sgn[(a(t1)− 2a(t1)
K x+)(c(t2)− d(t2)y−)] = 1.

So far, we have proved that Ωi(i = 1, 2, 3, 4) satisfies all the assumptions in Lemma
2.1. Hence, system (2) has at least four different ω-periodic solutions. Thus, system
(1) has at least four different positive ω-periodic solutions. This completes the proof
of Theorem 2.3. �

3. An example
Consider the following two species prey-predator system with harvesting terms and

delays:

ẋ(t) = (4 + sin t)x(t)(1− 9
5x(t))−

2+cos t
200 x(t)y(t)

1+(5+2 cos t)x(t)+(3+2 sin t)y(t) −
7+2 cos t

200 ,

ẏ(t) = y(t)(3 + cos t− 7+cos t
30 y(t))− (2+sin t)x(t−τ(t))y(t)

1+(5+2 cos t)x(t−τ(t))+(3+2 sin t)y(t−τ(t)) −
2+cos t

5 .

(23)
In this case, a(t) = 4 + sin t, K = 5

9 , b(t) = 2+cos t
200 , h1(t) = 7+3 cos t

200 , c(t) = 3 + cos t,

d(t) = 7+cos t
30 , f(t) = 4 + cos t, r(t) = 2 + sin t, m(t) = 5 + 2 cos t, n(t) = 3 + 2 sin t,

h2(t) = 2+cos t
5 . Since

aM = nM = 5, al = 3, mM = cM = 4, ml = cl = rM = 2,

bM =
3

200
, bl =

1

200
, hM1 =

1

20
, hl1 =

1

25
,

dM =
4

15
, dl = hl2 =

1

5
, rl = nl = 1, hM2 =

3

5
, H1 =

cM

dl
=

4

1/5
= 20,

l+1 =
aM +

√
a2M − 4alhl1

K

2al/K
=

25 + 5
√

25− 108
125

54
<

25

27
,

rM l+1
fM +mll−1

=
3l+1

3 + 3l−1
=

l+1
1 + l−1

< 1,
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then
mM l+1

1 + bll+1
+ 2
√
dMhM2 < 1 +

4

5
< 2 = cl,

3 = al > 2

√
aM

K
(hM1 +

nMH1

bl
) = 2× 3√

5
, aM > 2

√
alhl1
K

,

which imply that (A1), (A2) hold. Hence, all conditions of Theorem 2.3 are satisfied.
By Theorem 2.3, system (23) has at least four positive 2π-periodic solutions. 2
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