On some I-convergent sequence spaces defined by a compact operator

VAKEEL A. KHAN, MOHD SHAFIQ, RAMI KAMEL AHMAD RABABAH, AND AYHAN ESI

ABSTRACT. In this article we introduce and study I-convergent sequence spaces S^I , S_0^I and S_{∞}^I with the help of a compact operator T on the real space \mathbb{R} . We study some topological and algebraic properties, prove the decomposition theorem and study some inclusion relations on these spaces.

Key words and phrases. Compact operator, Ideal, filter, I-convergent sequence, solid and monotone space, Banach space, Lipschitz function.

1. Introduction and preliminaries

Let $\mathbb{N},\,\mathbb{R}$ and \mathbb{C} be the sets of all natural, real and complex numbers respectively. We denote

$$\omega = \{ x = (x_k) : x_k \in \mathbb{R} \text{ or } \mathbb{C} \}$$

the space of all real or complex sequences.

Definition 1.1. Let K be a non-trivial scalar valued field and X be a vector space over K. Then a real valued mapping $\| \cdot \|$ on X is said to be a norm on or over X if it satisfies the following properties:

(1) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$, (2) $||\alpha x|| = |\alpha| ||x||$, (3) $||x + y|| \le ||x|| + ||y||$, for all $\alpha \in K$, $x, y \in X$.

The pair $(X, \| \cdot \|)$ is called a normed linear space over K.

Remark 1.1. If $K = \mathbb{R}$ (field of reals) or $K = \mathbb{C}$ (field of complex), then X is called a real/complex normed linear space respectively.

Definition 1.2. A normed linear space X is said to be a Banach space if it is complete. That is, if every Cauchy sequence in X is convergent in X.

Definition 1.3. A linear operator T is an operator such that

(1) the domain $\mathcal{D}(T)$ of T is a vector space and the range $\mathcal{R}(T)$ lies in a vector space over the same field,

(2)
$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$
, for all, $x, y \in \mathcal{D}(T)$.

Received December 15, 2014.

Definition 1.4. Let X and Y be two normed linear spaces and $T : \mathcal{D}(T) \to Y$ be a linear operator, where $\mathcal{D}(T) \subset X$. Then, the operator T is said to be bounded if there exists a real k > 0 such that

$$|| Tx || \leq k || x ||$$
, for all, $x \in \mathcal{D}(T)$

The set of all bounded linear operators $\mathcal{B}(X, Y)$ is a normed linear space normed by

$$|| T || = \sup_{x \in X, ||x|| = 1} || Tx ||$$
 (see [9, 10])

and $\mathcal{B}(X,Y)$ is a Banach space if Y is Banach space.

Definition 1.5. Let X and Y be two normed linear spaces. An operator $T: X \to Y$ is said to be a compact linear operator (or completely continuous linear operator) if (1) T is linear,

(2) T maps every bounded sequence (x_k) in X onto a sequence $T(x_k)$ in Y which has a convergent subsequence.

The set of all compact linear operators $\mathcal{C}(X, Y)$ is closed subspace of $\mathcal{B}(X, Y)$ and $\mathcal{C}(X, Y)$ is a Banach space if Y is Banach space.

Throughout the paper, we denote ℓ_{∞} , c and c_0 as the Banach spaces of bounded, convergent and null sequences of reals respectively with norm

$$||x|| = \sup_{k} |x_k|.$$

Following Basar and Altay [1] and Sengönül [15], we introduce the sequence spaces S and S_0 with the help of compact operator T on \mathbb{R} as follows.

$$\mathcal{S} = \{ x = (x_k) \in \ell_\infty : Tx \in c \}$$

and

$$\mathcal{S}_0 = \{ x = (x_k) \in \ell_\infty : Tx \in c_0 \}$$

As a generalisation of usual convergence, the concept of statistical convergent was first introduced by Fast [3] and also independently by Buck [2] and Schoenberg [14] for real and complex sequences. Later on, it was further investigated from a sequence space point of view and linked with the Summability Theory by Fridy 4], Šalát[11], Tripathy [16] and many others.

Definition 1.6. A sequence $x=(x_k) \in \omega$ is said to be statistically convergent to a limit L if for every $\epsilon > 0$, we have

$$\lim_{k} \frac{1}{k} |\{n \in \mathbb{N} : |x_n - L| \ge \epsilon, \ n \le k\}| = 0.$$

where vertical lines denote the cardinality of the enclosed set.

That is, if $\delta(A(\epsilon)) = 0$, where

$$A(\epsilon) = \bigg\{ k \in \mathbb{N} : \mid x_k - L \mid \geq \epsilon \bigg\}.$$

The notion of ideal convergence (I-convergence) was introduced and studied by Kostyrko, Mačaj, Salăt and Wilczyński [7,8]. Later on, it was studied by Šalát, Tripathy and Ziman [12,13], Tripathy and Hazarika [17,18], Khan and Ebadullah [5,6] and many others.

Here we give some preliminaries about the notion of I-convergence.

Definition 1.7. Let \mathbb{N} be a non empty set. Then a family of sets $I \subseteq 2^{\mathbb{N}}$ (power set of \mathbb{N}) is said to be an ideal if

(1) I is additive i.e $\forall A, B \in I \Rightarrow A \cup B \in I$,

(2) I is hereditary i.e $\forall A \in I \text{ and } B \subseteq A \Rightarrow B \in I.$

Definition 1.8. A non-empty family of sets $\mathcal{J} \subseteq 2^{\mathbb{N}}$ is said to be filter on \mathbb{N} if and only if

(1) $\Phi \notin \mathcal{J}$, (2) $\forall A, B \in \mathcal{J} \Rightarrow A \cap B \in \mathcal{J}$, (3) $\forall A \in \mathcal{J}$ and $A \subseteq B \Rightarrow B \in \mathcal{J}$.

Definition 1.9. An Ideal $I \subseteq 2^{\mathbb{N}}$ is called non-trivial, if $I \neq 2^{\mathbb{N}}$.

Definition 1.10. A non-trivial ideal $I \subseteq 2^N$ is called admissible, if

$$\{\{x\}: x \in \mathbb{N}\} \subseteq I.$$

Definition 1.11. A non-trivial ideal I is maximal, if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

Remark 1.2. For each ideal *I*, there is a filter $\pounds(I)$ corresponding to *I*. That is $\pounds(I) = \{K \subseteq \mathbb{N} : K^c \in I\}$, where $K^c = \mathbb{N} \setminus K$.

Definition 1.12. A sequence $x = (x_k) \in \omega$ is said to be *I*-convergent to a number L, if for every $\epsilon > 0$, the set $\{k \in \mathbb{N} : |x_k - L| \ge \epsilon\} \in I$. In this case, we write $I - \lim x_k = L$.

Definition 1.13. A sequence $x = (x_k) \in \omega$ is said to be *I*-null, if L = 0. In this case, we write $I - \lim x_k = 0$.

Definition 1.14. A sequence $x = (x_k) \in \omega$ is said to be *I*-cauchy, if for every $\epsilon > 0$ there exists a number $m = m(\epsilon)$ such that $\{k \in \mathbb{N} : |x_k - x_m| \ge \epsilon\} \in I$.

Definition 1.15. A sequence $x = (x_k) \in \omega$ is said to be *I*-bounded, if there exists some M > 0 such that $\{k \in \mathbb{N} : |x_k| \ge M\} \in I$.

Definition 1.16. A sequence space E is said to be solid(normal), if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for any sequence (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in \mathbb{N}$.

Definition 1.17. A sequence space E is said to be symmetric, if $(x_{\pi(k)}) \in E$ whenever $x_k \in E$, where π is a permutation on \mathbb{N} .

Definition 1.18. A sequence space E is said to be sequence algebra, if $(x_k) * (y_k) = (x_k.y_k) \in E$ whenever $(x_k), (y_k) \in E$.

Definition 1.19. A sequence space E is said to be convergence free, if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k = 0$ implies $y_k = 0$, for all k.

Definition 1.20. Let $K = \{k_1 < k_2 < k_3 < k_4 < k_5...\} \subset \mathbb{N}$ and E be a Sequence space. A K-step space of E is a sequence space $\lambda_K^E = \{(x_{k_n}) \in \omega : (x_k) \in E\}$.

Definition 1.21. A canonical pre-image of a sequence $(x_{k_n}) \in \lambda_K^E$ is a sequence $(y_k) \in \omega$ defined by

$$y_k = \begin{cases} x_k, \text{ if } k \in K, \\ 0, \text{ otherwise.} \end{cases}$$

A canonical preimage of a step space λ_K^E is a set of preimages of all elements in λ_K^E i.e. y is in the canonical preimage of λ_K^E , iff y is the canonical preimage of some $x \in \lambda_K^E$.

Definition 1.22. A sequence space E is said to be monotone, if it contains the canonical preimages of its step space.

Definition 1.23. If $I = I_f$, the class of all finite subsets of \mathbb{N} . Then, I is an admissible ideal in \mathbb{N} and I_f convergence coincides with the usual convergence.

Definition 1.24. If $I = I_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$. Then, I is an admissible ideal in \mathbb{N} and we call the I_{δ} -convergence as the logarithmic statistical convergence.

Definition 1.25. If $I = I_d = \{A \subseteq \mathbb{N} : d(A) = 0\}$. Then, I is an admissible ideal in \mathbb{N} and we call the I_d -convergence as the asymptotic statistical convergence.

Remark 1.3. If $I_{\delta} - \lim x_n = l$, then $I_d - \lim x_n = l$.

Definition 1.26. A map \hbar defined on a domain $D \subset X$ i.e $\hbar : D \subset X \to R$ is said to satisfy Lipschitz condition if $|\hbar(x) - \hbar(y)| \leq K|x - y|$ where K is known as the Lipschitz constant.

Definition 1.27. A convergence field of *I*-covergence is a set

 $F(I) = \{ x = (x_k) \in l_{\infty} : \text{there exists } I - \lim x \in \mathbb{R} \}.$

The convergence field F(I) is a closed linear subspace of l_{∞} with respect to the supremum norm, $F(I) = l_{\infty} \cap c^{I}(see[12])$.

The function $\hbar : F(I) \to \mathbb{R}$ defined by $\hbar(x) = I - \lim x$, for all $x \in F(I)$ is a lipschitz function (see[12]).

We used the following lemmas to establish some results of this article.

Lemma(I). Every solid space is monotone.

Lemma(II). Let $K \in \pounds(I)$ and $M \subseteq \mathbb{N}$. If $M \notin I$, then $M \cap K \notin I$.

Lemma(III). If $I \subseteq 2^{\mathbb{N}}$ and $M \subseteq \mathbb{N}$. If $M \notin I$, then $M \cap \mathbb{N} \notin I$.

Throughout the article, T is considered as a compact operator on the real space \mathbb{R} .

2. Main Results

In this article we introduce and study the following classes of sequence.

$$\mathcal{S}^{I} = \left\{ x = (x_{k}) \in \ell_{\infty} : \left\{ k \in \mathbb{N} : | T(x_{k}) - L | \geq \epsilon \right\} \in I, \text{ for some } L \in \mathbb{R} \right\};$$
(2.1)

$$\mathcal{S}_0^I = \left\{ x = (x_k) \in \ell_\infty : \left\{ k \in \mathbb{N} : | T(x_k) | \ge \epsilon \right\} \in I \right\};$$
(2.2)

$$\mathcal{S}_{\infty}^{I} = \left\{ x = (x_k) \in \ell_{\infty} : \exists M > 0 \ s.t. \left\{ k \in \mathbb{N} : | \ T(x_k) | \ge M \right\} \in I \right\}.$$
(2.3)

Theorem 2.1. The classes of sequences S^I , S_0^I and S_∞^I are linear spaces.

Proof. We shall prove the result for the space S^I . Rests will follow similarly. For, let $x = (x_k), y = (y_k)$ be two elements of S^I and α, β be scalars. Now, since $(x_k), (y_k) \in S^I$, then, for given $\epsilon > 0$, there exists $L_1, L_2 \in \mathbb{R}$ such that the sets

$$\left\{k \in \mathbb{N} : |T(x_k) - L_1| < \frac{\epsilon}{2 |\alpha|}\right\} \in \mathcal{L}(I)$$
(2.4)

and

$$\left\{k \in \mathbb{N} : |T(y_k) - L_2| < \frac{\epsilon}{2|\beta|}\right\} \in \mathcal{L}(I).$$
(2.5)

Therefore,

$$|T(\alpha(x_k) + \beta(y_k)) - (\alpha L_1 + \beta L_2)| = |\alpha T(x_k) + \beta T(y_k) - (\alpha L_1 + \beta L_2)|$$

= $|\alpha T(x_k) - \alpha L_1 + \beta T(y_k) - \beta L_2| \le |\alpha| |T(x_k) - L_1| + |\beta| |T(y_k) - L_2|$
 $< |\alpha| \frac{\epsilon}{2|\alpha|} + |\beta| \frac{\epsilon}{2|\beta|} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

Thus the set

$$A_3 = \left\{ k \in \mathbb{N} : |T(\alpha(x_k) + \beta(y_k)) - (\alpha L_1 + \beta L_2)| < \epsilon \right\} \in \pounds(I).$$

Therefore the set

$$A_3^c = \left\{ k \in \mathbb{N} : | T(\alpha(x_k) + \beta(y_k)) - (\alpha L_1 + \beta L_2) | \ge \epsilon \right\} \in I$$

implies that $\alpha(x_k) + \beta(y_k) \in S^I$, for all scalars α , β and (x_k) , $(y_k) \in S^I$. Hence S^I is linear.

Theorem 2.2. The spaces S^I and S_0^I are normed spaces normed by

$$||x||_* = \sup_k |T(x_k)|.$$

Proof. The proof of the result is easy in view of existing techniques and hence omitted. \Box

Theorem 2.3. A sequence $x = (x_k) \in \ell_{\infty}$ I-converges if and only if for every $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\left\{k \in \mathbb{N} : |T(x_k) - T(x_{N_{\epsilon}})| < \epsilon\right\} \in \mathcal{L}(I).$$
(2.6)

Proof. Let $x = (x_k) \in \ell_{\infty}$. Suppose that $L = I - \lim x$. Then, the set

$$B_{\epsilon} = \left\{ k \in \mathbb{N} : |T(x_k) - L| < \frac{\epsilon}{2} \right\} \in \mathcal{L}(I) \text{ for all } \epsilon > 0.$$

Fix an $N_{\epsilon} \in B_{\epsilon}$. Then, we have

$$|T(x_k) - T(x_{N_{\epsilon}})| \leq |T(x_k) - L| + |T(x_{N_{\epsilon}}) - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which holds for all $k \in B_{\epsilon}$. Hence $\left\{k \in \mathbb{N} : |T(x_k) - T(x_{N_{\epsilon}})| < \epsilon\right\} \in \pounds(I)$. Conversely, suppose that $\left\{k \in \mathbb{N} : |T(x_k) - T(x_{N_{\epsilon}})| < \epsilon\right\} \in \pounds(I)$. That is $\left\{k \in \mathbb{N} : |T(x_k) - T(x_{N_{\epsilon}})| < \epsilon\right\} \in \pounds(I)$, for all $\epsilon > 0$. Then, the set $C_{\epsilon} = \left\{k \in \mathbb{N} : T(x_k) \in [T(x_{N_{\epsilon}}) - \epsilon, T(x_{N_{\epsilon}}) + \epsilon]\right\} \in \pounds(I)$ for all $\epsilon > 0$. Let $J_{\epsilon} = \left[T(x_{N_{\epsilon}}) - \epsilon, T(x_{N_{\epsilon}}) + \epsilon\right]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in \pounds(I)$ as well

as $C_{\frac{\epsilon}{2}} \in \tilde{\mathcal{L}}(I)$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in \tilde{\mathcal{L}}(I)$. This implies that

$$J = J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi$$

That is

$$\{k \in \mathbb{N} : T(x_k) \in J\} \in \pounds(I)$$

That is

 $diamJ \leq diamJ_{\epsilon}$

where the diam of J denotes the length of interval J.

In this way, by induction, we get the sequence of closed intervals

$$J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq I_k \supseteq \dots$$

with the property that $diamI_k \leq \frac{1}{2}diamI_{k-1}$ for (k=2,3,4,....) and $\{k \in \mathbb{N} : T(x_k) \in I_k\} \in \mathcal{L}(I)$ for (k=1,2,3,4,....). Then there exists a $\xi \in \cap I_k$ where $k \in \mathbb{N}$ such that $\xi = I - \lim T(x_k)$. Hence the result.

Theorem 2.4. Let I be an admissible ideal. Then, the following are equivalent. (a) $(x_k) \in S^I$; (b) there exists $(y_k) \in S$ such that $x_k = y_k$, for a.a.k.r.I; (c) $f(x_k) \in S^I$

(c) there exists $(y_k) \in S$ and $(z_k) \in S_{\circ}^I$ such that $x_k = y_k + z_k$ for all $k \in \mathbb{N}$ and $\{k \in \mathbb{N} : | T(y_k) - L | \ge \epsilon\} \in I$;

(d) there exists a subset $K = \{k_1 < k_2 < k_3...\}$ of \mathbb{N} such that $K \in \mathcal{L}(I)$ and $\lim_{n \to \infty} |T(x_{k_n}) - L| = 0.$

Proof. (a) implies (b). Let $(x_k) \in \mathcal{S}^I$. Then, for any $\epsilon > 0$, there exists $L \in \mathbb{R}$ such that the set

 $\{k \in \mathbb{N} : | T(x_k) - L | \ge \epsilon\} \in I.$

Let (m_t) be an increasing sequence with $m_t \in \mathbb{N}$ such that

 $\{k \le m_t : |T(x_k) - L| \ge t^{-1}\} \in I.$

Define a sequence (y_k) as

 $y_k = x_k$, for all $k \le m_1$.

For $m_t < k \leq m_{t+1}, t \in \mathbb{N}$.

$$y_k = \begin{cases} x_k, \text{ if } |T(x_k) - L| < t^{-1}, \\ L, \text{ otherwise.} \end{cases}$$

Then, $(y_k) \in \mathcal{S}$ and from the following inclusion

$$\{k \le m_t : x_k \ne y_k\} \subseteq \{k \in \mathbb{N} : |T(x_k) - L| \ge \epsilon\} \in I.$$

We get $x_k = y_k$, for a.a.k.r.*I*. (b) implies (c). For $(x_k) \in S^I$. Then, there exists $(y_k) \in S$ such that $x_k = y_k$, for a.a.k.r.*I*. Let $K = \{k \in \mathbb{N} : x_k \neq y_k\}$, then $K \in I$. Define a sequence (z_k) as

$$z_k = \begin{cases} x_k - y_k, \text{ if } k \in K, \\ 0, \text{ otherwise.} \end{cases}$$

Then $(z_k) \in \mathcal{S}_{\circ}^I$ and $(y_k) \in \mathcal{S}$. (c) implies (d). Let $P_1 = \{k \in \mathbb{N} : |T(x_k)| \ge \epsilon\} \in I$ and $K = P_1^c = \{k_1 < k_2 < k_3 < ...\} \in \mathcal{L}(I).$

Then, we have $\lim_{n \to \infty} |T(x_{k_n}) - L| = 0.$ (d) implies (a). Let $K = \{k_1 < k_2 < k_3 < ...\} \in \mathcal{L}(I)$ and $\lim_{n \to \infty} |T(x_{k_n}) - L| = 0.$

Then, for any $\epsilon > 0$, and by Lemma (II), we have

$$\{k \in \mathbb{N} : |T(x_k) - L| \ge \epsilon\} \subseteq K^c \cup \{k \in K : |T(x_k) - L| \ge \epsilon\}.$$

Thus, $(x_k) \in \mathcal{S}^I$.

Theorem 2.5. The function $\hbar : S^I \to \mathbb{R}$ defined by $\hbar(x) = I - \lim T(x)$, for all $x \in S^I$ is a Lipschitz function and hence uniformly continuous.

Proof. Clearly the function \hbar is well defined. Let $x = (x_k), y = (y_k) \in S^I, x \neq y$. Then, the sets

$$A_x = \{k \in \mathbb{N} : | T(x) - \hbar(x) | \ge || x - y ||_* \} \in I.$$

$$A_y = \{k \in \mathbb{N} : | T(y) - \hbar(y) | \ge || x - y ||_* \} \in I.$$

where $||x - y||_{*} = \sup_{k} |T(x_{k} - y_{k})|$. Thus, the sets

$$B_{x} = \left\{ k \in \mathbb{N} : |T(x) - \hbar(x)| < ||x - y||_{*} \right\} \in \pounds(I).$$

$$B_{y} = \left\{ k \in \mathbb{N} : |T(y) - \hbar(y)| < ||x - y||_{*} \right\} \in \pounds(I).$$

 $B_y = \{ \kappa \in \mathbb{N} : | I(y) - h(y) | \le \|x - y\|_* \} \in \mathcal{L}(I).$ Hence, $B = B_x \cap B_y \in \mathcal{L}(I)$, so that $B \neq \emptyset$. Now taking $k \in B$, we have

$$|\hbar(x) - \hbar(y)| \le |\hbar(x) - T(x)| + |T(x) - T(y)| + |T(y) - \hbar(y)| \le 3 ||x - y||_*.$$

Thus, \hbar is Lipschitz function and hence uniformly continuous.

Theorem 2.6. If T is an identity operator and $\hbar : S^I \to \mathbb{R}$ is a function defined by $\hbar(x) = I - \lim T(x)$, for all $x \in S^I$ and if $x = (x_k)$, $y = (y_k) \in S^I$, then, $(x.y) \in S^I$ and $\hbar(x.y) = \hbar(x)\hbar(y)$.

Proof. For $\epsilon > 0$, the sets

$$B_x = \{k \in \mathbb{N} : |T(x) - \hbar(x)| < \epsilon\} \in \mathcal{L}(I), \tag{2.7}$$

$$B_y = \{k \in \mathbb{N} : |T(y) - \hbar(y)| < \epsilon\} \in \pounds(I).$$

$$(2.8)$$

where $||x - y||_* = \epsilon$. Now, since T is an identity operator, we have

$$|T(xy) - \hbar(x)\hbar(y)| = |T(x_ky_k) - \hbar(x)\hbar(y)| = |T(x_ky_k) - T(x_k)\hbar(y) + T(x_k)\hbar(y) - \hbar(x)\hbar(y)| = |T(x_ky_k) - \pi(x_k)\hbar(y)| = |T($$

 $= |x_k y_k - x_k \hbar(y) + x_k \hbar(y) - \hbar(x) \hbar(y)| \le |x_k| |y_k - \hbar(y)| + |\hbar(y)| |x_k - \hbar(x)|.$ (2.9) As $\mathcal{S}^I \subseteq \ell_{\infty}$, there exists an $M \in \mathbb{R}$ such that $|x_k| < M$ and $|\hbar(y)| < M$. Therefore, from (2.7), (2.8) and (2.9), we have

$$|T(xy) - \hbar(x)\hbar(y)| = |T(x_ky_k) - \hbar(x)\hbar(y)| \le M\epsilon + M\epsilon = 2M\epsilon$$

for all $k \in B_x \cap B_y \in \pounds(I)$. Hence $(x.y) \in \mathcal{S}^I$ and $\hbar(x.y) = \hbar(x)\hbar(y)$.

Theorem 2.7. The space \mathcal{S}^{I}_{\circ} is solid and monotone.

Proof. For, let $(x_k) \in \mathcal{S}_{\circ}^I$. Then, the set

$$\left\{k \in \mathbb{N} : | T(x_k) | \ge \epsilon\right\} \in I.$$
(2.10)

Let (α_k) be a sequence of scalars with $| \alpha_k | \leq 1$, for all, $k \in \mathbb{N}$. Therefore,

$$|T(\alpha_k x_k)| = |\alpha_k T(x_k)| \le |\alpha_k| |Tx_k| \le |Tx_k|, \text{ for all } k \in \mathbb{N}.$$

Thus, from the above inequality and (2.10), we have

$$\left\{k \in \mathbb{N} : | T(\alpha_k x_k) | \ge \epsilon\right\} \subseteq \left\{k \in \mathbb{N} : | T(x_k) | \ge \epsilon\right\} \in I$$

implies that

$$\left\{k \in \mathbb{N} : | T(\alpha_k x_k) | \ge \epsilon\right\} \in I$$

Therefore, $\alpha_k x_k \in \mathcal{S}^I_{\circ}$. Hence the space \mathcal{S}^I_{\circ} is solid. That the space is monotone follows from lemma (I).

Theorem 2.8. The inclusions $\mathcal{S}_0^I \subset \mathcal{S}^I \subset \mathcal{S}_\infty^I$ hold.

Proof. Let $(x_k) \in \mathcal{S}^I$. Then, there exists some L such that

$$I - \lim_{k} |T(x_k) - L| = 0.$$

That is, the set

$$\{k \in \mathbb{N} : | T(x_k) - L | \ge \epsilon\} \in I.$$

We have

$$|T(x_k)| = |T(x_k) - L + L| \le |T(x_k) - L| + |L|.$$

Taking supremum over k on both sides, we get $(x_k) \in \mathcal{S}^I_{\infty}$. The inclusion $\mathcal{S}^I_0 \subset \mathcal{S}^I$ is obvious. Hence $\mathcal{S}^I_{\circ} \subset \mathcal{S}^I \subset \mathcal{S}^I_{\infty}$.

Theorem 2.9. The set S^I is closed subspace of $\ell\infty$.

Proof. Let $(x_k^{(n)})$ be a Cauchy sequence in \mathcal{S}^I such that $x_k^{(n)} \to x$. We show that $x \in \mathcal{S}^I$. Since $(x_k^{(n)}) \in \mathcal{S}^I$, then there exists a_n such that $\{k \in \mathbb{N} : | T(x_k^{(n)}) - a_n | \ge \epsilon\} \in I$. We need to show that (1) (a_n) converges to a. (2) If $U = \{k \in \mathbb{N} : | T(x_k) - a | < \epsilon\}$, then $U^c \in I$. (1) Since $(x_k^{(n)})$ is Cauchy sequence in $\mathcal{S}^I \Rightarrow$ for a given $\epsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that $\sup_k |T(x_k^{(n)}) - T(x_k^{(q)})| < \frac{\epsilon}{3}$, for all $n, q \ge k_0$. For a given $\epsilon > 0$, we have

$$B_{nq} = \left\{ k \in \mathbb{N} : |Tx_k^{(n)} - Tx_k^{(q)}| < \frac{\epsilon}{3} \right\}$$

$$B_q = \left\{ k \in \mathbb{N} : |Tx_k^{(q)} - a_q| < \frac{\epsilon}{3} \right\}$$
$$B_n = \left\{ k \in \mathbb{N} : |Tx_k^{(n)} - a_n| < \frac{\epsilon}{3} \right\}$$

Then, B_{nq}^c , B_q^c , $B_n^c \in I$. Let $B^c = B_{nq}^c \cup B_q^c \cup B_n^c$, where $B = \{k \in \mathbb{N} : |a_q - a_\delta n| < \epsilon\}$. Then, $B^c \in I$.

We choose $k_0 \in B^c$. Then for each $n, q \geq k_0$, we have

$$\{k \in \mathbb{N} : |a_q - a^n| < \epsilon \} \supseteq \left[\{k \in \mathbb{N} : |a_q - T(x_k^{(q)})| < \frac{\epsilon}{3} \} \\ \cap \{k \in \mathbb{N} : |T(x_k^{(q)}) - T(x_k^{(n)})| < \frac{\epsilon}{3} \} \cap \{k \in \mathbb{N} : |T(x_k^{(n)}) - a_n| < \frac{\epsilon}{3} \} \right].$$

Then (a_n) is a Cauchy sequence of scalars in \mathbb{R} , so there exists a scalar a in \mathbb{R} such that $a_n \to a$ as $n \to \infty$.

(2) Let $0 < \delta < 1$ be given. Then we show that if $U = \left\{ k \in \mathbb{N} : |T(x_k) - a| \le \delta \right\}$, then $U^c \in I$. Since $x_k^{(n)} \to x$, then there exists $q_0 \in \mathbb{N}$ such that

$$P = \left\{ k \in \mathbb{N} : | T(x_k^{(q_0)}) - T(x_k) | < \frac{\delta}{3} \right\}$$
(2.11)

implies $P^c \in I$. The number q_0 can be chosen that together with (2.11), we have

$$Q = \{k \in \mathbb{N} : \mid a_{q_0} - a \mid < \frac{\delta}{3}\}$$

such that $Q^c \in I$. Since $\{k \in \mathbb{N} : |T(x_k^{(q_0)}) - a_{q_0}| \geq \delta\} \in I$. Then we have a subset S of \mathbb{N} such that $S^c \in I$, where $S = \{k \in \mathbb{N} : |T(x_k^{(q_0)}) - a_{q_0}| < \frac{\delta}{3}\}$. Let $U^c = P^c \cup Q^c \cup S^c$, where $U = \{k \in \mathbb{N} : | T(x_k) - a | < \delta\}$. Therefore, for each $k \in U^c$, we have

$$\{k \in \mathbb{N} : |T(x_k) - a| < \delta\} \supseteq \left[\{k \in \mathbb{N} : |T(x_k) - T(x_k^{(q_0)})| < \frac{\delta}{3}\} \\ \cap \{k \in \mathbb{N} : |T(x_k^{(q_0)}) - a_{q_0}| < \frac{\delta}{3}\} \cap \{k \in \mathbb{N} : |a_{q_0} - a|^{p_k} < \frac{\delta}{3}\}\right].$$

Then the result follows.

Since the inclusions $\mathcal{S}^I \subset \ell_{\infty}$ and is strict so in view of Theorem (2.9.) we have the following result.

Theorem 2.10. The space S^I is nowhere dense subsets of ℓ_{∞} .

References

- [1] F. Basar, B. Altay, On the spaces of sequences of p-bounded variation and related matrix mapping, Ukrainian Math. J. 55 (2003).
- [2] R.C. Buck, Generalized Asymptotic Density, Amer.J. Math. 75 (1953), 335–346.
- [3] Fast, Sur la convergence statistique, Collog. Math H. 2 (1951), 241–244.
- [4] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
- [5] V.A. Khan, K. Ebadullah, On Zweier I-convergent sequence spaces, (in press).

- [6] V.A. Khan, K. Ebadullah, On some I-Convergent sequence spaces defined by a modullus function, Theory and Applications of Mathematics and Computer Science 1 (2011), no. 2, 22–30.
- [7] P. Kostyrko, M. Mačaj, T. Šalát, M. Sileziak, I-convergence and extremal I-limit points, Mathematica Slovaca 55 (2005), no. 4, 443–464.
- [8] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Analysis Analysis Exchange 26 (2000), no. 2, 669–686.
- [9] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons Inc, New York-Chichester-Brisbane-Toronto, 1978.
- [10] I.J. Maddox, *Elements of functional analysis*, Cambridge University Press, 1970.
- [11] T. Šalát, On statistical convergent sequences of real numbers, Math. Slovaca **30** (1980).
- [12] T. Šalát, B.C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 (2004), 279–286.
- [13] T. Šalát, B.C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. 17 (2005), 45–54.
- [14] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.
- [15] M. Sengönül, The Zweier sequence space, Demonstratio Mathematica XL (2007), no.1, 181–196.
- [16] B.C. Tripathy, On statistical convergence, Proc. Estonian Acad. Sci. Phy. Math. Analysis (1998), 299–303.
- [17] B.C. Tripathy, B. Hazarika, Some I-Convergent sequence spaces defined by Orlicz function, Acta Mathematicae Applicatae Sinica 27 (2011), no. 1, 149–154.
- [18] B.C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca 59 (2009), no. 4, 485–494.

(Vakeel A. Khan) DEPARTMENT OF MATHEMATICS A.M.U, ALIGARH-202002, INDIA *E-mail address*: vakhanmaths@gmail.com

(Mohd Shafiq) DEPARTMENT OF MATHEMATICS A.M.U, ALIGARH-202002, INDIA *E-mail address:* shafiqmaths7@gmail.com

(Rami Kamel Ahmad Rababah) DEPARTMENT OF MATHEMATICS A.M.U, ALIGARH-202002, INDIA *E-mail address*: ramirababahr@hotmail.com

(Ayhan Esi) Adiyaman University, Science and Art Faculty, Department of Mathematics, Turkey

E-mail address: aesi23@hotmail.com