# Entropy solutions for anisotropic nonlinear Dirichlet problems

#### Idrissa Ibrango and Stanislas Quaro

ABSTRACT. We study in this paper nonlinear anisotropic problems with Dirichlet boundary value condition,  $L^1$ -data and variable exponent. We prove the existence and uniqueness of entropy solution under general conditions on the data.

2010 Mathematics Subject Classification. Primary 35J 20; Secondary 35J25. Key words and phrases. Generalized Lebesgue-Sobolev spaces, anisotropic Sobolev spaces, weak solution, entropy solution, Dirichlet boundary condition, Marcinkiewicz spaces.

#### 1. Introduction

We consider in this paper the following nonlinear anisotropic elliptic Dirichlet boundary value problem:

$$\begin{cases} b(u) - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} a_i \left( x, \frac{\partial u}{\partial x_i} \right) = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
 (1)

where  $\Omega$  is an open bounded domain of  $\mathbb{R}^N$   $(N \geq 3)$ , with smooth boundary,  $b : \mathbb{R} \longrightarrow \mathbb{R}$  a continuous and non-decreasing function, with b(0) = 0 and  $f \in L^1(\Omega)$ .

All papers concerned by problems like (1) have considered particular cases of function b. Indeed, in [13], the authors considered  $b \equiv 0$  which permit them to exploit minimization technics to prove the existence of weak solution and mini-max theory to prove that the weak solutions are multiple. Using their methods, Ouaro et als (see [11], [14]) studied the following problems:

$$\begin{cases}
-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i} \left( x, \frac{\partial u}{\partial x_{i}} \right) = f & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(2)

where  $f \in L^{\infty}(\Omega)$  (see [11]) and

$$\begin{cases} -\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i} \left( x, \frac{\partial u}{\partial x_{i}} \right) = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
 (3)

Received January 3, 2015. Accepted December 15, 2015.

where  $f \in L^1(\Omega)$  (see [14]).

In [11], the authors proved the existence and uniqueness of weak solution and in [14], Ouaro proved by using the results of [11], the existence and uniqueness of entropy solution.

In this paper, the function b is more general and the model contains both models studied in [11] and [14]. As b is general, it is not possible to use minimization tehnics used in [13] or [6] (see also [11], [14], [15], [16]) to get the existence of solution. Therefore, in this paper, we used the technic of monotone operators in Banach spaces (see [17]) to get the existence of entropy solutions of (1). For the uniqueness, since b is not necessarily invertible, then, we proved the uniqueness of the entropy solution in terms of b(u) which is clearly equivalent to the uniqueness of u if and only if b is invertible.

The remaining part of the paper is the following: in Section 2, we introduce some preliminary results and in section 3, we study the existence and uniqueness of entropy solution.

## 2. Mathematical preliminaries

We study problem (1) under the following assumptions on the data.

Let  $\Omega$  be a bounded domain in  $\mathbb{R}^N$   $(N \geq 3)$  with smooth boundary domain  $\partial\Omega$  and  $\vec{p}(.) = (p_1(.), \ldots, p_N(.))$  such that for any  $i = 1, \ldots, N, p_i(.) : \overline{\Omega} \longrightarrow \mathbb{R}$  is a continuous function with

$$1 < p_i^- := ess \inf_{x \in \Omega} p_i(x) \le ess \sup_{x \in \Omega} p_i(x) := p_i^+ < \infty.$$
 (4)

For any i = 1, ..., N, let  $a_i : \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$  be a Carathéodory function satisfying:

• there exists a positive constant  $C_1$  such that

$$|a_i(x,\xi)| \le C_1 \left( j_i(x) + |\xi|^{p_i(x)-1} \right)$$
 (5)

for almost every  $x \in \Omega$  and for every  $\xi \in \mathbb{R}$ , where  $j_i$  is a non-negative function in  $L^{p_i'(\cdot)}(\Omega)$ , with  $\frac{1}{p_i(x)} + \frac{1}{p_i'(x)} = 1$ ; • for  $\xi$ ,  $\eta \in \mathbb{R}$  with  $\xi \neq \eta$  and for almost every  $x \in \Omega$ , there exists a positive constant

 $C_2$  such that

$$(a_i(x,\xi) - a_i(x,\eta))(\xi - \eta) \ge \begin{cases} C_2 |\xi - \eta|^{p_i(x)} & \text{if } |\xi - \eta| \ge 1\\ C_2 |\xi - \eta|^{p_i^-} & \text{if } |\xi - \eta| < 1 \end{cases}$$
 (6)

and

• there exists a positive constant  $C_3$  such that

$$a_i(x,\xi).\xi \ge C_3|\xi|^{p_i(x)},$$
 (7)

for  $\xi \in \mathbb{R}$ , for almost every  $x \in \Omega$ .

The hypotheses on  $a_i$  are classical in the study of nonlinear problems (see [5],[6]). Throughout this paper, we assume that

$$\frac{\bar{p}(N-1)}{N(\bar{p}-1)} < p_i^- < \frac{\bar{p}(N-1)}{N-\bar{p}}, \qquad \frac{p_i^+ - p_i^- - 1}{p_i^-} < \frac{\bar{p}-N}{\bar{p}(N-1)}, \tag{8}$$

and

$$\sum_{i=1}^{N} \frac{1}{p_i^-} > 1,\tag{9}$$

where 
$$\frac{N}{\bar{p}} = \sum_{i=1}^{N} \frac{1}{p_i^-}$$
.

A prototype example that is covered by our assumptions is the following anisotropic  $\vec{p}(.)$ -harmonic problem: Set

$$a_i(x,\xi) = |\xi|^{p_i(x)-2}\xi$$
, where  $p_i(x) \ge 2$  for any  $i = 1, ..., N$ .

Then, we obtain the problem

$$\begin{cases}
-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} \left( \left| \frac{\partial u}{\partial x_{i}} \right|^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}} \right) = f & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(10)

which, in the particular case when  $p_i = p$  for any i = 1, ..., N, is the p-Laplace equation.

We also recall in this section some definitions and basic properties of anisotropic Lebesgue and Sobolev spaces.

Set

$$C_{+}(\overline{\Omega}) = \left\{ p \in C(\overline{\Omega}) : \min_{x \in \overline{\Omega}} p(x) > 1 \ a.e. \ x \in \Omega \right\}$$

and we denotes by

$$p_M(x) := \max (p_1(x), \dots, p_N(x))$$
 and  $p_m(x) := \min (p_1(x), \dots, p_N(x))$ .

For any  $p \in C_+(\overline{\Omega})$ , the variable exponent Lebesgue space is defined by

$$L^{p(.)}(\Omega) := \bigg\{ u : u \text{ is a measurable real valued function such that } \int_{\Omega} |u|^{p(x)} dx \ < \ \infty \bigg\},$$

endowed with the so-called Luxemburg norm

$$|u|_{p(.)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\}.$$

The p(.)-modular of the  $L^{p(.)}(\Omega)$  space is the mapping  $\rho_{p(.)}:L^{p(.)}(\Omega)\longrightarrow \mathbb{R}$  defined by

$$\rho_{p(.)}(u) := \int_{\Omega} |u|^{p(x)} dx.$$

For any  $u \in L^{p(.)}(\Omega)$ , the following inequality (see [9], [10]) will be used later

$$\min\left\{|u|_{p(.)}^{p^{-}};\ |u|_{p(.)}^{p^{+}}\right\} \le \rho_{p(.)}(u) \le \max\left\{|u|_{p(.)}^{p^{-}};\ |u|_{p(.)}^{p^{+}}\right\}. \tag{11}$$

For any  $u \in L^{p(.)}(\Omega)$  and  $v \in L^{q(.)}(\Omega)$ , with  $\frac{1}{p(x)} + \frac{1}{q(x)} = 1$  in  $\Omega$ , we have the Hölder type inequality

$$\left| \int_{\Omega} uv dx \right| \le \left( \frac{1}{p^{-}} + \frac{1}{q^{-}} \right) |u|_{p(.)} |v|_{q(.)}. \tag{12}$$

If  $\Omega$  is bounded and  $p, q \in C_+(\overline{\Omega})$  such that  $p(x) \leq q(x)$  for any  $x \in \Omega$ , then the embedding  $L^{p(.)}(\Omega) \hookrightarrow L^{q(.)}(\Omega)$  is continuous (see [12], Theorem 2.8).

Herein we need the anisotropic Sobolev space

$$W_0^{1,\vec{p}(.)}(\Omega) := \left\{ u \in W_0^{1,1}(\Omega) : \frac{\partial u}{\partial x_i} \in L^{p_i(.)}(\Omega), \quad i = 1, \dots, N \right\},\,$$

which is a separable and reflexive Banach space (see [13]) under the norm

$$||u||_{\vec{p}(.)} = \sum_{i=1}^{N} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}$$

We introduce the numbers

$$q = \frac{N(\bar{p} - 1)}{N - 1}; \qquad q^* = \frac{N(\bar{p} - 1)}{N - \bar{p}} = \frac{Nq}{N - q},$$

and define  $P_{-}^{\star}$ ,  $P_{-}^{+}$ ,  $P_{-,\infty} \in \mathbb{R}^{+}$  by

$$P_{-}^{\star} = \frac{N}{\sum_{i=1}^{N} \frac{1}{p_{i}^{-}} - 1}, \quad P_{-}^{+} = \max\{p_{1}^{-}, \dots, p_{N}^{-}\} \quad \text{and} \quad P_{-,\infty} = \max\{P_{-}^{+}, P_{-}^{\star}\}.$$

We have the following embedding results (see [13], Theorem 1).

**Theorem 2.1.** Assume that  $\Omega \subset \mathbb{R}^N$   $(N \geq 3)$  is a bounded domain with smooth boundary. Assume also that relation (9) is fulfilled. For any  $q \in C(\overline{\Omega})$  verifying

$$1 < q(x) < P_{-,\infty}$$
 for any  $x \in \overline{\Omega}$ ,

the embedding

$$W^{1,\vec{p}(.)}_0(\Omega) \hookrightarrow L^{q(.)}(\Omega)$$

is continuous and compact.

The following result is due to Troisi (see [19]).

**Theorem 2.2.** Let  $p_1, ..., p_N \in [1, +\infty)$ ;  $g \in W^{1,(p_1,...,p_N)}(\Omega)$  and

$$q = \left\{ \begin{array}{ll} (\bar{p})^* & if \quad (\bar{p})^* < N \\ \in [1, +\infty) & if \quad (\bar{p})^* \ge N. \end{array} \right.$$

Then, there exists a constant  $C_4 > 0$  depending on  $N, p_1, \ldots, p_N$  if  $\bar{p} < N$  and also on q and  $mes(\Omega)$  if  $\bar{p} \ge N$  such that

$$||g||_{L^{q}(\Omega)} \le C_4 \prod_{i=1}^{N} \left| \left| \frac{\partial g}{\partial x_i} \right| \right|_{L^{p_i}(\Omega)}^{1/N}.$$
(13)

In this paper, we will use the Marcinkiewicz space  $\mathcal{M}^q(\Omega)$   $(1 < q < +\infty)$  as the set of measurable functions  $g: \Omega \longrightarrow \mathbb{R}$  for which the distribution function

$$\lambda_g(k) = mes(\{x \in \Omega : |g(x)| > k\}), \quad k \ge 0 \tag{14}$$

satisfies an estimate of the form

$$\lambda_q(k) \le Ck^{-q}$$
, for some finite constant  $C > 0$ . (15)

We will use the following pseudo norm in  $\mathcal{M}^q(\Omega)$ :

$$||g||_{\mathcal{M}^q(\Omega)} := \inf\{C > 0 : \lambda_q(k) \le Ck^{-q}, \ \forall \ k > 0\}.$$
 (16)

Finally, we use through the paper, the truncation function  $T_k$ , (k > 0), by

$$T_k(s) = \max\{-k; \min\{k; s\}\}.$$
 (17)

It is clear that  $\lim_{k\to\infty} T_k(s) = s$  and  $|T_k(s)| = \min\{|s|; k\}$ .

We define  $\mathcal{T}_0^{1,\vec{p}(.)}(\Omega)$  as the set of the measurable functions  $u:\Omega \longrightarrow \mathbb{R}$  such that  $T_k(u) \in W_0^{1,\vec{p}(.)}(\Omega)$ .

In the sequel we denote  $W_0^{1,\vec{p}(.)}(\Omega) = E$  to simplify.

### 3. Existence and uniqueness result

**Definition 3.1.** A measurable function  $u \in \mathcal{T}_0^{1,\vec{p}(.)}(\Omega)$  is an entropy solution of (P) if  $b(u) \in L^1(\Omega)$  and

$$\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial}{\partial x_i} T_k(u - \varphi) dx + \int_{\Omega} b(u) T_k(u - \varphi) dx \le \int_{\Omega} f(x) T_k(u - \varphi) dx, \quad (18)$$

for all  $\varphi \in E \cap L^{\infty}(\Omega)$  and for every k > 0.

The existence result is the following theorem:

**Theorem 3.1.** Assume (4)-(9). Then, there exists at least one entropy solution of the problem (P).

**Proof**. The proof is done in tree steps.

## Step 1. The approximate problem.

We consider the approximate problem

$$(P_n) \begin{cases} -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} a_i \left( x, \frac{\partial u_n}{\partial x_i} \right) + T_n \left( b(u_n) \right) = f_n & \text{in } \Omega \\ u_n = 0 & \text{on } \partial\Omega, \end{cases}$$

$$(19)$$

where  $f_n = T_n(f) \in L^{\infty}(\Omega)$ . Note that

$$f_n \xrightarrow[n \to +\infty]{} f$$
 in  $L^1(\Omega)$  and  $||f_n||_1 = \int_{\Omega} |f_n| dx \le \int_{\Omega} |f| dx = ||f||_1.$  (20)

**Definition 3.2.** A measurable function  $u_n \in E$  is a weak solution for the problem  $(P_n)$  if

$$\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u_n}{\partial x_i} \right) \frac{\partial \varphi}{\partial x_i} dx + \int_{\Omega} T_n \left( b(u_n) \right) \varphi dx = \int_{\Omega} f_n \varphi dx, \tag{21}$$

for every  $\varphi \in E$ .

Let us prove the following lemma.

**Lemma 3.1.** There exists at least one weak solution  $u_n$  for the problem  $(P_n)$ .

*Proof.* We define the operator  $A_n$  as follow:

$$\langle A_n u, \varphi \rangle = \langle A u, \varphi \rangle + \int_{\Omega} T_n (b(u)) \varphi dx \quad \forall \ u, \varphi \in E$$
 (22)

where

$$\langle Au, \varphi \rangle = \int_{\Omega} \sum_{i=1}^{N} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial \varphi}{\partial x_i} dx.$$
 (23)

**Assertion 1**. The operator  $A_n$  is type M.

• The operator A is monotone. Indeed, for  $u, v \in E$ , we have

$$\langle A(u) - A(v), u - v \rangle = \langle A(u), u - v \rangle + \langle A(v), v - u \rangle$$

$$= \int_{\Omega} \sum_{i=1}^{N} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial (u - v)}{\partial x_i} dx + \int_{\Omega} \sum_{i=1}^{N} a_i \left( x, \frac{\partial v}{\partial x_i} \right) \frac{\partial (v - u)}{\partial x_i} dx$$
$$= \int_{\Omega} \sum_{i=1}^{N} \left[ a_i \left( x, \frac{\partial u}{\partial x_i} \right) - a_i \left( x, \frac{\partial v}{\partial x_i} \right) \right] \left( \frac{\partial u}{\partial x_i} - \frac{\partial v}{\partial x_i} \right) dx$$

then

$$\langle A(u) - A(v), u - v \rangle \ge 0, \tag{24}$$

since for i = 1, ..., N, for almost every  $x \in \Omega$ ,  $a_i(x, .)$  is monotone.

• The operator A is hemicontinuous. Indeed, let  $\varphi : t \in \mathbb{R} \longmapsto \varphi(t) = \langle A(u+tv), v \rangle$  and let  $t, t_0 \in \mathbb{R}$  such that  $t \longrightarrow t_0$ . Put  $w = u + tv \in E$  and  $w_0 = u + t_0v \in E$ .

Therefore  $||w-w_0||_{\vec{p}(.)}=||(t-t_0)v||_{\vec{p}(.)}=|t-t_0|.||v||_{\vec{p}(.)}\longrightarrow 0$ , i.e  $w\longrightarrow w_0$  in E.

We have

$$\begin{aligned} |\varphi(t) - \varphi(t_0)| &= |\langle A(u + tv), v \rangle - \langle A(u + t_0v), v \rangle| \\ &\leq \sum_{i=1}^{N} \int_{\Omega} \left| a_i \left( x, \frac{\partial w}{\partial x_i} \right) - a_i \left( x, \frac{\partial w_0}{\partial x_i} \right) \right| \left| \frac{\partial v}{\partial x_i} \right| dx \\ &\leq N \max_{1 \leq i \leq N} \left[ \left( \frac{1}{p_i^-} + \frac{1}{(p_i')^-} \right) \left| a_i \left( x, \frac{\partial w}{\partial x_i} \right) - a_i \left( x, \frac{\partial w_0}{\partial x_i} \right) \right|_{p_i'(\cdot)} \left| \frac{\partial v}{\partial x_i} \right|_{p_i(\cdot)} \right]. \end{aligned}$$

Denote by  $\psi_i(x, w) = a_i(x, \frac{\partial w}{\partial x_i})$ . Since  $\psi_i(x, w) \longrightarrow \psi(x, w_0)$  in  $L^{p_i'(\cdot)}(\Omega)$  (see [11]) we deduce that  $\varphi$  is continuous. Then A is hemicontinuous.

Since the operator A is monotone and hemicontinuous, then according to the Lemma 2.1 in [17], A is of type M. Therefore, according to [1] the operator  $A_n$  is also of type M.

**Assertion 2**. The operator  $A_n$  is coercive.

Indeed, let  $u \in E$ . We have  $T_n(b(u))u \ge 0$  for all  $u \in E$ . Then

$$\langle A_n(u), u \rangle \ge \int_{\Omega} \sum_{i=1}^{N} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial u}{\partial x_i} dx$$
  
  $\ge C_3 \int_{\Omega} \sum_{i=1}^{N} \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x)} dx.$ 

Denote

$$\mathcal{I} = \left\{ i \in \{1, \dots, N\} : \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)} \le 1 \right\} \quad \text{and} \quad \mathcal{J} = \left\{ i \in \{1, \dots, N\} : \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)} > 1 \right\}.$$

Then

$$\frac{1}{C_3} \langle A_n(u), u \rangle \ge \sum_{i \in \mathcal{I}} \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x)} dx + \sum_{i \in \mathcal{I}} \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x)} dx$$

$$\geq \sum_{i \in \mathcal{I}} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}^{p_i^+} + \sum_{i \in \mathcal{I}} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}^{p_i^-}$$

$$\geq \sum_{i \in \mathcal{I}} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}^{p_m^-}$$

$$\geq \sum_{i \in \mathcal{I}} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}^{p_m^-}$$

$$\geq \sum_{i = 1}^{N} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}^{p_m^-} - \sum_{i \in \mathcal{I}} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}^{p_m^-}$$

$$\geq \sum_{i = 1}^{N} \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)}^{p_m^-} - N.$$

Using the convexity of application  $t \in \mathbb{R}^+ \longmapsto t^{p_m^-}, p_m^- > 1$ , we obtain

$$\frac{1}{C_3}\langle A_n(u), u \rangle \ge \frac{1}{N^{p_m^- - 1}} \left( \sum_{i=1}^N \left| \frac{\partial u}{\partial x_i} \right|_{p_i(.)} \right)^{p_m^-} - N.$$

Then

$$\langle A_n(u), u \rangle \ge \frac{C_3}{Np_m^{-1}} ||u||_{\vec{p}(.)}^{p_m^{-}} - C_3 N.$$
 (25)

Consequently the operator  $A_n$  is coercive.

## **Assertion 3**. The operator $A_n$ is bounded.

Indeed, let  $u \in B \subset E$  a bounded space and  $v \in E$ . According to (5) and (12) and as b is onto, we have

$$\begin{aligned} |\langle A_n(u), v \rangle| &\leq \sum_{i=1}^N \int_{\Omega} \left| a_i \left( x, \frac{\partial u}{\partial x_i} \right) \right| \left| \frac{\partial v}{\partial x_i} \right| dx + \int_{\Omega} |T_n(b(u))v| dx \\ &\leq C_1 \sum_{i=1}^N \left( \int_{\Omega} j_i(x) \left| \frac{\partial v}{\partial x_i} \right| dx + \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x)-1} \left| \frac{\partial v}{\partial x_i} \right| dx \right) + \int_{\Omega} |b(u)| |v| dx \\ &\leq C_1 \sum_{i=1}^N \left( \frac{1}{p_i^-} + \frac{1}{(p_i')^-} \right) \left| \frac{\partial v}{\partial x_i} \right|_{p_i(.)} \left( |j_i|_{p_i'(.)} + \left| \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x)-1} \right|_{p_i'(.)} \right) + C \int_{\Omega} |v| dx \end{aligned}$$

where C is a positive constant.

Then the operator  $A_n$  is bounded.

The operator  $A_n$  is type M, bounded and coercive on E to its dual  $E^*$ , then  $A_n$  is surjective (see [17], Corollary 2.2). Therefore for  $f_n \in E^*$ , we can deduce the existence of a function  $u_n \in E$  such that  $\langle A_n u_n, \varphi \rangle = \langle f_n, \varphi \rangle$  for all  $\varphi \in E$ , namely

$$\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u_n}{\partial x_i} \right) \frac{\partial \varphi}{\partial x_i} dx + \int_{\Omega} T_n \left( b(u_n) \right) \varphi dx = \int_{\Omega} f_n \varphi dx \text{ for all } \varphi \in E.$$

Our aim is to prove that these approximated solutions  $u_n$  tend, as n goes to infinity, to a measurable function u which is an entropy solution of the problem (P). To start with, we establish the priori estimates.

## Step 2. A priori estimates.

**Lemma 3.2.** There exists a positive constant  $C_5$  which does not depend on n such that

$$\sum_{i=1}^{N} \int_{\{|u_n| \le k\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i^-} dx \le C_5 (1+k)$$
 (26)

for every k > 0.

*Proof.* If we take  $\varphi = T_k(u_n)$  as test function in (21) we obtain

$$\sum_{i=1}^{N} \int_{\{|u_n| \le k\}} a_i \left( x, \frac{\partial u_n}{\partial x_i} \right) \frac{\partial u_n}{\partial x_i} dx + \int_{\Omega} T_n(b(u_n)) T_k(u_n) dx = \int_{\Omega} f_n T_k(u_n) dx$$

and using relation (7) and the fact that  $\int_{\Omega} T_n(b(u_n))T_k(u_n)dx \geq 0$ , then

$$C_3 \sum_{i=1}^{N} \int_{\{|u_n| \le k\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i(x)} dx \le k||f||_1.$$
 (27)

We have

$$\sum_{i=1}^{N} \int_{\{|u_n| \leq k\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i^-} dx = \sum_{i=1}^{N} \int_{\{|u_n| \leq k; |\frac{\partial u_n}{\partial x_i}| > 1\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i^-} dx + \sum_{i=1}^{N} \int_{\{|u_n| \leq k; |\frac{\partial u_n}{\partial x_i}| \leq 1\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i^-} dx \\
\leq \sum_{i=1}^{N} \int_{\{|u_n| \leq k\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i(x)} dx + N.mes(\Omega) \\
\leq \frac{1}{C_3} k ||f||_1 + N.mes(\Omega) \quad \text{due to relation} \quad (27) \\
\leq C_5(1+k) \quad \text{with} \quad C_5 = \max \left\{ \frac{1}{C_3} ||f||_1; \ N.mes(\Omega) \right\}. \qquad \square$$

**Lemma 3.3.** For any k > 0, there exists some constants  $C_6, C_7 > 0$  such that:

 $(i) ||u_n||_{\mathcal{M}^{q^*}(\Omega)} \le C_6;$ 

(ii) 
$$\left\| \frac{\partial u_n}{\partial x_i} \right\|_{\mathcal{M}^{p_i^-q/\bar{p}}(\Omega)} \le C_7, \quad \forall i = 1, \dots, N.$$

Proof.

(i) According to Lemma 3.2 we have

$$\int_{\{|u_n| \le k\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i^-} dx \le C_5(1+k) \quad \forall \ k > 0, \quad \forall \ i = 1, \dots, N.$$

• If  $k \ge 1$ , we have

$$\int_{\{|u_n| \le k\}} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_i^-} dx \le C_5' k$$

thus

$$\int_{\Omega} \left| \frac{\partial}{\partial x_i} T_k(u_n) \right|^{p_i^-} dx \le C_5' k \quad \text{ i.e} \quad T_k(u_n) \in W_0^{1,(p_1^-,\dots,p_N^-)}(\Omega).$$

Using the Theorem 2.2, we deduce

$$||T_k(u_n)||_{L^{(\bar{p})^*}(\Omega)} \le C_5'' \prod_{i=1}^N \left| \left| \frac{\partial}{\partial x_i} T_k(u_n) \right| \right|_{L^{p_i^-}(\Omega)}^{1/N}.$$

Then

$$\int_{\Omega} |T_{k}(u_{n})|^{(\bar{p})^{*}} dx \leq C_{5}^{"'} \left[ \prod_{i=1}^{N} \left( \int_{\Omega} \left| \frac{\partial}{\partial x_{i}} T_{k}(u_{n}) \right|^{p_{i}^{-}} dx \right)^{\frac{1}{Np_{i}^{-}}} \right]^{(\bar{p})^{*}} \\
\leq C \left[ \prod_{i=1}^{N} k^{\frac{1}{Np_{i}^{-}}} \right]^{(\bar{p})^{*}} \\
= C \left[ k^{\frac{N}{N}} \frac{1}{Np_{i}^{-}} \right]^{(\bar{p})^{*}} = C k^{\frac{(\bar{p})^{*}}{\bar{p}}}.$$

We have

$$\int_{\{|u_n|>k\}} \left| T_k(u_n) \right|^{(\bar{p})^*} dx \le \int_{\Omega} \left| T_k(u_n) \right|^{(\bar{p})^*} dx.$$

Therefore

$$k^{(\bar{p})^*}mes(\{x \in \Omega : |u_n| > k\}) \le \int_{\Omega} |T_k(u_n)|^{(\bar{p})^*} dx \le Ck^{\frac{(\bar{p})^*}{\bar{p}}}.$$

Thus,

$$\lambda_{u_n}(k) \leq C k^{(\overline{p})^*(\frac{1}{\overline{p}}-1)} = C k^{-q^*}, \quad \forall \ k \geq 1.$$

• If k < 1, we have

$$\lambda_{u_n}(k) = mes(\{x \in \Omega : |u_n| > k\}) \le mes(\Omega) \le mes(\Omega)k^{-q^*}, \quad \forall \ k < 1.$$

Consequently

$$\lambda_{u_n}(k) \le (C + mes(\Omega))k^{-q^*} = C_6k^{-q^*};$$

namely

$$||u_n||_{\mathcal{M}^{q^*}(\Omega)} \le C_6.$$

(ii) • Let  $\alpha \geq 1$ .

We have,  $\forall k \geq 1$ 

$$\lambda_{\frac{\partial u_n}{\partial x_i}}(\alpha) = mes\left(\left\{x \in \Omega : \left| \frac{\partial u_n}{\partial x_i} \right| > \alpha\right\}\right)$$

$$= mes\left(\left\{\left| \frac{\partial u_n}{\partial x_i} \right| > \alpha; |u_n| \le k\right\}\right) + mes\left(\left\{\left| \frac{\partial u_n}{\partial x_i} \right| > \alpha; |u_n| > k\right\}\right)$$

$$\leq \int_{\left\{\left|\frac{\partial u_n}{\partial x_i}\right| > \alpha; |u_n| \le k\right\}} dx + \lambda_{u_n}(k)$$

$$\leq \int_{\left\{\left|u_n\right| \le k\right\}} \left(\frac{1}{\alpha} \left| \frac{\partial u_n}{\partial x_i} \right| \right)^{p_i^-} dx + \lambda_{u_n}(k)$$

$$\leq \alpha^{-p_i^-} C'k + Ck^{-q^*}.$$

We obtain

$$\lambda_{\frac{\partial u_n}{\partial x_i}}(\alpha) \le B(k\alpha^{-p_i^-} + k^{-q^*}). \tag{28}$$

Let us consider the function  $g:[1,+\infty[\longrightarrow \mathbb{R},\ x\longmapsto g(x)=\frac{x}{\alpha^{p_{\bar{x}}}}+x^{-q^*}]$ .

We have g'(x) = 0 for  $x = (q^* \alpha^{p_i^-})^{\frac{1}{q^*+1}}$ .

If we take  $k = (q^* \alpha^{p_i^-})^{\frac{1}{q^*+1}} \ge 1$  in (28) we get

$$\lambda_{\frac{\partial u_n}{\partial x_i}}(\alpha) \leq Bk \bigg(\frac{q^*+1}{q^*} \frac{1}{\alpha^{p_i^-}}\bigg)$$

$$\begin{split} &\leq M\alpha^{-\frac{q^*}{q^*+1}p_i^-} \\ &\leq M\alpha^{-p_i^-q/\bar{p}} \ \, \forall \,\, \alpha \geq 1. \end{split}$$

• If  $0 < \alpha < 1$ , we have

$$\lambda_{\frac{\partial u_n}{\partial x_i}}(\alpha) = mes(\left\{ \left| \frac{\partial u_n}{\partial x_i} \right| > \alpha \right\}) \leq mes(\Omega) \leq mes(\Omega)\alpha^{-p_i^-q/\bar{p}}, \quad \forall \ 0 \leq \alpha < 1.$$

Then

$$\lambda_{\frac{\partial u_n}{\partial x_i}}(\alpha) \leq (M + mes(\Omega))\alpha^{-p_i^-q/\bar{p}} \quad \forall \ \alpha \geq 0$$

and we deduce

$$\left| \left| \frac{\partial u_n}{\partial x_i} \right| \right|_{\mathcal{M}^{p_i^- q/\bar{p}}(\Omega)} \le C_7, \qquad \forall \ i = 1, \dots, N.$$

### Step 3. Existence of entropy solution

Using Lemma 3.3, we have the following useful lemma (see [5]).

**Lemma 3.4.** For i = 1, ..., N, as  $n \longrightarrow +\infty$ , we have

$$a_i\left(x, \frac{\partial u_n}{\partial x_i}\right) \longrightarrow a_i\left(x, \frac{\partial u}{\partial x_i}\right) \quad in \quad L^1(\Omega) \quad a.e \quad x \in \Omega.$$
 (29)

In order to pass to the limit in relation (21), we need also the following convergence results as in [4]:

**Proposition 3.1.** Assume (4)-(9). If  $u_n \in E$  is a weak solution of  $(P_n)$  then the sequence  $(u_n)_{n\in\mathbb{N}^*}$  is Cauchy in measure. In particular, there exists a measurable function u and a sub-sequence still denoted by  $u_n$  such that  $u_n \longrightarrow u$  in measure.

**Proposition 3.2.** Assume (4)-(9). If  $u_n \in E$  is a weak solution of  $(P_n)$  then

- (i) for all i = 1, ..., N,  $\frac{\partial u_n}{\partial x_i}$  converges in measure to the weak partial gradient of u;
- (ii) for all i = 1, ..., N and k > 0,  $a_i \left( x, \frac{\partial}{\partial x_i} T_k(u_n) \right)$  converges to  $a_i \left( x, \frac{\partial}{\partial x_i} T_k(u) \right)$  in  $L^1(\Omega)$  strongly and in  $L^{p'_i(\cdot)}(\Omega)$  weakly.

We can now pass to the limit in relation (21).

Let  $\varphi \in W_0^{1,\vec{p}(.)}(\Omega) \cap L^{\infty}(\Omega)$  and choosing  $T_k(u_n - \varphi)$  as test function in (21), we get

$$\begin{cases}
\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u_n}{\partial x_i} \right) \frac{\partial}{\partial x_i} T_k(u_n - \varphi) dx \\
+ \int_{\Omega} T_n(b(u_n)) T_k(u_n - \varphi) dx = \int_{\Omega} f_n T_k(u_n - \varphi) dx.
\end{cases}$$
(30)

For the right-hand side of (30) we have

$$\int_{\Omega} f_n(x) T_k(u_n - \varphi) dx \longrightarrow \int_{\Omega} f(x) T_k(u - \varphi) dx. \tag{31}$$

since  $f_n$  converges strongly to f in  $L^1(\Omega)$ , and  $T_k(u_n-\varphi)$  converges weakly-\* to  $T_k(u-\varphi)$  in  $L^{\infty}(\Omega)$  and a.e in  $\Omega$ .

For the first term of (30) we have (see [5]):

$$\lim_{n} \inf \sum_{i=1}^{N} \int_{\Omega} a_{i} \left( x, \frac{\partial u_{n}}{\partial x_{i}} \right) \frac{\partial}{\partial x_{i}} T_{k}(u_{n} - \varphi) dx \ge \sum_{i=1}^{N} \int_{\Omega} a_{i} \left( x, \frac{\partial u}{\partial x_{i}} \right) \frac{\partial}{\partial x_{i}} T_{k}(u - \varphi) dx. \tag{32}$$

Finally we focus our attention on the second term of (30)

We have

$$T_n(b(u_n))T_k(u_n - \varphi) \longrightarrow b(u)T_k(u - \varphi) \text{ a.e. } x \in \Omega$$
 (33)

and

$$|T_n(b(u_n))T_k(u_n - \varphi)| \le k|b(u_n)|. \tag{34}$$

We show that  $|b(u_n)| \leq ||f_n||_{\infty}$ . Indeed, let us denote by

$$H_{\epsilon}(s) = \min\left(\frac{s^{+}}{\epsilon}; 1\right)$$
 and  $sign_{0}^{+}(s) = \begin{cases} 1 & \text{if } s > 0\\ 0 & \text{if } s \leq 0. \end{cases}$ 

and if  $\gamma$  is a maximal monotone operator defined on  $\mathbb{R}$ , we denote by  $\gamma_0$  the main section of  $\gamma$ ; i.e.,

$$\gamma_0(s) = \begin{cases} \text{minimal absolute value of } \gamma(s) & \text{if } \gamma(s) \neq \emptyset \\ +\infty & \text{if } [s, +\infty) \cap D(\gamma) = \emptyset \\ -\infty & \text{if } (-\infty, s] \cap D(\gamma) = \emptyset. \end{cases}$$

Remark that if  $\epsilon$  approach 0,  $H_{\epsilon}(s) = sign_0^+(s)$ .

We take  $\varphi = H_{\epsilon}(u_n - M)$  as test function in (21), for the weak solution  $u_n$  and M > 0 (a constant to be chosen later), to get

$$\begin{cases}
\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u_n}{\partial x_i} \right) \frac{\partial}{\partial x_i} H_{\epsilon}(u_n - M) dx \\
+ \int_{\Omega} T_n \left( b(u_n) \right) H_{\epsilon}(u_n - M) dx = \int_{\Omega} f_n H_{\epsilon}(u_n - M) dx.
\end{cases}$$
(35)

We have

$$\begin{split} \sum_{i=1}^{N} \int_{\Omega} a_i \bigg( x, \frac{\partial u_n}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} H_{\epsilon}(u_n - M) dx &= \frac{1}{\epsilon} \sum_{i=1}^{N} \int_{\left\{ \frac{(u_n - M)^+}{\epsilon} < 1 \right\}} a_i \bigg( x, \frac{\partial u_n}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} (u_n - M)^+ dx \\ &= \frac{1}{\epsilon} \sum_{i=1}^{N} \int_{\left\{ 0 < u_n - M < \epsilon \right\}} a_i \bigg( x, \frac{\partial u_n}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} u_n dx \\ &> 0 \quad \text{according to (7)}. \end{split}$$

Then, (35) give

$$\int_{\Omega} T_n \big( b(u_n) \big) H_{\epsilon}(u_n - M) dx \le \int_{\Omega} f_n H_{\epsilon}(u_n - M) dx,$$

which is equivalent to saying

$$\int_{\Omega} \left( T_n \big( b(u_n) \big) - T_n \big( b(M) \big) \right) H_{\epsilon}(u_n - M) dx \le \int_{\Omega} \left( f_n - T_n \big( b(M) \big) \right) H_{\epsilon}(u_n - M) dx.$$

We now let  $\epsilon$  goes to 0 in the above inequality to obtain

$$\int_{\Omega} \left( T_n \big( b(u_n) \big) - T_n \big( b(M) \big) \right)^+ dx \le \int_{\Omega} \left( f_n - T_n \big( b(M) \big) \right) sign_0^+ (u_n - M) dx. \tag{36}$$

Choosing  $M = b_0^{-1}(||f_n||_{\infty})$  in the above inequality (since b is surjective). We obtain

$$\int_{\Omega} \left( T_n \big( b(u_n) \big) - T_n \big( ||f_n||_{\infty} \big) \right)^+ dx \le \int_{\Omega} \left( f_n - T_n \big( ||f_n||_{\infty} \big) \right) sign_0^+ \big( u_n - b_0^{-1} (||f_n||_{\infty}) \big) dx. \tag{37}$$

For any  $n > ||f_n||_{\infty}$ , we have

$$\int_{\Omega} \left( f_n - T_n(||f_n||_{\infty}) \right) sign_0^+ \left( u_n - b_0^{-1}(||f_n||_{\infty}) \right) dx$$

$$= \int_{\Omega} \left( f_n - ||f_n||_{\infty} \right) sign_0^+ \left( u_n - b_0^{-1}(||f_n||_{\infty}) \right) dx \le 0.$$

Then, (37) gives

$$\int_{\Omega} \left( T_n \big( b(u_n) \big) - ||f_n||_{\infty} \right)^+ dx \le 0.$$

Hence, for all  $n > ||f_n||_{\infty}$ , we have  $\left(T_n(b(u_n)) - ||f_n||_{\infty}\right)^+ = 0$  a.e in  $\Omega$ , which is equivalent to saying

$$T_n(b(u_n)) \le ||f_n||_{\infty} \quad \text{for all} \quad n > ||f_n||_{\infty}.$$
 (38)

Let us remark that as  $u_n$  is a weak solution of (21), then  $(-u_n)$  is a weak solution to the following problem

$$(\tilde{P}_n) \begin{cases} -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \tilde{a}_i \left( x, \frac{\partial u_n}{\partial x_i} \right) + T_n \left( \tilde{b}(u_n) \right) = \tilde{f}_n & \text{in } \Omega \\ u_n = 0 & \text{on } \partial \Omega \end{cases}$$
(39)

where  $\tilde{a}_i(x,\xi) = -a_i(x,-\xi)$ ,  $\tilde{b}(s) = -b(-s)$  and  $\tilde{f}_n = -f_n$ . According to (38) we deduce that

$$T_n(-b(u_n)) \le ||f_n||_{\infty}$$
 for all  $n > ||f||_{\infty}$ .

Therefore

$$T_n(b(u_n)) \ge -||f_n||_{\infty} \quad \text{for all} \quad n > ||f||_{\infty}. \tag{40}$$

It follows from (38) and (40) that for all  $n > ||f_n||_{\infty}$ ,  $|T_n(b(u_n))| \le ||f_n||_{\infty}$  witch implies

$$|b(u_n)| \le ||f_n||_{\infty}$$
 a.e. in  $\Omega$ .

We can now use the Lebesgue dominated convergence theorem to get

$$\lim_{n \to +\infty} \int_{\Omega} T_n(b(u_n)) T_k(u_n - \varphi) dx = \int_{\Omega} b(u) T_k(u - \varphi) dx. \tag{41}$$

Combining (31), (32) and (41), we obtain

$$\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial}{\partial x_i} T_k(u - \varphi) dx + \int_{\Omega} b(u) T_k(u - \varphi) dx \le \int_{\Omega} f(x) T_k(u - \varphi) dx. \tag{42}$$

Then u is an entropy solution of (P).

**Theorem 3.2.** Assume that (4)-(9) hold true and let u be an entropy solution of (P). Then, u is unique.

**Proof**. The proof is done in two steps.

# Step 1. A priori estimates

**Lemma 3.5.** Assume (4)-(9) holds and  $f \in L^1(\Omega)$ . Let u be an entropy solution of (P). Then

$$\sum_{i=1}^{N} \int_{\{|u| \le k\}} \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x)} dx \le \frac{C_3}{k} ||f||_1 \tag{43}$$

and there exists a positive constant  $C_8$  such that

$$||b(u)||_1 \le C_8.mes(\Omega) + ||f||_1.$$
 (44)

*Proof.* Let us take  $\varphi = 0$  in the entropy inequality (18).

- By the fact that  $\int_{\Omega} b(u)T_k(u)dx \geq 0$  and using the relation (7), we get (43).
- Using the fact that  $\sum_{i=1}^{N} \int_{\Omega} a_i \left(x, \frac{\partial u}{\partial x_i}\right) \frac{\partial}{\partial x_i} T_k(u) dx \ge 0$ , relation (18) gives

$$\int_{\Omega} b(u)T_k(u)dx \le \int_{\Omega} f(x)T_k(u)dx. \tag{45}$$

By (45), we deduce that

$$\int_{\{|u| \le k\}} b(u)T_k(u)dx + \int_{\{|u| > k\}} b(u)T_k(u)dx \le k||f||_1$$

which imply that

$$\int_{\{|u|>k\}} b(u)T_k(u)dx \le k||f||_1$$

or

$$\int_{\{u>k\}} b(u)dx + \int_{\{u<-k\}} -b(u)dx \le ||f||_1.$$

Therefore

$$\int_{\{|u|>k\}} |b(u)| dx \le ||f||_1.$$

So, we obtain

$$\begin{split} \int_{\Omega} |b(u)| dx &= \int_{\{|u| \leq k\}} |b(u)| dx + \int_{\{|u| > k\}} |b(u)| dx \\ &\leq \int_{\{|u| \leq k\}} |b(u)| dx + ||f||_1. \end{split}$$

Since the function b is non-decreasing, then

$$\int_{\{|u|\leq k\}}|b(u)|dx\leq \max\{b(k);|b(-k)|\}.mes(\Omega).$$

Consequently, there exists a constant  $C_8 = \max\{b(k); |b(-k)|\}$  such that

$$||b(u)||_1 < C_8.mes(\Omega) + ||f||_1.$$

**Lemma 3.6.** Assume (4)-(9) holds and let  $f \in L^1(\Omega)$ . If u is an entropy solution of (P), then there exists a constant D which depends on f and  $\Omega$  such that

$$mes\{|u| > k\} \le \frac{D}{\min(b(k), |b(-k)|)}, \quad \forall \ k > 0$$
 (46)

and a constant D' > 0 which depends on f and  $\Omega$  such that

$$mes\left\{ \left| \frac{\partial u}{\partial x_i} \right| > k \right\} \le \frac{D'}{k^{\frac{1}{(p_M^-)'}}}, \quad \forall \ k \ge 1.$$
 (47)

*Proof.* • For any k > 0, the relation (44) gives

$$\int_{\{|u|>k\}} \min(b(k), |b(-k)|) dx \le \int_{\{|u|>k\}} |b(u)| dx \le C_8 \cdot mes(\Omega) + ||f||_1.$$

Therefore,

$$\min(b(k), |b(-k)|).mes\{|u| > k\} \le C_8.mes(\Omega) + ||f||_1 = D;$$

that is

$$mes\{|u| > k\} \le \frac{D}{\min(b(k), |b(-k)|)}$$

• See [4] for the proof of (47).

**Lemma 3.7.** Assume (4)-(9) holds and let  $f \in L^1(\Omega)$ . If u is an entropy solution of (P), then

$$\lim_{h \to +\infty} \int_{\Omega} |f| \chi_{\{|u| > h - t\}} dx = 0, \tag{48}$$

where h > 0 and t > 0.

*Proof.* Since the function b is surjective, according to Lemma 3.6-(46), we have  $\lim_{h \longrightarrow +\infty} mes\{|u| > h-t\} = 0$  and as  $f \in L^1(\Omega)$ , it follows by using the Lebesgue domination.

nated convergence theorem that 
$$\lim_{h\longrightarrow +\infty}\int_{\Omega}|f|\chi_{\{|u|>h-t\}}dx=0.$$

**Lemma 3.8.** Assume (4)-(9) holds and let  $f \in L^1(\Omega)$ . If u is an entropy solution of (P), then there exists a positive constant K such that

$$\rho_{p_i'(.)}\left(\left|\frac{\partial u}{\partial x_i}\right|^{p_i(x)-1}\chi_F\right) \le K, \quad \forall \ i=1,\ldots,N$$
(49)

where  $F = \{h < |u| \le h + k\}, h > 0, k > 0.$ 

*Proof.* Let  $\varphi = T_h(u)$  as test function in the entropy inequality (18). We get

$$\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial}{\partial x_i} T_k(u - T_h(u)) dx + \int_{\Omega} b(u) T_k(u - T_h(u)) dx \le \int_{\Omega} f(x) T_k(u - T_h(u)) dx.$$
Thus,

$$\sum_{i=1}^{N} \int_{\{h < |u| < h + k\}} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial u}{\partial x_i} dx \le k||f||_1$$

and using (7), we have

$$\int_{\mathbb{R}} \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x)} dx \le \frac{C_3}{k} ||f||_1, \quad \forall \ i = 1 \dots, N.$$

Consequently,

$$\rho_{p_i'(.)}\left(\left|\frac{\partial u}{\partial x_i}\right|^{p_i(x)-1}\chi_F\right) \le K, \quad \forall \ i=1,\ldots,N.$$

## Step 2. Uniqueness of entropy solution.

Let h > 0 and u, v be two entropy solutions of (P). We write the entropy inequality corresponding to the solution u, with  $T_h(v)$  as test function, and to the solution v, with  $T_h(u)$  as test function:

$$\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial}{\partial x_i} T_k(u - T_h(v)) dx + \int_{\Omega} b(u) T_k(u - T_h(v)) dx \le \int_{\Omega} f(x) T_k(u - T_h(v)) dx$$

$$(50)$$

and

$$\sum_{i=1}^{N} \int_{\Omega} a_i \left( x, \frac{\partial v}{\partial x_i} \right) \frac{\partial}{\partial x_i} T_k(v - T_h(u)) dx + \int_{\Omega} b(v) T_k(v - T_h(u)) dx \le \int_{\Omega} f(x) T_k(v - T_h(u)) dx. \tag{51}$$

Upon addition, we get

$$\begin{cases}
\sum_{i=1}^{N} \int_{\Omega} a_{i} \left( x, \frac{\partial u}{\partial x_{i}} \right) \frac{\partial}{\partial x_{i}} T_{k}(u - T_{h}(v)) dx + \sum_{i=1}^{N} \int_{\Omega} a_{i} \left( x, \frac{\partial v}{\partial x_{i}} \right) \frac{\partial}{\partial x_{i}} T_{k}(v - T_{h}(u)) dx \\
+ \int_{\Omega} b(u) T_{k}(u - T_{h}(v)) dx + \int_{\Omega} b(v) T_{k}(v - T_{h}(u)) dx \\
\leq \int_{\Omega} f(x) \left[ T_{k}(u - T_{h}(v)) + T_{k}(v - T_{h}(u)) \right] dx.
\end{cases} (52)$$

Define

$$E_1 = \{|u - v| \le k; \ |v| \le h\}; \ E_2 = E_1 \cap \{|u| \le h\} \text{ and } E_3 = E_1 \cap \{|u| > h\}.$$

We start with the first integral in (52). We have

$$\begin{split} \sum_{i=1}^{N} \int_{\{|u-T_h(v)| \leq k\}} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} T_k(u - T_h(v)) dx \\ &= \sum_{i=1}^{N} \int_{\{|u-T_h(v)| \leq k\} \cap \{|v| \leq h\}} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} T_k(u - T_h(v)) dx \\ &+ \sum_{i=1}^{N} \int_{\{|u-T_h(v)| \leq k\} \cap \{|v| > h\}} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} T_k(u - T_h(v)) dx \\ &= \sum_{i=1}^{N} \int_{\{|u-v| \leq k\} \cap \{|v| \leq h\}} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial (u - v)}{\partial x_i} dx \\ &+ \sum_{i=1}^{N} \int_{\{|u-hsign(v)| \leq k\} \cap \{|v| > h\}} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial u}{\partial x_i} dx \\ &\geq \sum_{i=1}^{N} \int_{E_1} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} (u - v) dx \\ &= \sum_{i=1}^{N} \int_{E_2} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} (u - v) dx + \sum_{i=1}^{N} \int_{E_3} a_i \bigg( x, \frac{\partial u}{\partial x_i} \bigg) \frac{\partial}{\partial x_i} (u - v) dx. \end{split}$$

Then, we obtain

$$\sum_{i=1}^{N} \int_{\{|u-T_h(v)| \le k\}} a_i \left(x, \frac{\partial u}{\partial x_i}\right) \frac{\partial}{\partial x_i} T_k(u - T_h(v)) dx$$

$$\ge \sum_{i=1}^{N} \int_{E_2} a_i \left(x, \frac{\partial u}{\partial x_i}\right) \frac{\partial}{\partial x_i} (u - v) dx - \sum_{i=1}^{N} \int_{E_3} a_i \left(x, \frac{\partial u}{\partial x_i}\right) \frac{\partial v}{\partial x_i} dx. \tag{53}$$

According to (5), and the Hölder type inequality we have

$$\left| \sum_{i=1}^{N} \int_{E_3} a_i \left( x, \frac{\partial u}{\partial x_i} \right) \frac{\partial v}{\partial x_i} dx \right| \leq C_1 \sum_{i=1}^{N} \int_{E_3} \left( j_i(x) + \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x) - 1} \right) \left| \frac{\partial v}{\partial x_i} \right| dx$$

$$\leq C_1 \sum_{i=1}^{N} \left( \left| j_i \right|_{p_i'(.)} + \left| \left| \frac{\partial u}{\partial x_i} \right|^{p_i(x) - 1} \right|_{p_i'(.), \{h < |u| \le h + k\}} \right) \left| \frac{\partial v}{\partial x_i} \right|_{p_i(.), \{h - k < |v| \le h\}}$$

where

$$\left|\left|\frac{\partial u}{\partial x_i}\right|^{p_i(x)-1}\right|_{p_i'(.),\{h<|u|\leq h+k\}} = \left|\left|\left|\frac{\partial u}{\partial x_i}\right|^{p_i(x)-1}\right|\right|_{L^{p_i'(.)}(\{h<|u|\leq h+k\})}.$$

For 
$$i=1,\ldots,N$$
, the quantity  $\left(|j_i|_{p_i'(.)} + \left|\left|\frac{\partial u}{\partial x_i}\right|^{p_i(x)-1}\right|_{p_i'(.),\{h<|u|\leq h+k\}}\right)$  is finite accordance.

ing to relation (11) and Lemma 3.8.

According to Lemma 3.7, the quantity  $\left|\frac{\partial v}{\partial x_i}\right|_{p_i(.),\{h-k<|v|\leq h\}}$  converges to zero as h goes to infinity. Consequently the last integral of (53) converges to zero as h goes to infinity. Then

$$\sum_{i=1}^{N} \int_{\{|u-T_h(v)| \le k\}} a_i \left(x, \frac{\partial u}{\partial x_i}\right) \frac{\partial}{\partial x_i} T_k(u-T_h(v)) dx \ge I_h + \sum_{i=1}^{N} \int_{E_2} a_i \left(x, \frac{\partial u}{\partial x_i}\right) \frac{\partial}{\partial x_i} (u-v) dx$$
with  $\lim_{h \to +\infty} I_h = 0$ . (54)

We may adopt the same procedure to treat the second term in (52) to obtain

$$\sum_{i=1}^{N} \int_{\{|v-T_h(u)| \le k\}} a_i\left(x, \frac{\partial v}{\partial x_i}\right) \frac{\partial}{\partial x_i} T_k(v - T_h(u)) dx \ge J_h - \sum_{i=1}^{N} \int_{E_2} a_i\left(x, \frac{\partial v}{\partial x_i}\right) \frac{\partial}{\partial x_i} (u - v) dx$$

$$(55)$$

with  $\lim_{h \longrightarrow +\infty} J_h = 0$ .

For the two other terms in the left-hand side of (52), we denote

$$K_h = \int_{\Omega} b(u)T_k(u - T_h(v))dx + \int_{\Omega} b(v)T_k(v - T_h(u))dx.$$

We have

$$b(u)T_k(u-T_h(v)) \longrightarrow b(u)T_k(u-v)$$
 a.e since  $h \longrightarrow +\infty$ 

and

$$|b(u)T_k(u - T_h(v))| \le k|b(u)| \in L^1(\Omega).$$

Then, by the Lebesgue dominated convergence theorem, we obtain

$$\lim_{h \to +\infty} \int_{\Omega} b(u) T_k(u - T_h(v)) dx = \int_{\Omega} b(u) T_k(u - v) dx.$$

In the same way, we get

$$\lim_{h \to +\infty} \int_{\Omega} b(v) T_k(v - T_h(u)) dx = \int_{\Omega} b(v) T_k(v - u) dx.$$

Then

$$\lim_{h \to +\infty} K_h = \int_{\Omega} (b(u) - b(v)) T_k(u - v) dx.$$
 (56)

Now consider the right-hand side of inequality (52). We have

$$\lim_{h \to +\infty} f(x) \left( T_k(u - T_h(v)) + T_k(v - T_h(u)) \right) = 0 \quad \text{a.e.}$$

and

$$|f(x)(T_k(u - T_h(v)) + T_k(v - T_h(u)))| \le 2k|f| \in L^1(\Omega).$$

By the Lebesgue dominated convergence theorem, we obtain

$$\lim_{h \to +\infty} \int_{\Omega} f(x) \left( T_k \left( u - T_h(v) \right) + T_k \left( v - T_h(u) \right) \right) dx = 0.$$
 (57)

After passing to the limit as h goes to  $+\infty$  in (52) we get:

$$\sum_{i=1}^{N} \int_{\{|u-v| \le k\}} \left( a_i \left( x, \frac{\partial u}{\partial x_i} \right) - a_i \left( x, \frac{\partial v}{\partial x_i} \right) \right) \frac{\partial}{\partial x_i} (u-v) dx + \int_{\Omega} \left( b(u) - b(v) \right) T_k (u-v) dx \le 0.$$
 (58)

Since b and  $a_i(x,.)$  are monotone then

$$\int_{\Omega} (b(u) - b(v)) T_k(u - v) dx = 0$$

$$\tag{59}$$

and

$$\int_{\{|u-v| \le k\}} \sum_{i=1}^{N} \left( a_i \left( x, \frac{\partial u}{\partial x_i} \right) - a_i \left( x, \frac{\partial v}{\partial x_i} \right) \right) \frac{\partial}{\partial x_i} (u-v) dx = 0.$$
 (60)

We deduce from (59) that

$$\lim_{k \to 0} \int_{\Omega} \left( b(u) - b(v) \right) \frac{1}{k} T_k(u - v) dx = \int_{\Omega} |b(u) - b(v)| dx = 0. \tag{61}$$

According to (6), we deduce from (60) that

$$\left| \frac{\partial}{\partial x_i} (u - v) \right| = 0$$
 a.e  $x \in \Omega$  that is to say  $u - v = C$  a.e  $x \in \Omega$ ,

where C is a positive constant. Therefore

$$u - v = C$$
 a.e  $x \in \Omega$ 

and

$$b(u) = b(v)$$
.

#### References

- E. Azroul, M.B. Benboubker, and S. Ouaro, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized p(x)-Laplace operator, J. Appl. Anal. Comput. 3(2) (2013), 105–121.
- [2] M. Bendahmane and K.H. Karlsen, Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres, *Electron. J. Diff. Equ.* 2006(46) (2006), 1–30.
- [3] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vazquez, An L<sup>1</sup>-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Sup. Pisa 22 (1995), 241–272.
- [4] B.K. Bonzi and S. Ouaro, Entropy solution for a doubly nonlinear elliptic problem with variable exponent, J. Math. Appl. 370(2010), 392-405.
- [5] B.K. Bonzi, S. Ouaro, and F.D.Y. Zongo, Entropy solution for nonlinear elliptic anisotropic homogeneous Neumann Problem, Int. J. Differ. Equ. Article ID 476781(2013), 14p.
- [6] M. Boureanu and V. D. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Analysis 75(2012), 4471-4482.
- [7] H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
- [8] L. Diening, P. Harjulehto, P. Hästo, and M. Ruzicka, Lebesgue and Sobolev space with variable exponent, Lecture Notes in Mathematics 2017 Springer, Heidelberg, 2011.
- [9] X. Fan, Anisotropic variable exponent Sobolev spaces and  $\vec{p}(.)$ -Laplacien equations, Complex var. Elliptic Equ. 55 (2010), 1–20.
- [10] X. Fan and D. Zhao, On the spaces  $L^{p(x)}(\Omega)$  and  $W^{1,p(x)}(\Omega)$ , J. Math. Appl. 263 (2001), 424–446.
- [11] B. Koné, S. Ouaro, and S. Traoré, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, *Electron. J. Diff. Equ.* 2009(144) (2009), 1–11.
- [12] O. Kováčik and J. Rákosník, On spaces  $L^{p(x)}$  and  $W^{1,p(x)}$ , Czechoslovak Math. J. **41**(116) 1991, 592–618.
- [13] M. Mihăilescu, P. Pucci, and V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Appl. 340 (2008) 687–698.
- [14] S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L¹-data, Cubo J. 12(1) (2010), 133–148.
- [15] V. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis 121 (2015), 336–369.
- [16] V. Rădulescu and D. Repovs, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
- [17] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs 49, American Mathematical Society, Providence, 1997.
- [18] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin Heidelberg New York, 1990.
- [19] M. Troisi, Theoremi di inclusione per spazi di Sobolev non isotropi, Recherche. Mat. 18 (1969), 3–24.

(Idrissa Ibrango) L'Aboratoire de Mathématiques et Informatique (L'AMI), UFR. Sciences et Techniques, Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo 01, Bobo-Dioulasso, Burkina Faso

 $E ext{-}mail\ address: ibrango2006@yahoo.fr}$ 

(Stanislas Ouaro) LABORATOIRE DE MATHÉMATIQUES ET INFORMATIQUE (LAMI), UFR. SCIENCES EXACTES ET APPLIQUÉES, UNIVERSITÉ DE OUAGADOUGOU, 03 BP 7021 OUAGA 03, OUAGADOUGOU, BURKINA FASO

 $E ext{-}mail\ address: {\tt souaro@univ-ouaga.bf, ouaro@yahoo.fr}$