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Abstract. In this article we introduce and study I-convergent sequence spaces SI , SI
0 and

SI
∞ with the help of a compact operator T on the real space R. We study some topological

and algebraic properties, prove the decomposition theorem and study some inclusion relations
on these spaces.
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1. Introduction and preliminaries

Let N, R and C be the sets of all natural, real and complex numbers respectively.
We denote

ω = {x = (xk) : xk ∈ R or C}
the space of all real or complex sequences.

Definition 1.1. Let K be a non-trivial scalar valued field and X be a vector space
over K. Then a real valued mapping ‖ . ‖ on X is said to be a norm on or over X if
it satisfies the following properties:
(1) ‖ x ‖≥ 0, ‖ x ‖= 0⇔ x = 0,
(2) ‖ αx ‖=| α |‖ x ‖,
(3) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖, for all α ∈ K, x, y ∈ X.

The pair (X, ‖ . ‖) is called a normed linear space over K.

Remark 1.1. If K = R (field of reals) or K = C ( field of complex), then X is called
a real/complex normed linear space respectively.

Definition 1.2. A normed linear spaceX is said to be a Banach space if it is complete.
That is, if every Cauchy sequence in X is convergent in X.

Definition 1.3. A linear operator T is an operator such that
(1) the domain D(T ) of T is a vector space and the range R(T ) lies in a vector space
over the same field,
(2) T (αx+ βy) = αT (x) + βT (y), for all, x, y ∈ D(T ).
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Definition 1.4. Let X and Y be two normed linear spaces and T : D(T ) → Y be
a linear operator, where D(T ) ⊂ X. Then, the operator T is said to be bounded if
there exists a real k > 0 such that

‖ Tx ‖≤ k ‖ x ‖, for all, x ∈ D(T ).

The set of all bounded linear operators B(X,Y ) is a normed linear space normed by

‖ T ‖= sup
x∈X,‖x‖=1

‖ Tx ‖ (see [9, 10])

and B(X,Y ) is a Banach space if Y is Banach space.

Definition 1.5. Let X and Y be two normed linear spaces. An operator T : X → Y
is said to be a compact linear operator (or completely continuous linear operator) if
(1) T is linear,
(2) T maps every bounded sequence (xk) in X onto a sequence T (xk) in Y which has
a convergent subsequence.

The set of all compact linear operators C(X,Y ) is closed subspace of B(X,Y ) and
C(X,Y ) is a Banach space if Y is Banach space.

Throughout the paper, we denote `∞, c and c0 as the Banach spaces of bounded,
convergent and null sequences of reals respectively with norm

‖x‖ = sup
k
| xk | .

Following Basar and Altay [1] and Sengönül [15], we introduce the sequence spaces
S and S0 with the help of compact operator T on R as follows.

S = {x = (xk) ∈ `∞ : Tx ∈ c}
and

S0 = {x = (xk) ∈ `∞ : Tx ∈ c0}.
As a generalisation of usual convergence, the concept of statistical convergent was

first introduced by Fast [3] and also independently by Buck [2] and Schoenberg [14]
for real and complex sequences. Later on, it was further investigated from a sequence
space point of view and linked with the Summability Theory by Fridy 4], Šalát[11],
Tripathy [16] and many others.

Definition 1.6. A sequence x=(xk) ∈ ω is said to be statistically convergent to a
limit L if for every ε > 0, we have

lim
k

1

k
|{n ∈ N : |xn − L| ≥ ε, n ≤ k}| = 0.

where vertical lines denote the cardinality of the enclosed set.

That is, if δ(A(ε)) = 0, where

A(ε) =

{
k ∈ N :| xk − L |≥ ε

}
.

The notion of ideal convergence (I-convergence) was introduced and studied by
Kostyrko, Mačaj, Salǎt and Wilczyński [7,8]. Later on, it was studied by Šalát,
Tripathy and Ziman [12,13], Tripathy and Hazarika [17,18], Khan and Ebadullah
[5,6] and many others.
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Here we give some preliminaries about the notion of I-convergence.

Definition 1.7. Let N be a non empty set. Then a family of sets I ⊆ 2N (power set
of N) is said to be an ideal if
(1) I is additive i.e ∀A,B ∈ I ⇒ A ∪B ∈ I,
(2) I is hereditary i.e ∀A ∈ Iand B ⊆ A⇒ B ∈ I.

Definition 1.8. A non-empty family of sets J ⊆ 2N is said to be filter on N if and
only if
(1) Φ /∈ J ,
(2) ∀ A, B ∈ J ⇒ A ∩B ∈ J ,
(3) ∀ A ∈ J and A ⊆ B ⇒ B ∈ J .

Definition 1.9. An Ideal I ⊆ 2N is called non-trivial, if I 6 =2N.

Definition 1.10. A non-trivial ideal I ⊆ 2N is called admissible, if

{{x} : x ∈ N} ⊆ I.

Definition 1.11. A non-trivial ideal I is maximal, if there cannot exist any non-trivial
ideal J 6 =I containing I as a subset.

Remark 1.2. For each ideal I, there is a filter £(I) corresponding to I.
That is £(I) = {K ⊆ N : Kc ∈ I}, where Kc = N \K.

Definition 1.12. A sequence x = (xk) ∈ ω is said to be I-convergent to a number
L, if for every ε > 0, the set {k ∈ N : |xk − L| ≥ ε} ∈ I.
In this case, we write I − limxk = L.

Definition 1.13. A sequence x = (xk) ∈ ω is said to be I-null, if L = 0. In this case,
we write I − limxk = 0.

Definition 1.14. A sequence x = (xk) ∈ ω is said to be I-cauchy, if for every ε > 0
there exists a number m = m(ε) such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.15. A sequence x = (xk) ∈ ω is said to be I-bounded, if there exists
some M > 0 such that {k ∈ N : |xk| ≥M} ∈ I.

Definition 1.16. A sequence space E is said to be solid(normal), if (αkxk) ∈ E
whenever (xk) ∈ E and for any sequence(αk) of scalars with | αk |≤ 1, for all k ∈ N.

Definition 1.17. A sequence space E is said to be symmetric, if (xπ(k)) ∈ E whenever
xk ∈ E, where π is a permutation on N.

Definition 1.18. A sequence space E is said to be sequence algebra, if (xk) ∗ (yk) =
(xk.yk) ∈ E whenever (xk), (yk) ∈ E.

Definition 1.19. A sequence space E is said to be convergence free, if (yk) ∈ E
whenever (xk) ∈ E and xk = 0 implies yk = 0, for all k.

Definition 1.20. Let K = {k1 < k2 < k3 < k4 < k5...} ⊂ N and E be a Sequence
space. A K-step space of E is a sequence space λEK = {(xkn) ∈ ω : (xk) ∈ E}.

Definition 1.21. A canonical pre-image of a sequence (xkn) ∈ λEK is a sequence
(yk) ∈ ω defined by

yk =

{
xk, if k ∈ K,
0, otherwise.
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A canonical preimage of a step space λEK is a set of preimages of all elements in
λEK .i.e. y is in the canonical preimage of λEK , iff y is the canonical preimage of some
x ∈ λEK .

Definition 1.22. A sequence space E is said to be monotone, if it contains the
canonical preimages of its step space.

Definition 1.23. If I = If , the class of all finite subsets of N. Then, I is an admissible
ideal in N and If convergence coincides with the usual convergence.

Definition 1.24. If I = Iδ = {A ⊆ N : δ(A) = 0}. Then, I is an admissible ideal in
N and we call the Iδ-convergence as the logarithmic statistical convergence.

Definition 1.25. If I = Id = {A ⊆ N : d(A) = 0}. Then, I is an admissible ideal in
N and we call the Id-convergence as the asymptotic statistical convergence.

Remark 1.3. If Iδ − limxn = l, then Id − limxn = l.

Definition 1.26. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X → IR is said
to satisfy Lipschitz condition if |~(x) − ~(y)| ≤ K|x − y| where K is known as the
Lipschitz constant.

Definition 1.27. A convergence field of I-covergence is a set

F (I) = {x = (xk) ∈ l∞ : there exists I − limx ∈ IR}.

The convergence field F (I) is a closed linear subspace of l∞ with respect to the
supremum norm, F (I) = l∞ ∩ cI(see[12]).

The function ~ : F (I) → R defined by ~(x) = I − limx, for all x ∈ F (I) is a
lipschitz function (see[12]).

We used the following lemmas to establish some results of this article.

Lemma(I). Every solid space is monotone.
Lemma(II). Let K ∈ £(I) and M ⊆ N. If M /∈ I, then M ∩K /∈ I.
Lemma(III). If I ⊆ 2N and M ⊆ N. If M /∈ I, then M ∩ N /∈ I.

Throughout the article, T is considered as a compact operator on the
real space R.

2. Main Results

In this article we introduce and study the following classes of sequence.

SI =

{
x = (xk) ∈ `∞ :

{
k ∈ N :| T (xk)− L |≥ ε

}
∈ I, for some L ∈ R

}
; (2.1)

SI0 =

{
x = (xk) ∈ `∞ :

{
k ∈ N :| T (xk) |≥ ε

}
∈ I
}

; (2.2)

SI∞ =

{
x = (xk) ∈ `∞ : ∃M > 0 s.t.

{
k ∈ N :| T (xk) |≥M

}
∈ I
}
. (2.3)

Theorem 2.1. The classes of sequences SI , SI0 and SI∞ are linear spaces.
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Proof. We shall prove the result for the space SI . Rests will follow similarly.
For, let x = (xk), y = (yk) be two elements of SI and α, β be scalars.
Now, since (xk), (yk) ∈ SI , then, for given ε > 0, there exists L1, L2 ∈ R such that
the sets {

k ∈ N :| T (xk)− L1 |<
ε

2 | α |

}
∈ £(I) (2.4)

and {
k ∈ N :| T (yk)− L2 |<

ε

2 | β |

}
∈ £(I). (2.5)

Therefore,

| T
(
α(xk) + β(yk)

)
−
(
αL1 + βL2

)
|=| αT (xk) + βT (yk)−

(
αL1 + βL2

)
|

=| αT (xk)− αL1 + βT (yk)− βL2 |≤| α || T (xk)− L1 | + | β || T (yk)− L2 |

<| α | ε

2 | α |
+ | β | ε

2 | β |
=
ε

2
+
ε

2
= ε.

Thus the set

A3 =

{
k ∈ N :| T

(
α(xk) + β(yk)

)
−
(
αL1 + βL2

)
|< ε

}
∈ £(I).

Therefore the set

Ac3 =

{
k ∈ N :| T

(
α(xk) + β(yk)

)
−
(
αL1 + βL2

)
|≥ ε

}
∈ I

implies that α(xk) + β(yk) ∈ SI , for all scalars α, β and (xk), (yk) ∈ SI .
Hence SI is linear. �

Theorem 2.2. The spaces SI and SI0 are normed spaces normed by

‖x‖∗ = sup
k
| T (xk) | .

Proof. The proof of the result is easy in view of existing techniques and hence omitted.
�

Theorem 2.3. A sequence x = (xk) ∈ `∞ I-converges if and only if for every ε > 0,
there exists Nε ∈ N such that{

k ∈ N :| T (xk)− T (xNε) |< ε

}
∈ £(I). (2.6)

Proof. Let x = (xk) ∈ `∞.
Suppose that L = I − limx. Then, the set

Bε =

{
k ∈ N :| T (xk)− L |< ε

2

}
∈ £(I) for all ε > 0.

Fix an Nε ∈ Bε. Then, we have

| T (xk)− T (xNε) |≤| T (xk)− L | + | T (xNε)− L |<
ε

2
+
ε

2
= ε
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which holds for all k ∈ Bε.
Hence

{
k ∈ N :| T (xk)− T (xNε) |< ε

}
∈ £(I).

Conversely, suppose that{
k ∈ N :| T (xk)− T (xNε) |< ε

}
∈ £(I).

That is

{
k ∈ N :| T (xk)− T (xNε) |< ε

}
∈ £(I), for all ε > 0. Then, the set

Cε =

{
k ∈ N : T (xk) ∈ [T (xNε)− ε, T (xNε) + ε]

}
∈ £(I) for all ε > 0.

Let Jε =

[
T (xNε)− ε, T (xNε) + ε

]
. If we fix an ε > 0 then we have Cε ∈ £(I) as well

as C ε
2
∈ £(I). Hence Cε ∩ C ε

2
∈ £(I). This implies that

J = Jε ∩ J ε2 6= φ.

That is
{k ∈ N : T (xk) ∈ J} ∈ £(I).

That is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J.
In this way, by induction, we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........
with the property that diamIk ≤ 1

2diamIk−1 for (k=2,3,4,.....) and
{k ∈ N : T (xk) ∈ Ik} ∈ £(I) for (k=1,2,3,4,......).
Then there exists a ξ ∈ ∩Ik where k ∈ N such that ξ = I − limT (xk).
Hence the result. �

Theorem 2.4. Let I be an admissible ideal. Then, the following are equivalent.
(a) (xk) ∈ SI ;
(b) there exists (yk) ∈ S such that xk = yk, for a.a.k.r.I;
(c) there exists (yk) ∈ S and (zk) ∈ SI◦ such that xk = yk + zk for all k ∈ N and
{k ∈ N :| T (yk)− L |≥ ε} ∈ I;
(d) there exists a subset K = {k1 < k2 < k3...} of N such that K ∈ £(I) and
lim
n→∞

| T (xkn)− L |= 0.

Proof. (a) implies (b). Let (xk) ∈ SI . Then, for any ε > 0, there exists L ∈ R such
that the set

{k ∈ N :| T (xk)− L |≥ ε} ∈ I.
Let (mt) be an increasing sequence with mt ∈ N such that

{k ≤ mt : |T (xk)− L| ≥ t−1} ∈ I.
Define a sequence (yk) as

yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈ N.

yk =

{
xk, if |T (xk)− L| < t−1,

L, otherwise.
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Then, (yk) ∈ S and from the following inclusion

{k ≤ mt : xk 6= yk} ⊆ {k ∈ N : |T (xk)− L| ≥ ε} ∈ I.
We get xk = yk, for a.a.k.r.I.
(b) implies (c). For (xk) ∈ SI . Then, there exists (yk) ∈ S such that xk = yk, for
a.a.k.r.I. Let K = {k ∈ N : xk 6= yk}, then K ∈ I.
Define a sequence (zk) as

zk =

{
xk − yk, if k ∈ K,

0, otherwise.

Then (zk) ∈ SI◦ and (yk) ∈ S.
(c) implies (d). Let P1 = {k ∈ N : |T (xk)| ≥ ε} ∈ I and

K = P c1 = {k1 < k2 < k3 < ...} ∈ £(I).

Then, we have lim
n→∞

|T (xkn)− L| = 0.

(d) implies (a). Let K = {k1 < k2 < k3 < ...} ∈ £(I) and

lim
n→∞

|T (xkn)− L| = 0.

Then, for any ε > 0, and by Lemma (II), we have

{k ∈ N : |T (xk)− L| ≥ ε} ⊆ Kc ∪ {k ∈ K : |T (xk)− L| ≥ ε}.
Thus, (xk) ∈ SI . �

Theorem 2.5. The function ~ : SI → R defined by ~(x) = I − limT (x), for all
x ∈ SI is a Lipschitz function and hence uniformly continuous.

Proof. Clearly the function ~ is well defined. Let x = (xk), y = (yk) ∈ SI , x 6= y.
Then, the sets

Ax =
{
k ∈ N :| T (x)− ~(x) |≥‖ x− y ‖∗

}
∈ I.

Ay =
{
k ∈ N :| T (y)− ~(y) |≥‖ x− y ‖∗

}
∈ I.

where ‖x− y‖∗ = sup
k
| T (xk − yk) | . Thus, the sets

Bx =
{
k ∈ N :| T (x)− ~(x) |<‖ x− y ‖∗

}
∈ £(I).

By =
{
k ∈ N :| T (y)− ~(y) |<‖ x− y ‖∗

}
∈ £(I).

Hence, B = Bx ∩By ∈ £(I), so that B 6= ∅. Now taking k ∈ B, we have

| ~(x)− ~(y) |≤| ~(x)− T (x) | + | T (x)− T (y) | + | T (y)− ~(y) |≤ 3 ‖ x− y ‖∗ .
Thus, ~ is Lipschitz function and hence uniformly continuous. �

Theorem 2.6. If T is an identity operator and ~ : SI → R is a function defined by
~(x) = I − limT (x), for all x ∈ SI and if x = (xk), y = (yk) ∈ SI , then, (x.y) ∈ SI
and ~(x.y) = ~(x)~(y).

Proof. For ε > 0, the sets

Bx = {k ∈ N : |T (x)− ~(x)| < ε} ∈ £(I), (2.7)

By = {k ∈ N : |T (y)− ~(y)| < ε} ∈ £(I). (2.8)

where ‖x− y‖∗ = ε. Now, since T is an identity operator, we have

|T (xy)−~(x)~(y)| = |T (xkyk)−~(x)~(y)| = |T (xkyk)−T (xk)~(y)+T (xk)~(y)−~(x)~(y)|
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= |xkyk − xk~(y) + xk~(y)− ~(x)~(y)| ≤ |xk||yk − ~(y)|+ |~(y)||xk − ~(x)|. (2.9)

As SI ⊆ `∞, there exists an M ∈ R such that |xk| < M and |~(y)| < M .
Therefore, from (2.7), (2.8) and (2.9), we have

|T (xy)− ~(x)~(y)| = |T (xkyk)− ~(x)~(y)| ≤Mε+Mε = 2Mε

for all k ∈ Bx ∩By ∈ £(I). Hence (x.y) ∈ SI and ~(x.y) = ~(x)~(y). �

Theorem 2.7. The space SI◦ is solid and monotone.

Proof. For, let (xk) ∈ SI◦ . Then, the set{
k ∈ N :| T (xk) |≥ ε

}
∈ I. (2.10)

Let (αk) be a sequence of scalars with | αk |≤ 1, for all, k ∈ N.
Therefore,

| T (αkxk) |=| αkT (xk) |≤| αk || Txk |≤| Txk |, for all k ∈ N.
Thus, from the above inequality and (2.10), we have{

k ∈ N :| T (αkxk) |≥ ε
}
⊆
{
k ∈ N :| T (xk) |≥ ε

}
∈ I

implies that {
k ∈ N :| T (αkxk) |≥ ε

}
∈ I.

Therefore, αkxk ∈ SI◦ . Hence the space SI◦ is solid.
That the space is monotone follows from lemma (I). �

Theorem 2.8. The inclusions SI0 ⊂ SI ⊂ SI∞ hold.

Proof. Let (xk) ∈ SI . Then, there exists some L such that

I − lim
k
| T (xk)− L |= 0.

That is, the set
{k ∈ N :| T (xk)− L |≥ ε} ∈ I.

We have
| T (xk) |=| T (xk)− L+ L |≤| T (xk)− L | + | L | .

Taking supremum over k on both sides, we get (xk) ∈ SI∞.
The inclusion SI0 ⊂ SI is obvious. Hence SI◦ ⊂ SI ⊂ SI∞. �

Theorem 2.9. The set SI is closed subspace of `∞.

Proof. Let (x
(n)
k ) be a Cauchy sequence in SI such that x

(n)
k → x.

We show that x ∈ SI . Since (x
(n)
k ) ∈ SI , then there exists an such that

{
k ∈ N :|

T (x
(n)
k )− an |≥ ε

}
∈ I.

We need to show that
(1) (an) converges to a.
(2) If U =

{
k ∈ N :| T (xk)− a |< ε

}
, then U c ∈ I.

(1) Since (x
(n)
k ) is Cauchy sequence in SI ⇒ for a given ε > 0, there exists k0 ∈ N

such that sup
k
|T (x

(n)
k )− T (x

(q)
k )| < ε

3 , for all n, q ≥ k0.

For a given ε > 0, we have

Bnq =
{
k ∈ N :| Tx(n)k − Tx(q)k |<

ε

3

}
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Bq =
{
k ∈ N :| Tx(q)k − aq |<

ε

3

}
Bn =

{
k ∈ N :| Tx(n)k − an |<

ε

3

}
Then, Bcnq, B

c
q , B

c
n ∈ I. Let Bc = Bcnq ∪Bcq ∪Bcn, where B = {k ∈ N :| aq−aδn |< ε}.

Then, Bc ∈ I.
We choose k0 ∈ Bc. Then for each n, q ≥ k0, we have

{k ∈ N : | aq − an |< ε} ⊇
[
{k ∈ N :| aq − T (x

(q)
k ) |< ε

3
}

∩ {k ∈ N :| T (x
(q)
k )− T (x

(n)
k ) |< ε

3
} ∩ {k ∈ N :| T (x

(n)
k )− an |<

ε

3
}
]
.

Then (an) is a Cauchy sequence of scalars in R, so there exists a scalar a in R such
that an → a as n→∞.

(2) Let 0 < δ < 1 be given. Then we show that if U =

{
k ∈ N :| T (xk)− a |≤ δ

}
,

then U c ∈ I.
Since x

(n)
k → x, then there exists q0 ∈ N such that

P =
{
k ∈ N :| T (x

(q0)
k )− T (xk) |< δ

3

}
(2.11)

implies P c ∈ I. The number q0 can be chosen that together with (2.11), we have

Q = {k ∈ N :| aq0 − a |<
δ

3
}

such that Qc ∈ I. Since {k ∈ N :| T (x
(q0)
k )− aq0 |≥ δ} ∈ I. Then we have a subset S

of N such that Sc ∈ I, where S = {k ∈ N :| T (x
(q0)
k )− aq0 |< δ

3}.
Let U c = P c ∪Qc ∪ Sc, where U =

{
k ∈ N :| T (xk)− a |< δ

}
.

Therefore, for each k ∈ U c, we have

{k ∈ N : | T (xk)− a |< δ} ⊇
[
{k ∈ N :| T (xk)− T (x

(q0)
k ) |< δ

3
}

∩ {k ∈ N :| T (x
(q0)
k )− aq0 |<

δ

3
} ∩ {k ∈ N :| aq0 − a |pk<

δ

3
}
]
.

Then the result follows. �

Since the inclusions SI ⊂ `∞ and is strict so in view of Theorem (2.9.) we have
the following result.

Theorem 2.10. The space SI is nowhere dense subsets of `∞.
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[12] T. Šalát, B.C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ.

28 (2004), 279–286.
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