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Local bifurcations of a ratio-dependent predator-prey system
with Holling type III functional response
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Abstract. In this paper a ratio-dependent predator-prey system with Holling type III func-

tional response is discussed. We give parameter conditions for exact number of equilibria. The

conditions for pitchfork bifurcation are given by the center manifold theory. Hopf bifurcations
are discussed by computing Lyapunov coefficients. It is shown that at most one stable limit

cycle occurs.
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1. Introduction

The classical predator-prey system takes the following form [7]{
ẋ = xg(x,K)− yp(x),
ẏ = y(−d+ cq(x)),

(1)

where x and y denote the densities of the prey and predators, respectively. Parameters
c and d are both positive constants that represent the rate of predators in converting
consumed prey into their growth and the death rate of the predator population,
respectively. g(x,K) is a continuous and differentiable function describing the specific
growth rate of the prey in the absence of predators and satisfying g(0,K) = r > 0,
g(K,K) = 0, (∂g)/(∂x)(K,K) < 0, (∂g)/(∂x)(x,K) ≤ 0, (∂g)/(∂K)(x,K) > 0
for any x > 0. K, the carrying capacity of the prey, is also a positive constant.
Usually, the function g(x,K) = r(1− x/K) is considered as a prototype and satisfies
all assumptions. The functional response p(x) of predators to the prey describes the
change in the density of the prey attacked per unit time per predator as the prey
density changes. It is continuous and differentiable and satisfies p(0) = 0. Many
types of response functions have been used, for example, Lotka-Volterra type, Holling
type II, Holling type III, Holling type IV, etc. The function q(x) in system (1)
describes how predators convert the consumed prey into the growth of predators. In
most cases, q(x) = p(x). There have been many works about the case q(x) = p(x),
see for example, Seo and DeAngelis [18] for Holling type I, Bazykin [4], Freedman
[7], Kuang and Freedman [13], and May [17] for Holling type II, Lamontagne, Coutu
and Rousseau [15] for generalized Holling type III, and Huang and Xiao [10] for
Holling type IV. However, several biologists (Leslie [14], Leslie and Gower [16], Arditi
and Ginzburg [2], Arditi, Ginzburg and Akcakaya [3], Akcakaya [1], Gutierrez [8],
etc.) think that functional and numerical responses over typical ecological timescales

Received October 10, 2014. Revised May 8, 2015. Accepted May 20, 2015.
Supported by FP7-PEOPLE-2012-IRHES-316338 and SPDEF 13ZB0327.

339



340 Q. ZHANG

depend on the densities of both prey and predators. Such a functional response
is called a ratio-dependent response function. Based on Holling type II function,
Arditi and Ginzburg [2] proposed a ratio-dependent function of the form p(x/y) =
e(x/y)/(m + x/y) = ex/(my + x) and the following ratio-dependent predator-prey
model {

ẋ = rx(1− x
K )− exy

my+x ,

ẏ = y(−d+ cx
my+x ),

which has been studied by several researchers recently (see [5], [9], [12] and [19]).
Holling type II functional response is usually used to describe the case that the
predator is the invertebrate. Holling type III functional response is more suitable
for vertebrates. Corresponding to Holling type III functional response,

p
(x
y

)
= eq

(x
y

)
=

ex2

m2y2 + x2
.

system (1) has the following form{
ẋ = rx(1− x

K )− ex2y
m2y2+x2 ,

ẏ = y(−d+ cx2

m2y2+x2 ).
(2)

By rescaling x = Kx̃, y = mK−1ỹ and t→ r−1t, system (1.2) can be written as{
ẋ = x(1− x)− αx2y

x2+y2 ,

ẏ = y(−β + γx2

x2+y2 ),
(3)

where we still use x, y to present x̃, ỹ respectively and α := er−1m−1, β := dr−1,
γ := cr−1 are all positive constants.

In this paper, we qualitatively investigate system (3) for general α, β, γ > 0. First,
we give parameter conditions for exact number of equilibria. Further, we analytically
give parameter conditions for pitchfork bifurcation. Finally, Hopf bifurcations are
discussed by computing Lyapunov coefficients. It is shown that at most one limit
cycle occurs.

2. Equilibria and their properties

In view of the biological sense, we only consider the equilibria of system (3) in the
first quadrant Q+ := {(x, y) 6= (0, 0)|x ≥ 0, y ≥ 0}. Actually, system (3) has the same
phase as the quartic differential system{

ẋ = x(1− x)(x2 + y2)− αx2y,
ẏ = y

[
− β(x2 + y2) + γx2

]
,

(4)

in the first quadrant. In fact, by rescaling the time t→ t/(x2 +y2), system (3) can be
transformed into system (4). Therefore, system (3) is orbitally equivalent to system
(4) in the first quadrant. Then, for the equilibria of system (3), from the orbitally
equivalent system (4), we consider the algebraic equations{

P (x, y) := x[(1− x)(x2 + y2)− αxy] = 0,
Q(x, y) := y[−β(x2 + y2) + γx2] = 0.

(5)

First, the origin O : (0, 0) is excluded because it is meaningless in system (3). For
y = 0, we can find the equilibrium E0 : (1, 0). For y 6= 0, from the second equation of

(5), we have that y =
√

(γ − β)/βx. Combining with the first equation, we obtain x =

1/γ(γ − α
√

(γ − β)β) := x∗. In fact, equations (5) have another solution (x∗∗, y∗∗),
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where x∗∗ := 1/γ(γ − α
√

(γ + β)β) and y∗∗ := −
√

(γ − β)/βx∗∗. However, E∗∗ :

(x∗∗, y∗∗) is outside Q+. Therefore, when γ > β and α < γ/
√

(γ − β)β, there is a

equilibrium E∗ : (x∗,
√

(γ − β)/βx∗). Further, we obtain the following lemma.

Lemma 2.1. System (3) has at most two equilibria in the first quadrant Q+. The
number of equilibria and their qualitative properties are described in Table 1, where

α0 :=
γ(−2β2 + 2βγ + γ)

2β
√

(γ − β)β
. (6)

Table 1. Qualitative properties for various parameters

Parameters Number Equilibria

1. 0 < γ < β 1 E0 (stable node or focus)

2. γ = β 1 E0 (nonhyperbolic)

3. 0<β<γ<
2β(β+1)
2β+1

, 0<α<α0 2 E0(saddle), E∗ (stable node or focus)

4. 0<β<γ<
2β(β+1)
2β+1

, α = α0 2 E0(saddle), E∗ (nonhyperbolic)

5. 0<β<γ<
2β(β+1)
2β+1

, α0<α<
γ√

(γ−β)β
2 E0 (saddle), E∗ (unstable node or focus)

6. 0<β<γ<
2β(β+1)
2β+1

, α ≥ γ√
(γ−β)β

1 E0 (saddle)

7. γ ≥ 2β(β+1)
2β+1

, 0 < α < γ√
(γ−β)β

2 E0 (saddle), E∗ (stable node or focus)

8. γ ≥ 2β(β+1)
2β+1

, α ≥ γ√
(γ−β)β

1 E0 (saddle)

Proof. Compute the Jacobian matrix of the vector field (4)

A :=

(
Px(x, y) Py(x, y)
Qx(x, y) Qy(x, y)

)
=

(
−4x3 − 2xy2 + 3x2 − 2αxy + y2 −x(2xy + αx− 2y)

2(γ − β)xy (γ − β)x2 − 3βy2

)
and let T and D denote its trace and determinant respectively. At E0,

D|E0
= −(γ − β), T |E0

= −1 + (γ − β).

Then, E0 is a saddle if and only if γ > β, degenerate if and only if γ = β, stable node
if and only if γ < β. At E∗, we have

D|E∗ = −2(γ − β)(α
√

(γ − β)β − γ)5/(γ3β) > 0

when γ > β and α < γ/
√

(β − β)β.
It immediately shows that E∗ is either a node, a focus or of center type. Further,

for α, β, γ > 0 and γ > β,

T |E∗ =
(α
√

(γ − β)β − γ)2

γ3β

{
2β
√

(γ − β)βα− γ
[
2β(γ − β) + γ

]}
= 0

if and only if α = α0, the constant defined in (6). It follows that E∗ is either a
stable node or focus if 0 < α < α0 or an unstable node or focus if α > α0. E∗
is of center type if α = α0. Moreover, for α, β, γ > 0, α0 < γ/

√
(γ − β)β if and

only if γ < 2β(β + 1)/(2β + 1). Therefore, when γ ≥ 2β(β + 1)/(2β + 1) and

0 < α < γ/
√

(β − β)β, we have that E∗ is a stable node or focus. In this way, we
complete the proof.

�
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For those nonhyperbolic cases mentioned in Lemma 2.1, we will further discussed
in section 3 for their qualitative properties and bifurcations: For γ = β, E0 is a
nonhyperbolic equilibrium point with eigenvalues 0 and −1 and will be discussed; for
β < γ < 2β(β + 1)/(2β + 1) and α = α0, E∗ is of center type with eigenvalues ±i Ω,
where

Ω :=
[
(2β + 1)γ − 2β(β + 1)

]2√−γ(γ − β)
[
(2β + 1)γ − 2β(β + 1)

]
/(4β3), (7)

and will be discussed.

3. Bifurcations

In this section we show that a pitchfork bifurcation may occur at E0 and Hopf
bifurcation may occur at E∗.

Table 1 of Lemma 2.1 show that system (3) has a nonhyperbolic equilibrium E0 :
(1, 0) with eigenvalues 0 and −1 if γ = β.

Theorem 3.1. For γ = γ0 := β, E0 is an unstable node of system (3) and as γ
crosses γ = γ0, i.e., γ varies from γ < γ0 to γ > γ0, a pitchfork bifurcation happens
at E0 such that the stable node E0 changes into three equilibria: a saddle E0 and two
stable nodes E∗ and E∗∗.

Proof. Let ε := γ − γ0. For sufficiently small |ε|, system (4) can be expanded as{
ẋ = −x− αy +O(‖(x, y)‖2),
ẏ = εy +O(‖(x, y)‖2),

(8)

where E0 is translated to the origin O : (0, 0). With the change of variables

x = −αz1 + z2, y = z1,

and the time rescaling dς = −dt, system (8) is normalized linearly to the form{
ż1 = g1(z1, z2, ε),
ż2 = z2 + g2(z1, z2, ε),

(9)

where

g1(z1, z2, ε) = −εz1 + 2αεz21 − 2εz1z2 + (β − α2ε)z31 + 2αεz21z2 − εz1z22 ,
g2(z1, z2, ε) = −αεz1 + α2(1 + 2ε)z21 − α(4 + ε)z1z2 + 3z22 − α(2α2 − β + 1

+α2ε)z31 + (7α2 + 1 + 2α2ε)z21z2 − α(8 + ε)z1z
2
2 + 3z32

+α2(α2 + 1)z41 − 2α(2α2 + 1)z31z2 + (6α2 + 1)z21z
2
2 − 4αz1z

3
2 + z42 .

Suspended with the parameter ε, system (9) can be regarded as a 3-dimensional one.
The center manifold theory ([6]) shows that the suspended system has a smooth 2-
dimensional center manifoldWc

ε = {(z1, z2, ε) | z2 = $(z1, ε), $(0, 0) = 0, D$(0, 0) =
0} near the origin and the smooth function h can be approximated as $(z1, ε) :=
φ2(z1, ε) +O(‖(z1, ε)‖3) where the second order approximation φ2, by Theorem 3 in
[6], satisfies

(Mφ2)(z1, ε) := (∂φ2)/(∂z1)g1(z1, φ2(z1, ε), ε)− z2 − g2(z1, φ2(z1, ε), ε)

= O(‖(z1, ε)‖3). (10)

Comparing the coefficients in (10), we obtain

φ2(z1, ε) = −α2z21 + αεz1.
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Thus we obtain the restricted equation of system (9) to the center manifold Wc
ε , i.e.,

ż1 = G(z1, ε) := −εz1 +
(
2αε+O(|ε|2)

)
z21 + (β +O(|ε|)z31 +O(‖(z1, ε)‖3).

Then, for ε = 0 it shows that (∂G)/(∂z1)(0, 0) = 0, (∂2G)/(∂z21)(0, 0) = 0 and
(∂G3)/(∂z31)(0, 0) = β 6= 0 in (8) the origin O is the unique equilibrium and two
equilibria arise from O as ε varies from 0 to positive. Therefore, E0 is an unstable
node at ε = 0 and system (3) undergoes a pitchfork bifurcation at E0 for γ = β.

�

In the following, we consider Hopf bifurcations, proving that in the nonhyperbolic
case 4 from Table 1 E∗ is a weak focus of multiplicity 1.

Theorem 3.2. For β < γ < 2β(β+1)
2β+1 and α = α0, equilibrium E∗ of system (3) is a

stable weak focus of order 1 and at most one stable limit cycle arises as α > α0 from
the supercritical Hopf bifurcation.

Proof. Table 1 of Lemma 2.1 show that equilibrium E∗ : (x∗,
√

(γ − β)/βx∗) is of
center type with eigenvalues ±iΩ if α = α0 and β < γ < 2β(β+1)/(2β+1), where α0

and Ω are defined in (6) and (7) respectively. Consider β < γ < 2β(β + 1)/(2β + 1)
and let ε := α− α0. For sufficient small |ε|, the linearization of system (4) at E∗ has
a pair of conjugate complex eigenvalues λ1,2 = σ(ε)± iω(ε) such that

σ(0) = 0, ω(0) = Ω,
dσ

dε
|ε=0 = −

√
(γ − β)β

4β2γ

[
(2β + 1)γ − 2β(β + 1)

]2 6= 0.

Further, for sufficiently small |ε|, translating E∗ to the origin O : (0, 0) and applying
the linear transformation

x = − γ2β

2δ(γ − β)(αβδ − γ)2
z1 −

γ
[
(2β + 1)γ − 2β(β + 1)

]2
4βδ2Ω2(αβδ − γ)2

[
K1(ε)z1 +K2(ε)z2

]
,

y = − 1

Ω

[
K1(ε)z1 +K2(ε)z2

]
,

and the time rescaling dς = K2(ε)
{

1− 6(γ − β)/
{
γδ[(2β + 1)γ − 2β(β + 1)]

}}
dt, we

reduce (4) to the form{
ż1 = τ(ε)z1 − z2 +W1(z1, z2, ε),
ż2 = z1 + τ(ε)z2 +W2(z1, z2, ε),

(11)

where the linear part is standardized,

τ(ε) :=
(γ − β)

[
(2β + 1)γ − 2β(β + 1)

]2
ε

4β2γδΩ
+O(|ε|2)

and

K1(ε) :=
a11(ε) + a22(ε)

2(1 + a12(ε))
,

K2(ε) :=

√
4(a12(ε)a21(ε) + a12(ε) + a21(ε) + 1)− (a11(ε) + a22(ε))2

2(1 + a12(ε))
,

Let z = z1 + iz2 and ϕ = W1 + iW2. Then (11) can be represented as the complex
form

ż = (i + τ(ε))z + ϕ(z, z̄, ε). (12)

Applying the near-identity transformation

z = w +
∑

r+j=n prj(ε)w
rwj ,
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for n = 2 and n = 3 separately, where

prj =

{
0, r = j + 1,
((r + j − 1)τ + i(r − j − 1))−1grj , r 6= j + 1,

and

grj = (∂r+j/∂zr∂z̄j)ϕ(0, 0, ε)/(r!j!), r, j = 1, 2, 3 · · ·
as done in [11], we normalize the second degree terms and the third degree terms
separately and reduce system (12) to the normal form

ẇ = (i + τ(ε))w +

2∑
i=1

Ci(ε)w
i+1w̄i +O(‖(w, w̄)‖7),

where Ci s are complex coefficients. Thus, the first Lyapunov quantities are given by

L1 := Re(C1(0)) =
β4f1(γ, β)

4γΩ(γ − β)3
[
(2β + 1)γ − 2β(β + 1)

]4 , (13)

where f1(γ, β) = (6β + 3)γ2 − 2β(7β + 6)γ + 8β2(β + 1) and it can shown that
f1(γ, β) < 0 when 0 < β < γ < 2β(β + 1)/(2β + 1). Therefore, when ε = 0, from
(13), we have that L1 < 0, implying that the equilibrium O of system (11) is a locally
stable weak focus of multiplicity 1 and at most one stable limit cycle arises around
the unstable focus from a supercritical Hopf bifurcation. In this way, we complete the
proof.

�

At the end of this section, we scan those bifurcations as parameter (α, β, γ) varies.
However, it is hard to plot the bifurcation curve in the 3-dimensional (α, β, γ)-space.
We project it on the (γ, α)-plane as shown in Figure 1, where the projected curve of
the pitchfork bifurcation surface γ = β is the dashed line l1. The solid line

l2 : α =
γ(−2β2 + 2βγ + γ)

2β
√

(γ − β)β
, β < γ < 2β(β + 1)/(2β + 1)

is the projection of the Hopf bifurcation surface. Besides, as shown in Figure 1, by
Table 1, system (3) has one equilibrium E0 when (α, β, γ) lies on the region γ < β.
As (α, β, γ) crossing γ = β from γ < β to γ > β, a stable node E∗ and another equi-

librium(but it always be outside Q+) arise. As (α, β, γ) crossing α = γ/
√

(γ − β)β

from α < γ/
√

(γ − β)β to α > γ/
√

(γ − β)β, E∗ disappears outside Q+.

Remark 3.1. By the results of Lemma 2.1, Theorem 3.1 and Theorem 3.2, noticing
the relationship between the original parameters r, e,m, c, d and the new parameters
α, β, γ, we can give the explanation of the dynamical properties of system (3). For γ <
β, i.e., c < d, system (3) has only one stable node or focus E0, which implies that the
predator will become extinct. For γ = β, i.e., c = d, system (3) has only one unstable
degenerate node E0. As c varies from c < d to c > d , a pitchfork bifurcation happens
at E0 such that a interior equilibrium E∗ appears. When d < c < 2d(d+ r)/(2d+ r)

and e < cm(−2d2 + 2cd+ cr)/(2d
√

(c− d)d), E∗ is a stable node, which means that
the predator and the prey will coexist and reach a steady state. When d < c <
2d(d+ r)/(2d+ r) and e = cm(−2d2 + 2cd+ cr)/(2d

√
(c− d)d), E∗ is a stable weak

focus of order 1 and at most one limit cycle arises from Hopf bifurcation , i.e. when d <
c < 2d(d+r)/(2d+r) and cm(−2d2+2cd+cr)/(2d

√
(c− d)d) < e < cmr/

√
(c− d)d,

one limit cycle arises, which means the predator and the prey will oscillate periodically.
When d < c < 2d(d + r)/(2d + r) and e ≥ cmr/

√
(c− d)d, the interior equilibrium
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Fig. 1. Bifurcation diagram.

E∗ disappear. When c ≥ 2d(d + r)/(2d + r) and e < cmr/
√

(c− d)d, E∗ emerges
and it is stable, which implies that the predator and the prey will coexist and reach
a steady state. When c ≥ 2d(d + r)/(2d + r) and e ≥ cmr/

√
(c− d)d, the interior

equilibrium E∗ disappear.

4. Conclusion

In this paper, we studied the dynamical behavior of a ratio-dependent predator-
prey system with Holling type III functional response. By the linear transformation
and the time rescaling, the original five parameters can be reduced to three param-
eters. For the reduced system, we give parameter conditions for exact number of
equilibria as shown in Table 1. Further, we analytically give parameter conditions
for pitchfork bifurcation (see Theorem 3.1). Finally, we give the conditions when a
supercritical Hopf bifurcation occurs in Theorem 3.2, which implies at most one stable
limit cycle arises.
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