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1. Introduction

We consider in this paper the following nonlinear anisotropic elliptic Dirichlet bound-
ary value problem:

b(u) — Zazai(m,g;_) =f in Q
=1 ' (1)

u=20 on 01,

where € is an open bounded domain of RY (N > 3), with smooth boundary, b : R — R
a continuous and non-decreasing function, with 5(0) = 0 and f € L*(Q).

All papers concerned by problems like (1) have considered particular cases of function b.
Indeed, in [13], the authors considered b = 0 which permit them to exploit minimization
technics to prove the existence of weak solution and mini-max theory to prove that the
weak solutions are multiple. Using their methods, Ouaro et als (see [11], [14]) studied
the following problems:

N
0 ou .
_;Mai(x,(%)—f in Q

u=20 on O,
where f € L>(Q) (see [11]) and
N
_Zfai(%?):f n Q
X €Z;
= ®)
u=20 on 0,
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348 I. IBRANGO AND S. OUARO
where f € LY(Q) (see [14]).

In [11], the authors proved the existence and uniqueness of weak solution and in [14],
Ouaro proved by using the results of [11], the existence and uniqueness of entropy solu-
tion.

In this paper, the function b is more general and the model contains both models studied
in [11] and [14]. As b is general, it is not possible to use minimization tehnics used in
[13] or [6] (see also [11], [14], [15], [16]) to get the existence of solution. Therefore, in
this paper, we used the technic of monotone operators in Banach spaces (see [17]) to get
the existence of entropy solutions of (1). For the uniqueness, since b is not necessarly
invertible, then, we proved the uniqueness of the entropy solution in terms of b(u) which
is clearly equivalent to the uniqueness of u if and only if b is invertible.

The remaining part of the paper is the following: in Section 2, we introduce some prelim-
inary results and in section 3, we study the existence and uniqueness of entropy solution.

2. Mathematical preliminaries

We study problem (1) under the following assumptions on the data.
Let © be a bounded domain in RY (N > 3) with smooth boundary domain 9 and
p(.) = (p1(.),...,pn(.)) such that for any i = 1,..., N, p;(.) : @ — R is a continuous
function with
1 < p; :=ess inf p;(z) < esssup p;(z) := p; < oo. (4)
e e
Forany :=1,...,N, let a; : 2 x R — R be a Carathéodory function satisfying:
e there exists a positive constant C; such that

s, )] < €1 (1) + I ) )
for almost every z € Q and for every ¢ € R, where j; is a non-negative function in
LPO(Q), with o5 + 5y = 1

o for £, n € R with & # n and for almost every x € €, there exists a positive constant
Cs such that

Cole —nlPi™) it € —n[ > 1
(ai(2,€) — ai(z,n)) (€ —n) = (6)
Col¢ —mPeif [€—n| <1

and
e there exists a positive constant C3 such that

ai(x,€).6 > CalePi (@) (7)

for £ € R, for almost every x € Q.
The hypotheses on a; are classical in the study of nonlinear problems (see [5],[6]).
Throughout this paper, we assume that

pN—-1) _ _ _p(N-1) pf—p; -1 _ p-—N
m bi N-p’ Dy (N —1) (8)
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and

where — Z —

= 1p’b

A prototype example that is covered by our assumptions is the following anisotropic
p(.)-harmonic problem: Set

ai(z,§) = |§
Then, we obtain the problem

Pi(#)=2¢  where pi(x) >2 for any i=1,...,N.

N

pi(z)—2
_ Z 0 ou ou _ f n O
i=1 (10)
u =0 on 01,
which, in the particular case when p; = p for any ¢ = 1,..., N, is the p -Laplace equation.

We also recall in this section some definitions and basic properties of anisotropic Lebesgue
and Sobolev spaces.
Set

Ci(Q) = {p €C(Q): menﬁlp(x) >1 ae. z€ Q}
and we denotes by
pu () := max (pl(x), .. ,pN(ac)) and  pn, () := min (pl(x), . ,pN(x)).
For any p € C,(Q), the variable exponent Lebesgue space is defined by
LPO(Q) == {u : u is a measurable real valued function such that /Q luP@dz < oo},

endowed with the so-called Luxemburg norm

p(z)
[ulpy = inf{)\>0: / dxgl}.
Q

The p(.)-modular of the LP()(Q) space is the mapping p,() : LP()(Q2) — R defined by

u) :/ u[P@ dz:
Q

For any u € LP() (), the following inequality (see [9], [10]) will be used later

u(z)
A

. - + - +
mln{Mﬁ(_); |U|§(_)} < pp(y (u) < max{|u|§(i); |U|§(4)}- (11)
1 1
For any u € LPO)(Q) and v € LI0)(Q), with — + — = 1 in Q, we have the Holder
p(z) — q(x)

type inequality

‘ / uvdx

< ( + 1>|up Svla0)- (12)
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If Q is bounded and p,q € C4(Q) such that p(x) < ¢(x) for any x € Q, then the embed-
ding LP)(Q) — L) (Q) is continuous (see [12], Theorem 2.8).

Herein we need the anisotropic Sobolev space

o 0
WP (Q) = {u eWy(Q) - ai e LPO(Q), i= L...,N},
z;
which is a separable and reflexive Banach space (see [13]) under the norm
N
ou
lully) = :
= 1070
We introduce the numbers
_Np-D, . Np-1)_ Ng
N_1' N—p N—g
and define P*, P*, P_ . €R" by
. N _ .
Pr = ﬁ, Pt =max{py,...,py} and P_ . =max{PT, P*}.
> Lo
i=1 Pi

We have the following embedding results (see [13], Theorem 1).

Theorem 2.1. Assume that @ C RN (N > 3) is a bounded domain with smooth bound-
ary. Assume also that relation (9) is fulfilled. For any q € C(Q) verifying
1<q(z) < P_o forany z €9,
the embedding
Wy PO ()« L0 ()
is continuous and compact.
The following result is due to Troisi (see [19]).

Theorem 2.2. Let py,...,pn € [1,400); g € WhHPLPN)(Q) and
o i ereN
€[1,400) if (p)* > N.
Then, there exists a constant Cy > 0 depending on N,p1,...,pn if p < N and also on

q and mes(QY) if p > N such that
N

l9]|za(a) < Ca H

i=1

g 1/N

aCCZ‘

(13)

LPi (Q).

In this paper, we will use the Marcinkiewicz space M%(Q2) (1 < g < 400) as the set
of measurable functions g : 2 — R for which the distribution function

Ag(k) =mes({z € Q: |g(z)| > k}), k>0 (14)
satisfies an estimate of the form
Ag (k) < Ck™19, for some finite constant C > 0. (15)

We will use the following pseudo norm in M9(Q):
gl ato() = inf{C > 0: \y(k) < Ck™9, ¥ k > 0}. (16)
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Finally, we use through the paper, the truncation function Ty, (k > 0), by
T (s) = max{—k; min{k; s}}. (17)
It is clear that lim Ty(s) =s and |Tk(s)| = min{|s|; k}.
k— o0

We define ’761’5 (')(Q) as the set of the measurable functions u : € — R such that
Ti(u) € WePO(Q).

In the sequel we denote Wol’ﬁ(‘)(fl) = F to simplify.
3. Existence and uniqueness result

Definition 3.1. A measurable function u € 751’5(')((2) is an entropy solution of (P) if
b(u) € L1 (Q) and

= du\ 0
; /Q a; (x, 8%) a—xiTk(u —@)dx + ; b(u)T(u — p)dr < A F(@) T (u— )dz, (18)

for all o € ENL*(Q) and for every k > 0.
The existence result is the following theorem:

Theorem 3.1. Assume (4)-(9). Then, there exists at least one entropy solution of the
problem (P).

Proof. The proof is done in tree steps.

Step 1. The approximate problem.
We consider the approximate problem

N
0 o, B .
Lame(n ) Tt = w0

(Pn)

U, =0 on 012,
where f, = T,,(f) € L>=(Q). Note that

fo — f i IMQ) and ||fn||1:/Q|fn\dIS/Q\f|dfv:Hflh- (20)

n—-+o0o

Definition 3.2. A measurable function u, € E is a weak solution for the problem (P,)

if
Y du,,\ 9
Z/QaZ(x, 81) ajdx—i—/QTn(b(un))godx:/ancpda:, (21)
i=1 ' '

for every ¢ € E.

Let us prove the following lemma.
Lemma 3.1. There exists at least one weak solution wu,, for the problem (P,).

Proof. We define the operator A,, as follow:

(Anu, ) = (Au, p) +/9Tn (b(w))pdz YV u,p€E (22)
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where

(Au, @) = /Zal< a“)g;idx. (23)

Assertion 1. The operator A, is type M.
e The operator A is monotone. Indeed, for u,v € E, we have

(A(u) — A(v),u —v) = (A(u),u —v) + (A(v),v — u>

/Zal( 33:) oz, Lo +/Z“’( axz) (g;u)dx
[ (o) oo ) (- )

(A(u) — A(v),u —v) >0, (24)
since for ¢ = 1,..., N, for almost every x € Q, a;(x,.) is monotone.

then

e The operator A is hemicontinuous. Indeed, let ¢ : t € R — ¢(t) = (A(u + tv),v) and
let t, tg € R such that t — tg. Put w =u+tv € E and wg = u + tgv € E.

Therefore ||w — wol|z.) = ||(t — to)vl|p.) = |t — tol-||v]|) — 0, ie w—wy in E.
We have
|p(t) = p(to)| = [{A(u + tv), v) — (A(u + tov), v
ow
L

<3 [ (e 2) - %ﬁ)l\aﬂ
‘81;

< N max [(1_+ ! )%(%)_a(vawo) }
1<i<N [\p;  (p)~ Oz; Oxi ) { ()10 ],

Denote by ¢;(z,w) = a;(x, 8—) Since ¢;(x, w) — (z, wp) in LPiO)(Q) (see [11]) we
deduce that ¢ is continuous. Then A is hemicontinuous.

a; | T,

Since the operator A is monotone and hemicontinuous, then according to the Lemma 2.1
n [17], A is of type M. Therefore, according to [1] the operator A,, is also of type M.

Assertion 2. The operator A, is coercive.
Indeed, let u € E. We have T, (b(u))u > 0 for all u € E.

Then
/Zaz( 8xz)gzzdx
(2)
>C’3/Q; oz, dx.
Denote
I:{ie{l,...,N}:‘gg_ gl} and j:{ie{l,...,N}:‘gg_ >1}.
tipi(.) tlpi(.)
Then L<A pi(m)d +Z/ pl(m
C3 q | 0x; Ox;
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>3|2 ou "
T i 10 e e 10%il,,)
ZGJ’
P,
2 8
jeq 9% lpi()
N Do P
Z Z gu _ 8u
im1 1 9%ilpi() ez 9% pi)
N _
ou |Pm
Sy LT g
i=1 O pi(.)
Using the convexity of application ¢ € RT — tPm, p— > 1, we obtain
N _
1 1 Ou P
— (A, (u),uy > ——— — N.
03< (u) U> - Np;t_l (l—zl 81'7 pl()>

Then

(An(u),u) 2 = _1|| ullf) — CaN. (25)

Consequently the operator A,, is coercive.

Assertion 3. The operator A, is bounded.
Indeed, let w € B C E a bounded space and v € E. According to (5) and (12) and as b

is onto, we have
ou
ot = 3 o= 5 |3
ov

N

dm+/|T w))oldz
C1Z</ﬂ]z( ) v

pi(z)—1
dx+/ v dx) +/ |b(w)||v]|dz
i=1 Q Ox; Q

N
§012<1+ ,1)81} Mau >+C/v|dx
= (pi)= /1 0wi P 9

p;
where C' is a positive constant.
Then the operator A, is bounded.

ov

ou
8a:i

(uz

IN

pi(z)—1

The operator A,, is type M, bounded and coercive on E to its dual E*, then A, is
surjective (see [17], Corollary 2.2). Therefore for f,, € E*, we can deduce the existence
of a function u,, € E such that (A,u,, @) = (fn,¢) forall ¢ € E, namely

Z/a( a"")g@d Jr/Tn(b(un))god:c:/fncpdm forall pe E. O
iz Q

Our aim is to prove that these approximated solutions wu,, tend, as n goes to infinity,
to a measurable function v which is an entropy solution of the problem (P). To start
with, we establish the priori estimates.

Step 2. A priori estimates.
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Lemma 3.2. There exists a positive constant C’5 which does not depends on n such that
Z /u,L<k:}

Proof. If we take ¢ = T (u,) as test function in (21) we obtain

Ou, |P

for every k > 0.

N

Oup \ Ou
a; | ©, —~ ndx—i—/Tnbun T undaj:/ . (uy, )dx
;/{Iunlgk} ( ﬁxi)axi . (b(un )T (un) Qf e (Un)

and using relation (7) and the fact that / T (b(un)) Tk (wy)dz > 0, then

Q
N (@)
Ouy, [P
ey [ " e < K|l (27)
,Z::l {lun|<k} | OTi '
We have
N p; N pi N P
Z/ Oun dm:Z/ Oun dx—i—Z/ Otn |
S uni <yl 9% S unl<hs (5> 1y 0T Sl <k 19em<1y] O
N (@)
Ou, |P
< = dx + N.mes(Q)
;/{msm Oz
1
< C—k:||f||1 + N.mes(Q) due to relation (27)
3
1
< Cs5(1+k) with Cs :max{c|f||1; N.mes(Q)}. O
3

Lemma 3.3. For any k > 0, there exists some constants Cg,C7 > 0 such that:
) unl| pmar (@) < Cs;

Ouy,
(i) H Y < (%, Vi=1,...,N.
al’z MPi q/pQ)

Proof.
(i) According to Lemma 3.2 we have

/{lun|§k}

o If £ > 1, we have

Ou, |?

Cdr < Cs(14+k) V>0, Yi=1,...,N.

/{lun|<k}
Py

de < Chk  ie  Ti(un) € WPV (q).

A, |P

thus
0

/Q Ox;

Using the Theorem 2.2, we deduce

1/N

Tk (un )| oo o
LPi (9)
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Then
N _ (D))"
()" " 0 p; Np;
Tw(uy, dr < Cjg [ </ — T (un, 1dx> }
| 17t IT( [, Iz i)
N 1 1@
ol
i=1
EN: 1
o= (D) o
:C[k;i—lNi:| :(Jk;(zs)
We have
/ Ty ()| da g/ | T ()| da.
{lun|>k} Q
Therefore
kP mes({z € Q: Ju,| > k}) < / Tk ()| P da < CF
Q
Thus,

Ao, (B) <CEP" G0 =0k~ V>0

o If £ < 1, we have
A, (k) = mes({z € Q: Ju,| > k}) < mes(Q) < mes(Dk™9, VEk<1.
Consequently
A, (B) < (C +mes(Q)k™7 = Csk™;
namely
|un | pma ) < Cé.

e Let a > 1.
We have, V k£ > 1

duy,
/\%Z?(a)zmes({er: ‘(,;;Z a})
Ouy, Ouy,
= mes({’ 8::1- > a; uy| < k}) +mes({’ 8:71' > a; ug| > k})
</ o+ A, (k)
{1242 1> 05 Jun<k}
i
g/ (1 Oun ) dz + M. (k)
{lun|<iy \@| OTi
<aPC'k+CET.
We obtain
—p; -q"
/\%(O&)SB(!CO& +k79).
Let us consider the function g : [1,4o0o[— R, z +— g(z) = - a7
oPi

We have ¢'(x) =0 for z = (q*apf)ﬁ'
If we take k = (q*@p"'_)ﬁ > 11in (28) we get

Aaun<a>s3k(q +11 )

Oz, .

q* P

355
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< Mofqgillp;
<Ma PP Yo >1.
e If 0 < a <1, we have

Oou,
)\%%(a) = mes({‘ oz,

Then

> a}) < mes(Q) < mes(Q)a P VP Y0<a<l.

)\%(a) < (M +mes(Q))a"P P Vo >0

and we deduce
ouy,
5’:rz-

) <C; Yi=1,...,N. O
MPi q/ﬁ(Q)

Step 3. Existence of entropy solution

Using Lemma 3.3, we have the following useful lemma (see [5]).

Lemma 3.4. Fori=1,...,N, as n — +00, we have

Ouy, ou _ 1
a; (m, 3:52-) — a; (J;, (‘9%) in L'(Q) ae xze (29)

In order to pass to the limit in relation (21), we need also the following convergence
results as in [4]:

Proposition 3.1. Assume (4)-(9). If u,, € E is a weak solution of (P,) then the sequence
(un)nen s Cauchy in measure. In particular, there exists a measurable function u and
a sub-sequence still denoted by u,, such that u, — u in measure.

Proposition 3.2. Assume (4)-(9). If u, € E is a weak solution of (P,) then

(@) foralli=1,...,N, Gln converges in measure to the weak partial gradient of u;

8(Ei

(i) foralli=1,...,N and k >0, a; (aj, ;ka(un)) converges to a; (x, aiTk(u)) in

LY(Q) strongly and in LP+C)(Q) weakly.

We can now pass to the limit in relation (21).
Let ¢ € Wol’p(')(Q) N L*>(£2) and choosing Ty (u, — ¢) as test function in (21), we get

N
ou, \ O
;/Qa,; (x, 8132) aa:iT’“(“” —p)dx

(30)
n b n n — = n
+/QT (b(un )Tk (un, — @)dz /Qf Ti(u
For the right-hand side of (30) we have
| Bt = )ie — [ j@)Tiu = e (31)
Q

since f,, converges strongly to f in L*(£2), and T} (u, —¢) converges weakly-* to T (u— )
in L>(£2) and a.e in ).
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For the first term of (30) we have (see [5]):

al Oun\ 0 al ou
lian inf;/gai (ac, 8@) oz, Ti(u, — p)dx > ;/Qai <x, .

81‘,‘

K2

) 0 Tr(u — @)dz. (32)

Finally we focus our attention on the second term of (30).

‘We have
Tn(b(up )Tk (un — @) — b(w)T(u — ) ae. x€Q (33)
and
T (b(un)) T (un — @) < k[b(un)|- (34)
We show that [b(uy)| < ||fn]leo- Indeed, let us denote by
. (st . 1if s>0
H,.(s) = min (6; 1) and  signg (s) = { 0 if 5<0.

and if y is a maximal monotone operator defined on R, we denote by 7 the main section
of v; i.e.,

minimal absolute value of v(s) if y(s) #0

Yo(s) = ¢ +o0 if [ )ND(vy) =0

—00 if (—oo0,s]ND 0

—

S, +00

Remark that if € approach 0, H.(s) = signg (s).
We take ¢ = Hc(u, — M) as test function in (21), for the weak solution w, and M > 0
(a constant to be chosen later), to get

N
ou, \ O
;/ﬂai (:v, a.’Ei>8IiH€(un — M)dz

(35)
+ / T, (bun)) He (t — M)dw = [ fuHo(uy — M)da.
Q Q

‘We have

N N
Oun\ 0 1 (. Oun\ O it
Z: /Q @i <$7 6371 ) 83:, He(un—M)dz N E ; A (‘Ll'n,z]\/f)‘*’ <1} @i <$7 6$z ) 6331 (un M) dx

1 N / ( 8un> 0
e Z ai| z, — | s undx
€ = J{o<u,—Mm<c} Ox; ) Ox;

>0 according to (7).

Then, (35) give

/ T, (b(un))He(un — M)dx < / foHe(uy, — M)dz,
Q Q

which is equivalent to saying

/Q (Tn (b(un)) = Tn (b(M))>He(un ~ M)dz < /Q ( fo—Tn (b(M))> H. (un — M)da.

We now let € goes to 0 in the above inequality to obtain

/Q (T,L (bun)) - T, (b(M))>+dx < /Q ( fo— Tn(b(M))>signg(un ~ M)dz.  (36)
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Choosing M = by (|| fx||oc) in the above inequality (since b is surjective). We obtain
+
[ (2000) = Tu1l1) o < [ (2= Ta1fle) Jsions (o = 5571l 1))
(37)
For any n > || fn||oo, We have

/. (f" - Tn("fn||oo>)8i9no* (tn = b5 (| fll)) d

- /Q <f" B ”fn”oo>si9"o+ (s — b5 ([ ful o))z < 0.
Then, (37) gives

/Q (Tn (b(un)) = ||fn||oo)+dx <o.

+
Hence, for all n > [|fn]lco, We have (Tn(b(un)) — |fn|oo> = 0 a.e in , which is
equivalent to saying

T (b(un)) < [[fall for all n> [|full. (38)

Let us remark that as u,, is a weak solution of (21), then (—u,,) is a weak solution to the
following problem

N
_;8‘;@ (x (27Z> + T (b(up)) = fu in Q

(Pn) (39)
Up =0 on 0N
where @;(z,€) = —a;(z, =€), b(s) = —b(—s) and f, = —f,.
According to (38) we deduce that
T = b(un)) < || falloo for all 7> |||
Therefore
T (b(un)) >~ fullsc for all > ||f||e. (40)
It follows from (38) and (40) that for all > || fu|locs |Th (b(wn))| < || fallec witch implies
[b(un)| < || fnlleo a.e. in Q. O

We can now use the Lebesgue dominated convergence theorem to get

lim [ To(b(un))Te(un — @)dz = /Q b(u)Te(u — o)dz. (41)

n—-4o0o Q

Combining (31), (32) and (41), we obtain

%

N
Z/ a;| x, ou iTk(u —@)dx + | b(u)Tg(u—@)de < | f(2)Tp(u—@)dx. (42)
i—1 /0 Ox; ) Ox; Q Q
Then u is an entropy solution of (P).
]

Theorem 3.2. Assume that (4)-(9) hold true and let u be an entropy solution of (P).
Then, u is unique.



ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT 359
Proof. The proof is done in two steps.

Step 1. A priori estimates

Lemma 3.5. Assume (4)-(9) holds and f € L*(2). Let u be an entropy solution of (P).

Then
N

>l
= Jilul<ky 192
and there exists a positive constant Cg such that

[lo(w)]]1 < Cs.mes(Q) + || f]1- (44)

pi(z)

x Cr
do < 221l (43)

Proof. Let us take ¢ = 0 in the entropy inequality (18).
e By the fact that / b(uw)Ty(u)dx > 0 and using the relation (7), we get (43).
Q

N
ou, 0
e Using the fact that E / a;(z, al) Ti(u)dz > 0, relation (18) gives
=1 J/Q z;” Ox;

/b(u)Tk(u)dmg/f(x)Tk(u)d:L‘. (45)
Q Q

By (45), we deduce that
/ b(u)Tk (u)dx Jr/ b(u) Ty (w)dx < k|| f]]1
{lul<k} {lul>k}

which imply that
/ b(u) Ty (w)d < K|
{lu|>k}

/ b(u)dx —|—/ —b(u)dx <||f|]1.
{u>k} {u<—k}
/ Ib(w)ldz < ||f]]s-
{u|>k}

b(u)ldx = b(u)|dx b(u)|dx
/Q\ () /{mgk}' () +/{|u>k} ()

<[ pwlde+ |l
{lul<k}

Since the function b is non-decreasing, then

/ [b(u)|dx < max{b(k); |b(—k)|}.mes(£2).
{lul<k}

or

Therefore

So, we obtain

Consequently, there exists a constant Cs = max{b(k); |b(—k)|} such that
o)l < Cg.mes(Q) + || f]]1- 0
Lemma 3.6. Assume (4)-(9) holds and let f € L'(Q). If u is an entropy solution of
(P), then there exists a constant D which depends on f and Q such that
D

mes{|u| >k} < e ORLEGE Vk>0 (46)
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and a constant D" > 0 which depends on [ and Q such that
Ju
mes
a{Ei
Proof. e For any k > 0, the relation (44) gives

/ min(b(k), |b(—k)|)dx < / |b(u)|dx < Cs.mes(2) + || f||1-
{lul>k}

’
>I<;}§ D i1 (47)
k@)’

{lul>k}
Therefore,
min(b(k), |[b(—k)|).mes{|u| > k} < Cs.mes(Q) + ||f||1 = D;
that is
{lu > k} < b
mes < — .
min(b(k), [b(—k)])

e See [4] for the proof of (47). O

Lemma 3.7. Assume (4)-(9) holds and let f € L*(Q). If u is an entropy solution of
(P), then

iim [ quisnende =0 (48)

h—+o0
where h >0 and t > 0.
Proof. Since the function b is surjective, according to Lemma 3.6-(46), we have

. lin_1~_ mes{|u| > h—t} =0 and as f € L1(Q), it follows by using the Lebesgue domi-
—+00

nated convergence theorem that lim / |fIX{ju|>h—tydz = 0. O

Lemma 3.8. Assume (4)-(9) holds and let f € L*(Q). If u is an entropy solution of
(P), then there exists a positive constant K such that

Ou
PO\ | oz,
where ' ={h < |u| <h+k}, h>0, k>0.

pi(z)—1
XF>§K, Vi=1,...,N (49)

Proof. Let ¢ = Tp,(u) as test function in the entropy inequality (18). We get

iv:/gai <x,§;i> ;%Tk(u_Th(“))dw+/£)b(“)Tk(U_Th(U))dfS/Qf(x)Tk(u—Th(u))dx,

Thus,

N
> or (i, ) G < Kl
i—1 Y {h<|u|<h+k} 0x; ) Ox;

and using (7), we have

J

ou
Pp;(,) ami

pi ()

C
dngufnl, Vi=1...,N.

ou
8%—

Consequently,

pi(z)—1
XF><K, Vi=1,...,N. O
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Step 2. Uniqueness of entropy solution.
Let h > 0 and w,v be two entropy solutions of (P). We write the entropy inequality

corresponding to the solution u, with T} (v) as test function, and to the solution v, with
Th( ) as test function:

Z / i, 5 ) Tl Ta0)dot [ M T Th(0)ds < [ T (u-Til0)da

(50)
and
g:/ a-(w 81}) iTk(v—Th(u))dx—l—/ b(v) Ty (v—Tp(u))dx < / f(@) T (v—Tp(u))dx.
=1 Q ! 78.1‘1' 61‘1 Q o Q
(51)
Upon addition, we get
Z/ al( 3331)3% i(u— Th(v dx+Z/ al( a%)asz (v — Th(u))da
+ /Q b(w) T (u — Tiy(v))da + /Q b(v)Ts (v — Th (w))dz (52)
A f(@) [Tr(u — Ty (v) + Tr(v — Ty (uw))] dx.

Define
Ey={lu—v|<k; |v| <h}; Ey=FEiN{ul <h} and E5=FE;N{ul > h}.
We start with the first integral in (52). We have
N

8u) 0
ai|l v, — | =—Tx(u — Th(v))dx
Zz_;/{|uTh,(v)|<k} ( Ox; ) Ox;
N
Z/ (x,au) 0 Ti(u—Tp(v))dx
= {10 (v)| <k}N{v|<h} dwi ) Ox;
ou\ 0
5yl <x> Ti(u — T (0)da
; {Ju=T, ()| <k} {|v|>h} dz; ) dx;

N
_ Z/ o (xau> u=v),
— J{Ju—v|<k}n{|v|]<h} Oz; Ox;

+Z/ 8u>8ud

T
8xi
N

Ou\ 0
> —
> g /El az( amz) oz, (u —v)dz

i=1

oo )i 5 ) 2o

i=1

iz,
{lu—hsign(v)|<k}N{|v|>h} < Ox;
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Then, we obtain

8u> 0
E T, — Te(u—Th(v))dx
/u T (v) |<k} < Ox; ) Ox; k( h(v)

i/ al( 5u)azzu_vdx—2/ ( >§;}1d (53)

According to (5), and the Holder type inequality we have

ou pi(@) =1\ | gy
7 d < C d
> ool son [ oo ) e
N
Ou (p;(x)—1 v
<y (lis >+]y p I
; & P () {h<lul<hiky/ | Oxi Pil)thmh<lvIh)
where
‘| U pi(x)— _ H @ pi(z)—1
Oz; pi (). {h<|u|<h+k} O PO ({h<|u|<h+k})
Fori=1,..., N, the quantity <ji|p;(.) + 3—; pi@)=t ) is finite accord-

P, {h<lul<h+k}
ing to relation (11) and Lemma 3.8.
According to Lemma 3.7, the quantity |22

converges to zero as h oes
pi(.) {h—k<[v|<h} 8 &

to infinity. Consequently the last integral of (53) converges to zero as h goes to infinity.
Then

al ou\ o al ou\ o
ail v, =— | =—Tk(u—Tx(v))dx > I+ / az(ac,) u—v)dx
;/{u—Th(v)gk} < 3%‘) Oz; k( n(®)) " ; R ox; 83:1-( )
(54)
with  lim Iy =0.
h— 4000
We may adopt the same procedure to treat the second term in (52) to obtain
N
v, 0
T (v —Th(w))dz > Jp — / ( —v)dx
;/{v—n(u)su 52 By Z @i
(55)

with lim J, =0.

h—s 4000

For the two other terms in the left-hand side of (52), we denote

K = /Q b(u) T — Th (v))das + /Q b(v) T (v — Th(u))dz.
We have
b(u)T(u — Th(v)) — b(w)Ti(u —v) a.e since h — +00
and
|b(u) T (u — Th(v))] < klb(u)| € L' ().

Then, by the Lebesgue dominated convergence theorem, we obtain

hirrioo A b(u) Ty (u — Th(v))dx = /Q b(u)Tk(u — v)dx.
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In the same way, we get

hinioo A b(v) Ty (v — Th(u))dx = /Qb(v)Tk(v —u)dx.

Then
lim K= /Q (b(u) = b(v)) Tr(u — v)dz.

h— 400

Now consider the right-hand side of inequality (52). We have

h—s 400

lim f(x )(Tk(u —Th(v)) + Tp(v — Th(u))> =0 ae

and
| (@) (Te(u = Th(v) + Ti(v — Th(u)))| < 2k|f| € LN(RQ).

By the Lebesgue dominated convergence theorem, we obtain

lim /f(x)(Tk(uTh(v))Jer(vTh(u)))dx0.

After passing to the limit as h goes to +0o in (52) we get:

Z/Iu v|<k}( g;i) ai(w, 861) )) 8i1(u—v)dx

v /Q (b(u) — b(v)) Te(u — v)da < 0.

Since b and a;(x,.) are monotone then

/Q (bw) — b)) T (u — v)da = 0

and

/{ i(ai(x, %) —w(ax,ﬁi))ai(u_v)dxzo.

lu—v|<k} ;7

We deduce from (59) that

Jim [ (b = 50) %Tk(u — v)dz = /Q Ib(w) — b(v)|dz = 0.

According to (6), we deduce from (60) that

0
6.131‘

(u—w)

where C is a positive constant. Therefore
u—v=C aex €

and

=0 aex () thatistosay u—v=C ae z €,

363
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