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Competition phenomena and weak homoclinic solutions to
anisotropic difference equations with variable exponent
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ABSTRACT. In this paper, we prove the existence of weak homoclinic solutions for a family of
second order difference equations under competition phenomena between parameters.

Key words and phrases. Anisotropic difference equations, homoclinic solutions, discrete
Hoélder type inequality, competition phenomena.

1. Introduction

In this paper, we study the following nonlinear anisotropic discrete problem with an
homoclinic condition at the boundary

—Aa(k — 1, Au(k — 1)) + a(k)|u(k)[PF)2u(k) = 6 f(k,u(k)), k € Z
{ lim w(k) =0, (1)
|k|—o0
where Au(k) = u(k + 1) — u(k) is the forward difference operator.
Difference equations can be seen as a discrete computation of PDEs and are usually
studied in connection with numerical analysis. Many authors studied anisotropic
PDEs with as main operators, the following :

v, (v 2).
i—1 al'z 8%1

under Leray—Lions type conditions [9] in the context of variable exponent (see[l, 2,
6, 7, 10, 11, 14, 15)).
The problem (1) can then be seen as a discrete counterpart of such PDEs under a
homogeneous Dirichlet boundary condition.
In this paper, we adapt the classical minimization methods used for the study of
anisotropic PDEs to prove the existence of solutions to problem (1).
Anisitropic discrete problems on a bounded interval was studied by many authors (see
[4, 7, 8, 12]). Note that, in this paper, we examine anisotropic difference equations
on an unbounded discrete interval, typically, on the whole set Z, with asymptotic
conditions of homoclinic type. The first study in that direction was done by Guiro et
al (see [5]). More precisely, the authors in [5] studied the following problem

lim wu(k) =0. (2)

|k|—o0

{ —Aa(k —1,Au(k — 1)) + |u(k)[PF)2u(k) = f(k), k € Z
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They proved an existence result of a weak homoclinic solution of (2).

In this paper, we also prove an existence result of (1) and for that, we define other
new spaces and new associated norms compared to that of [5]. Some of the norms
defined may be equivalent in order to prove the main result of this paper. Note also
that in our study, we show some competition phenomena between «(.) and §(.) and
between p(.) and ¢(.). Such competition phenomena are also necessary for the proof
of the existence of weak homoclinic solutions of (1).

The paper is organized as follows : Section 2 is devoted to the mathematical prelim-
inary. In Section 3, we study problem (1), where ¢ is a positive constant and where
we prove the existence of weak homoclinic solutions of (1). In the last section, we
study problem (1) for a more general ¢.

2. Auxiliary results

For the data f, @ and a, we assume the following.

a(k,.) : R — R, Vk € Z and there exists a mapping
(H){ A:ZxR —> R which satisfies
a(k, &) = 8& A(k,E), Yk € Z and A(k,0) =0, Vk € Z.

(Hz) |€["™ < a(k,€)¢ < p(k)A(k,€), VE € Z and € € R.
(H3) 3 C, > 0; |a(k, )| 1G(k) + €1, Wk € Z and € € R with
1
jewro =1.
p(k) (k)
(Hy) f:7Z xR — R, such that for every k € Z and t € R, %in% =
=

(Hs) o : Z — R such that a(k) > ag > 0, for all k € Z.

(Hg) p: Z — (1,400) with 1 < p~ < p* < +o0, where p™ = supp(k) and
kEL

|f (k1)

tp—1 0.

p~ = inf p(k).

(H7) agp™ > dp™.

(Hs) (a(k,&) —a(k,n)).(§6 —n) >0, Vk € Z and £,n € R such that £ # n.
In order to present the main results of our paper, we introduce for each p(.) : Z —
(1, 4+00), the spaces

PO = {u:Z = R; Pp()(u Z|u )P < oo},
kEZ

2 = {2 R pagy p() () =Y alB)|u(k)P*) < oo},
kEZ

1%°:={u:Z — R;sup |[u(k)| < oo}
kEZ

and

Wl = {u s 2= R pragy iy (1) = Y alB)u(k)P® + 37 | Au(k)P® < oo},
keZ kEZ
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On (»() (( and W;(p )('), we introduce the Luxemburg norms
: u(k) [P
[ullp(.) = inf {A >0 |- <1y

keZ

k

( ) p(k)

lullay,pey = inf § A > 0; Z — <1

kEZ

and
ull1,a0).00) = lullag)p) + [1AUllp)-
As in [5], we can prove the followmg results.

Lemma 2.1. Under the assumption (Hg), we have :
(@) pai)p() (W +v) < 2% (0o ) p) (1) + pai)p)(V);  Vu,v € ZZ(( )
(b) Foruelp(), if A > 1 we have
- +

Pa() () (W) < APa()p() (1) S A par) p() (W) < pa().p() (M) S AP pag)p() (1)

and if 0<X<1,
. _
M pa()p() (W) < Pa(y o) (M) <A pacy p) (1) < Ao p) (1) < paiype) ()

(¢) For every fized u € li(('_)) \ {0}, pa()p()(Au) is a continuous convex even function
in A, and it increases strictly when A € [0, 00).

Proposition 2.2. Let u € lp( y \ {0}, then [lullac)p() =7 € Pal)n() <u) =1.
Y

Proposition 2.3. Ifu € lp() and pT < +o0, then the following properties hold :
1) ullagy,py < (=1 >1)<:>pa()p()( u) < 1(=1;>1);
2) lullacypey > 1= lullly) o) < Pacype) (@) < lullify o)
9) Tullacypty < 1= %)) ) < pacro (@) < IUl%0) )
4) llullay, >—>0<:>pa<>p<>(u)—>0

Proposition 2.4. Letu € Wa&?)(')\{O}, then ||ull1,0(.),p() = @ < P1,a().p() (%) =1

Proposition 2.5. Ifu € W;f)(') and pt < +oo, then the following properties hold :
D ullat)pe) <HEL > 1) prac)pe) (@) < H=1>1);
2) lullacypc) > 1= 1ll] a0y pe) < Pra0po @) < Hully 5 05

+ _
3) Nullia() o) <T=lull} o) p0) < Pracee) @) < T o) ooy
4) lullia()p) = 0 € pra) ) (1) = 0.

We also have the following lemma (see [5]).
Lemma 2.6 (Holder type inequality). Let u € IP¢) and v € 190) such that
1
=1, VkecZthen,

o) 9k
S Juv] < (p1 n 1) lloio ot

kEZ
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3. Existence of homoclinic solutions

In this section, we study the existence of weak homoclinic solutions of (1) where 0 is
a positive constant.

,p( )

Definition 3.1. A weak homoclinic solution of (1) is a function v € W such

that

> alk—1,Au(k —1)Av(k—1) + Y a(k)u(k)P®2uk)v(k)

kEZ keZ

= 0 flku(k))v(k)

keZ

foranyvéWlp().

The main result of this section is the following.

Theorem 3.1. Assume that (Hy)—(Hs) hold true. Then, there exists at least one
weak homoclinic solution of (1).

Remark 3.1. The competition phenomena is relative to the condition agp™ > dp™
on the data. It means that the parameter «(.) should be bigger than the parameter
d in order to get homoclinic solutions of (1).

t
We denote F(k,t) = / fk,7)dr, VK€ Z, t e R.
0

The energy functional corresponding to problem (1) is defined by J : Wal(p )(') — R
such that

= Ak -1, Au(k — 1)) +Z : k)R — 5> " F(k,u(k).  (4)

kEZ kEZ kEZ

We first present some basic properties of .J.

Proposition 3.2. The functional J is well-defined on Wal’(?)(') and is of class

c' (W 1(”)( ),R) with the derivative given by

(J'(w),v) = alk—1,Au(k —1)Av(k - 1) + Y a(k)u(k)"®~2uk)v(k)

kEZ keZ

= 6 flku(k))u(k)

ke
(5)
for all u,v € W;f)(').

Proof. Let J(u) = I(u) + L(u) — A(u) with
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— — ulk— u) = Oé(k)u p(k) an U
= 30 A1 Aulk=1). L(w) = 30 SR and Aw) = 3 F(k.uf

kEZ kEZ (k:) vez
One has
1) = ZA(kl,Au(kl))|
kEZ
< S JA(k -1, Au(k —1))]
kEZ
. 1 p(b—1)—1
< ZC&] —1D)]Au(k —1) |+Z \Au )|p(k71)
kez kez P
< ©o0Q.
L)l = a((:))U(k)lp(’“) <L S al®)lu(k)P®) < o.
rez P P ez

By (H,), there exists v > 0 such that |f(k,t)] < [t|P(®)~1 for all k € Z, |t| < v. By

|t|P(F)
integrating, we deduce that |F(k,t)] <

for all k € Z, |t| < v.

p(k)
For all u € W;"(Z")(‘), there exists h € N such that |u(k)| < v for all k € Z, |k| > h,
S0
A(w)] = ZF(k,U(’f))|
kEZ
< D IF(k (k)
kEZ
(k) p(k)
< 3 |F(kulk) \+Z|u )
k|<h |k|>h
1
< p(k) )
< > |F(ku( \+p - > alk)u(k)P® < oo
k|<h kez

Therefore, J is well-defined.

Clearly I, L and A are in C( a’(p)( ), R). In what follows, we prove (5).

Let us choose u,v € Wa’(l_))( ). We have

L(u+nv) — L(u)

and




156 A. GUIRO, B. KONE, AND S. OUARO

Since
o L) = 1)
n—0+ n
- tim Ak —1,Au(k = 1) + nAv(k — 1)) — A(k — 1, Au(k — 1))
e kEZ "
B lim Ak —1,Au(k — 1) + nAv(k — 1)) — A(k — 1, Au(k — 1))
N = 50+ n
= Za(k —1,Au(k — 1))Av(k — 1),
kezZ
L) L) alk) (k) B P) — fu(k) )
n—0+ n n—0+ ver p(k)n
g Al £ RO — ()
wez 0" p(k)n
= > a(®)|u(k)[P®Pu(k)o(k)
kezZ
and
LA ) A FOnulk) + (k) — F(k u(k)
n—0t n 6—0t ez n
N gy EOulk) +np() = Fk (k)
ez 10" K
= Y flku(k))v(k)
keZ
we obtain (5). O

Lemma 3.3. The functional I is weakly lower semi-continuous.

Proof. From (H) and (Hg), I is convex with respect to the second variable. Thus, it

is enough to show that I is lower semi-continuous (see Corollary IIL.8 in [3]). For this,

we fix u € W ip)( ) and € > 0. Since I is convex, we deduce that for any v € wh o, )( )

)

) > 1() + (I (w), 0 — u)
> I(u)+ > a(k—1,Au(k—1)) (Av(k — 1) — Au(k — 1))
keZ
> I<u>—c<pi+ gl 1A = )
> 1) = K (= vl + 136 = )b
Z I(U)fK”u*UHl,a(.),p(.) Z I(U)*

for all v € W &p)() with [[u — v|l1a0)p) < & = % Here g(k) = j(k) + |Au(k —
1)|p kfl)fl.
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Hence, we conclude that I is weakly lower semi-continuous. O

Proposition 3.4. The functional J is bounded from below, coercive and weakly lower
Semi-continuous.

Proof. By Lemma 3.3, J is weakly lower semi-continuous. We will only prove the
coerciveness of the energy functional since the boundedness from below of J is a
consequence of its coerciveness. To prove the coerciveness of J, we may assume that

lully ey pey) >1-

= > Ak —1,Au(k — 1)) +Z :) kK)PR) — 5> F(k, u(k))
keZ kEZ ) keZ
1
ZZT|AU(]€ Pt 43 U]: k)PR) — 6 P (k, u(k))|
kezp( ) kez p(k) kez
1
> +Zmu 1)p=b +Z (k)[P*) — 6> @\u(k)l”"“) — M(3)
kEZ kEZ \k\>hp
1 §
> —(pp() (D) + pag p() () = —— > alk)|u(k) PP — M(3)
P2
1 )
> pjm,a(.),p(.)(u) - mm,a(.)p(.)(u) — M (9)
1 5
> (— - — M(§
= <p+ aop_) pl,oz(),p()(u) ( )
1
> (o = o) Wil ) — MOO)

where M () is a positive constant depending on 4.
By (H7), J is coercive.

Therefore, as ||ul[1,q(.),p(.) = +00 then J(u) — 400 and so, there exists ¢ € R such
that J(u) >

It Hu”l,a(.),p(.) <1, then

1 1)
J(u) > Fpl,a(-%p(»)( u) — mpa( ):p(- )( u) — M(6)
0
> ———pa()p() (W) — M(9)

P ag
> —C > —o0.

Thus, J is bounded below.

As I is weakly lower semi-continuous, then J is weakly lower semi-continuous. [

We can now give the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.2, J has a minimizer which is a weak solution
of (1).

In order to complete the proof of Theorem 3.1, we will show that every weak solution
u is homoclinic, i.e u(k) — 0 as |k| — +oo.
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Let u be a weak solution to problem (1), then, as u € Wa’(p )( we get
Za0|u |p(k) < Z |p(k) < 0.
kez kez
Let S; ={k € Z,|u(k)| < 1} and Sy = {k € Z, |u(k)| > 1}.

So is a finite set, then

Z‘u P = Z lu(k)[P*) + Z u(k

k€EZ keSy keSa
< Z lu(k)|P® + R < oo,
keSS

where R is a positive constant.

So,
Z|u |p +R< Z|u

keSS, keSS,
Therefore, as S, is a finite set, we get
Z lu(k |p < 00.
kez
Thus, lim |u(k)| =0. O

|k|—+o00
4. Extension

In this section, we show that the existence result obtained for (1) can be extended
to more general anisotropic homoclinic boundary value problems of the form.
—Aa(k =1, Au(k — 1)) + a(k)[u(k) PP~ 2u(k) = 6(k) f(k,u(k), k€ Z
lim wu(k) = 0.
|k|—o00
For the data f, 6 and «, we assume the following.
(Hy) f : Z x R — R, such that there exists b : Z — RT, with b € [¢ () and
|f (k)] < b(k) + clt]1™.
(Hy) 6:Z — R, § € I"0) with §* = %nf%w(kn >0and a:Z — R, a € [ with
€
a” > 0.
(Hyp) r~ >1land +oo>pt >p~ >qT >q¢ > 1.
We also need the following space.
WP = {4 Z = R;u € 1PV, Ay e PO},

On WP() and [*°, we introduce the following norms.

lullipy = 1nf{/\ > O;Z =

keZ

Au(k)
A

p(k)
<1

keZ

| 1,p(.)
= Nlullpe) + 1Aullp,

[ullo := sup [u(k)],
keZ
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and
lullis0)p) := inf {)\ >0 |5(k)‘/\ +y <1
keZ k€EZ
= lullscypey + 1Aullpe)-
Lemma 4.1. For all 7(.) < +o0, I") C 1>,
Proof.
1
. s = = if proy(u) > 1,
sup [u(k)| < (pr(y(w)”  with )
s = 3 if ppy(u) <1
So, we have § € ") = § € [, g

In this section, we need the following results.
Lemma 4.2. (sce [13]) Assume that (Hy1) is fulfilled. Then, 19¢) C [P(),
Lemma 4.3. ||.|150)() and ||.|l1 () are equivalent norms in W1P().

Proof. As § € I"), by Lemma 4.1, we have

wl(k) P Au(k) [PF)
NG Ll syl EIL
kEZ kEZ
u k p(k}) Au(kj) p(k:)
< maX(1,||5|oo)<Z ulk) ) = max(1,[|d]|) B,
kEZ kEZ
k) [P® Au(k) [P
where B = Z T N )
keZ keZ
elsewhere, we have
wl(k) [P Au(k) [P
A = Z|§(k)|’()\) +> A( )
kezZ keZ
N e ] Aulk) "N _ s
> — — = :
> min(1,6 )(Z \ 3 min(1,5%)B
keZ k€Z

So, Vu € WHPO) | min(1,6*)||ully p) < llull1,60)p0) < max(L, [|6]|oo)|u

1,p(.)- 0

Definition 4.1. A weak homoclinic solution of (6) is a function « € WP() such
that

> alk—1,Au(k = 1)Av(k—1) + Y alk)ulk)P® " 2uk)o(k)

kEZL keZ
(7)

= D 6(k)f(ku(k))u(k),

kEZ

for any v € Whp(),

The main result of this section is the following.
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Theorem 4.4. Assume that (Hy)—(H3) and (Hg)—(Hy1) hold true. Then, there exists
at least one weak homoclinic solution of (6).

The energy functional corresponding to problem (1) is defined by J : wirl) 5 R
such that

=3 Al =1 Au(k = 1) + 3 S = AWk k). (9

kezZ kGZ kEZ

t

where F(k,t) = / f(k,7)dr, Vk € Z and t € R.

0
We first present some basic properties of J.

Proposition 4.5. The functional J is well-defined on W 0 and is of class
CT*(W1PL) R) with the derivative given by

(J'(w),v) =Y alk—1,Au(k — 1)Av(k—1) + > a(k)uk) PP >u(k)v(k)

kEZ keZ

> 8(k) f (R, u(k))u(k),

keZ
for all u,v € Whr(),

Proof. Let J(u) = I(u) + L(u) — A(u) with I(u ZA —1,Au(k - 1)),

kEZ
L(u) = Z i(k)m(k)p( and A(u 25

kEZ (k) keZ
As in Section 3, we have

|[T(u)| < oo and |L(u)| =

S P <

keZ

olk)
2 p(k) il

keZ

By (Hg), we have | f(k,u(k))| < b(k)+clu(k)|?®~! and by Young inequality, we have
for all u € Wtp(),

" ” —C (k) a®)
FOu()] < o) + s lulh)
< bl ® + S
So,
- Zé(k)F(k,uuf))‘ < Y BRIk u(h)
kEZ keZ
<

P GIOIERE s SEGINEILE

kEZ keZ
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e LI e S ey

kEZ keZ

(I+e H5||oo
+ > k)1 <

keZ

Then, J is well-defined.
Clearly I, L and A are in C1(W'?() R) and we have

(F(u), ) = Tim L0EM) = T(W) S alk — 1, Au(k — 1) Av(k - 1),

—0t
K N keZ

and

keZ

As in Lemma 3.3, we can prove the following lemma.
Lemma 4.6. The functional I is weakly lower semi-continuous.

Proposition 4.7. The functional J is bounded from below, coercive and weakly lower
Semi-continuous.

Proof. By Lemma 4.6, J is weakly lower semi-continuous. We will only prove the
coerciveness of the energy functional since the boundedness from below of J is a
consequence of its coerciveness. We assume that ||u|; ) > 1. Then

Jw) = > A(k—1,Au(k—1)) +Z :))u )P =" 65(k)F (K, u(k))
keEZ kEZ keZ
wlk — p(k—1) (k u
> k%p()m( D+ 5 S P S ki)
> +Z|Au (k —1)|P=D 4 +z:|u
kEZ keZ
_ gk, 1+¢) a(k)
> o ( 019 + Do )
> min o S o0 (80 + () ~ (5= 201 )

keZ

(1+¢
(7= T e ©r ) = £ 5 jucey

kEZ keZ
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. 1 o (]. + C)
> min <p+, p+) prp(y(u) — M — qi_mé(.n,qc)(”“)
_ +
> Cilullf ) = Callulllsy g0y — M

_ +
> Cl””HIf}p(,) - CS”“”?,;J() —M,

where C, Cy, C5 and M are positive constants.
As [|ul|1,pc)y — +o0, then J(u) — +o00. So, there exists ¢ € R such that J(u) > c.
If |Jully py <1, then

J(u) = Crprpy(u) = M = Copis()q() ()
¥ _
> Cillullf ) = Callullgy g — M
n -
> Cl”“HIlJ’p(J - C4||u||(11,p(,) - (s
> —(C4+Ca) = —Cy,
where Cy is a positive constant and thus J is bounded below. O

We can now give the proof of Theorem 4.4.

Proof of Theorem 4.4. By Proposition 4.5, J has a minimizer which is a weak solution

of (1.1) and as in Section 3, we prove that the solution satisfies |k‘lim u(k) =0. O
—+o0

Remark 4.1. In this section,the competition phenomena is relative to the exponent.

Indeed, p(.) must be bigger than ¢(.) in order to get weak homoclinic solutions to

problem (6).
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