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Estimations of the difference between two weighted integral
means and application of the Steffensen’s inequality
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Abstract. We present an estimate of the difference between two weighted integral means

related to the general one-point integral formula of Matić, Pečarić and Ujević.
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1. Introduction

Let us recall Steffensen’s inequality which was introduced and proved in [9]:

Theorem 1.1. Suppose that f is decreasing and g is integrable on [a, b] with 0 ≤ g ≤ 1

and λ =
∫ 1

0
g(t)dt. Then we have∫ b

b−λ
f(t)dt ≤

∫ b

a

f(t)g(t)dt ≤
∫ a+λ

a

f(t)dt. (1)

The inequalities are reversed for f increasing.

In [4] and [5] the following one-point integral formula is introduced from the general
m−point integral identity:∫ b

a

w(t)f(t)dt =
n∑
j=1

Aw,j(x)f (j−1)(x) + (−1)n
∫ b

a

Wn,w(t, x)f (n)(t)dt, (2)

where f : [a, b]→ R is such that f (n−1) is absolutely continuous function, w : [a, b]→
[0,∞) is weight function, x ∈ [a, b]

Aw,j(x) =
(−1)j−1

(j − 1)!

∫ b

a

(x− s)j−1w(s)ds, for j = 1, . . . , n (3)

and

Wn,w(t, x) =

{
w1n(t) = 1

(n−1)!

∫ t
a
(t− s)n−1w(s)ds for t ∈ [a, x],

w2n(t) = 1
(n−1)!

∫ t
b
(t− s)n−1w(s)ds for t ∈ (x, b].

(4)

Let us define function Wn,w(t, x) outside of the interval [a, b]:

Wn,w(t, x) = 0, for t < a

Wn,w(t, x) = Wn,w(b, x), for t > b.
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Let us define for n ≥ 2:

T [a,b]
w,n (x) :=

1∫ b
a
w(t)dt

n∑
k=2

Aw,k(x)f (k−1)(x)

and T
[a,b]
w,1 (x) = 0.

In [1] identity (2) is obtained as the extension of the weighted Montgomery identity
via Taylor’s formula. Also, the difference between two integral means, each having
its own weight, w and u defined on two different intervals [a, b] and [c, d] such that
[a, b] ∩ [c, d] 6= ∅ is obtained:

1∫ b
a
w(t)dt

∫ b

a

w(t)f(t)dt− 1∫ d
c
u(t)dt

∫ d

c

u(t)f(t)dt− T [a,b]
w,n (x) + T [c,d]

u,n (x)

= (−1)n
∫ max{b,d}

min{a,c}
Kn(t, x)f (n)(t)dt, (5)

where

Kn(t, x) =
Wn,w(t, x)∫ b
a
w(t)dt

− Wn,u(t, x)∫ d
c
u(t)dt

. (6)

Assume (p, q) is a pair of conjugate exponents, 1 ≤ p, q ≤ ∞. The following inequality
is also obtained in [1]: If f (n) ∈ Lp[a, d], then we have∣∣∣∣∣
∫ b

a

w(t)f(t)dt−
∫ d

c

u(t)f(t)dt− T [a,b]
w,n (x) + T [c,d]

u,n (x)

∣∣∣∣∣ ≤ ||Kn(·, x)||q · ||f (n)||p.

The inequality is sharp for 1 < p ≤ ∞ and the best possible for p = 1.
In this paper we deal with n−convex functions. The following definitions and

theorem can be found in [8].

Definition 1.1. Let f be a real-valued function defined on the segment [a, b]. A k−th
order divided difference of f at distinct points x0, . . . , xk ∈ [a, b] is defined recursively
by

f [xi] = f (xi) , i = 0, . . . , k

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
.

The value f [x0, . . . , xk] is independent of the order of the points x0, . . . , xk. The
definition may be extended to include the case that some (or all) of the points coincide
by assuming that x0 ≤ . . . ≤ xk and letting

f [x, . . . , x︸ ︷︷ ︸
j times

] =
f (j)(x)

j!
, (7)

provided that f (j)(x) exists.

Definition 1.2. A function f : [a, b] → R is said to be n−convex (n ≥ 0) if for all
choices of n+ 1 distinct points in [a, b]

f [x0, . . . , xn] ≥ 0.
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Theorem 1.2. If f (n) exists, then f is n−convex if and only if f (n) ≥ 0.

The aim of this paper is to give the extension of the Steffensen’s inequality (1) by
using identity (5).

2. Generalization of the Steffensen’s inequality

We shall start with general inequality for n−convex functions.

Theorem 2.1. Let f : [a, b] ∪ [c, d] → R be a n−convex function, x ∈ [a, b] ∩ [c, d]
and let w : [a, b] → R and u : [c, d] → R be integrable functions (weights). If
(−1)nKn(t, x) ≥ 0 for every t ∈ [a, b] ∪ [c, d], then

1∫ b
a
w(t)dt

∫ b

a

w(t)f(t)dt− 1∫ d
c
u(t)dt

∫ d

c

u(t)f(t)dt ≥ T [a,b]
w,n (x)− T [c,d]

u,n (x). (8)

If (−1)nKn(t, x) ≤ 0, for every t ∈ [a, b] ∪ [c, d] inequality (8) is reversed.

Proof. Without loss of generality we may assume that f (n) is continuous (see [8]).
The result follows from the identity (5) and Theorem 1.2. �

Theorem 2.2. Let f : [a,max{b, a + λ}] → R be a n−convex function for n ≥ 1,
0 ≤ λ and let w : [a, b] → [0,∞〉 be integrable on [a, b]. If x ∈ [a, b] ∩ [a, a + λ] and
(−1)nKn(t, x) ≥ 0 for every t ∈ [a,max{b, a+ λ}], then we have

1∫ b
a
w(t)dt

∫ b

a

w(t)f(t)dt− T [a,b]
w,n (x) ≥ 1

λ

∫ a+λ

a

f(t)dt− T [a,a+λ]
1,n (x). (9)

Proof. We put c = a and d = a + λ, so we have two possibilities: [c, d] ⊆ [a, b] and
[a, b] ⊆ [c, d].

a) Case [a, a+ λ] ⊆ [a, b]
For u ≡ 1 on [a, a+ λ] we have

(−1)nKn(t, x) =


(−1)n

[
1

(n−1)!
∫ b
a
w(t)dt

∫ t
a
(t− s)n−1w(s)ds− (t−a)n

n!λ

]
, a ≤ t ≤ x

(−1)n
[

1
(n−1)!

∫ b
a
w(t)dt

∫ t
b
(t− s)n−1w(s)ds− (t−a−λ)n

n!λ

]
,

x < t ≤ a+ λ

(−1)n 1
(n−1)!

∫ b
a
w(t)dt

∫ t
b
(t− s)n−1w(s)ds, a+ λ < t ≤ b.

Apply Theorem 2.1 to finish the proof.
b) Case [a, b] ⊆ [a, a+ λ]

For u ≡ 1 on [a, a+ λ] we have

(−1)nKn(t, x) =


(−1)n

[
1

(n−1)!
∫ b
a
w(t)dt

∫ t
a
(t− s)n−1w(s)ds− (t−a)n

n!λ

]
, a ≤ t ≤ x

(−1)n
[

1
(n−1)!

∫ b
a
w(t)dt

∫ t
b
(t− s)n−1w(s)ds− (t−a−λ)n

n!λ

]
, x < t ≤ b

− (a+λ−t)n
n!λ , b < t ≤ a+ λ.

Apply Theorem 2.1 to finish the proof.
�
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Let us introduce the following classes of functions for n > 1:

Mn[a, b] :=

{
w : [a, b]→ [0, 1] :

(∫ b

a

w(t)dt

)n
≤ n

∫ b

a

(t− a)n−1w(t)dt

}
and

M ′n[a, b] :=

{
w : [a, b]→ [0, 1] :

(∫ b

a

w(t)dt

)n
≥ n

∫ b

a

(t− a)n−1w(t)dt

}
.

Let us denote W :=
∫ b
a
w(t)dt.

Corollary 2.3. Let w : [a, b]→ [0, 1] be integrable function on [a, b] and n > 1.

a) If λ =
∫ b
a
w(t)dt and f : [a, b]→ R is a 1−convex function then we have∫ b

a

w(t)f(t)dt ≥
∫ a+λ

a

f(t)dt. (10)

b) If w ∈Mn[a, b],

λ :=

[
n ·
∫ b

a

(t− a)n−1w(t)dt

] 1
n

and f : [a,max{b, a+ λ}]→ R is a n−convex function then we have

1∫ b
a
w(t)dt

∫ b

a

w(t)f(t)dt− T [a,b]
w,n (a) ≥ 1

λ

∫ a+λ

a

f(t)dt− T [a,a+λ]
1,n (a). (11)

c) If w ∈M ′n[a, b],

λ :=

[
n∫ b

a
w(t)dt

·
∫ b

a

(t− a)n−1w(t)dt

] 1
n−1

and f : [a,max{b, a+ λ}]→ R is a n−convex function then we have

1∫ b
a
w(t)dt

∫ b

a

w(t)f(t)dt− T [a,b]
w,n (a) ≥ 1

λ

∫ a+λ

a

f(t)dt− T [a,a+λ]
1,n (a). (12)

Proof. a) Since λ =
∫ b
a
w(t)dt ≤ b− a, we have for x = a

−K1(t, a) =


1∫ b

a
w(t)dt

∫ b
t
w(s)ds− t−a

λ + 1, a < t ≤ a+ λ

1∫ b
a
w(t)dt

∫ b
t
w(s)ds, a+ λ < t ≤ b.

It is easy to check that −K1(t, a) ≥ 0, so the assertion follows from Theorem 2.2.
b) In this case we have

λ =

[
n ·
∫ b

a

(t− a)n−1w(t)dt

] 1
n

≤

[
n

∫ b

a

(t− a)n−1

] 1
n

=

[
n

(b− a)n

n

] 1
n

= b− a,

so for x = a we have

(−1)nKn(t, a) =


0, t = a

1
(n−1)!

∫ b
a
w(t)dt

∫ b
t

(s− t)n−1w(s)ds− (a+λ−t)n
n!λ , a < t ≤ a+ λ

1
(n−1)!

∫ b
a
w(t)dt

∫ b
t

(s− t)n−1w(s)ds, a+ λ < t ≤ b.
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Obviously, (−1)nKn(t, a) ≥ 0, for t ∈ [a+ λ, b].
In order to prove that (−1)nKn(t, a) ≥ 0, for t ∈ 〈a+ λ, b], we shall prove that

1

(n− 1)!
∫ b
a
w(t)dt

∫ b

t

(s− t)n−1w(s)ds ≥ (a+ λ− t)n

n!λ
.

From the definition of the set Mn it is obvious that λ ≥W. We compute

1

(n− 1)!W

∫ b

t

(s− t)n−1w(s)ds =
1

(n− 1)!W

∫ b

t

(
s− t
s− a

)n−1

(s− a)n−1w(s)ds

=
1

(n− 1)!W

∫ b

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n
·

(∫ b

s

(z − a)n−1w(z)dz

)
ds

≥ 1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n
·

(∫ b

s

(z − a)n−1w(z)dz

)
ds

=
1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n

·

(∫ b

a

(z − a)n−1w(z)dz −
∫ s

a

(z − a)n−1w(z)dz

)
ds

≥ 1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n

·

(∫ b

a

(z − a)n−1w(z)dz −
∫ s

a

(z − a)n−1dz

)
ds

=
1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n

·

(∫ b

a

(z − a)n−1w(z)dz − (s− a)n

n

)
ds∣∣∣∣∣u =

1

(n− 1)!W

(∫ b

a

(z − a)n−1w(z)dz − (s− a)n

n

)
,

dv = (n− 1)
(s− t)n−2(t− a)

(s− a)n
ds

∣∣∣∣
=

1

(n− 1)!W

(∫ b

a

(z − a)n−1w(z)dz − λn

n

)

· (a+ λ− t)n−1

λn−1
+

(a+ λ− t)n

n!W
≥ (a+ λ− t)n

n!λ
.

The assertion follows from the Theorem 2.2.
c) In this case we have λn−1 ·W =

∫ b
a

(t− a)n−1w(t)dt ≤Wn (since w ∈M ′n[a, b]),
so λ ≤W ≤ b− a. Therefore for x = a we have

(−1)nKn(t, a) =


1

(n−1)!
∫ b
a
w(t)dt

∫ b
t

(s− t)n−1w(s)ds− (a+λ−t)n
n!λ , a ≤ t ≤ a+ λ

1
(n−1)!

∫ b
a
w(t)dt

∫ b
t

(s− t)n−1w(s)ds, a+ λ < t ≤ b.
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Obviously, (−1)nKn(t, a) ≥ 0, for t ∈ [a+ λ, b].
In order to prove that (−1)nKn(t, a) ≥ 0, for t ∈ 〈a+ λ, b], we shall prove that

1

(n− 1)!
∫ b
a
w(t)dt

∫ b

t

(s− t)n−1w(s)ds ≥ (a+ λ− t)n

n!λ
.

We compute

1

(n− 1)!W

∫ b

t

(s− t)n−1w(s)ds =
1

(n− 1)!W

∫ b

t

(
s− t
s− a

)n−1

(s− a)n−1w(s)ds

=
1

(n− 1)!W

∫ b

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n
·

(∫ b

s

(z − a)n−1w(z)dz

)
ds

≥ 1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n
·

(∫ b

s

(z − a)n−1w(z)dz

)
ds

=
1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n

·

(∫ b

a

(z − a)n−1w(z)dz −
∫ s

a

(z − a)n−1w(z)dz

)
ds

≥ 1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n

·

(∫ b

a

(z − a)n−1w(z)dz −
∫ s

a

(z − a)n−1dz

)
ds

=
1

(n− 1)!W

∫ a+λ

t

(n− 1)
(s− t)n−2(t− a)

(s− a)n

·

(∫ b

a

(z − a)n−1w(z)dz − (s− a)n

n

)
ds∣∣∣∣∣u =

1

(n− 1)!W

(∫ b

a

(z − a)n−1w(z)dz − (s− a)n

n

)
,

dv = (n− 1)
(s− t)n−2(t− a)

(s− a)n
ds

∣∣∣∣
=

1

(n− 1)!

[(
1

W

∫ b

a

(z − a)n−1w(z)dz − λn

nW

)

· (a+ λ− t)n−1

λn−1
+

(a+ λ− t)n

nW

]

=
(a+ λ− t)n−1

n!

[
n

λn−1W

∫ b

a

(z − a)n−1w(z)dz − λ

W
+
a+ λ− t

W

]

=
(a+ λ− t)n−1

n!

(
1− t− a

W

)
≥ (a+ λ− t)n−1

n!

(
1− t− a

λ

)
=

(a+ λ− t)n

n!λ
.

The assertion follows from the Theorem 2.2. �
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Remark 2.1. Inequality (10) is the right-hand side of Steffensen inequality.

Theorem 2.4. Let f : [min{a, b − λ}, b] → R be a n−convex function for n ≥ 1,
0 ≤ λ and let w : [a, b] → [0,∞〉 be integrable on [a, b]. If x ∈ [a, b] ∩ [b − λ, b] and
(−1)nKn(t, x) ≤ 0 for every t ∈ [min{a, b− λ}, b], then we have

1

λ

∫ b

b−λ
f(t)dt− T [b−λ,b]

1,n (x) ≥ 1∫ b
a
w(t)dt

∫ b

a

w(t)f(t)dt− T [a,b]
w,n (x). (13)

Proof. We put c = b − λ and d = b, so we have two possibilities: [c, d] ⊆ [a, b] and
[a, b] ⊆ [c, d].

a) Case [b− λ, b] ⊆ [a, b]
For u ≡ 1 on [b− λ, b] we have

(−1)nKn(t, x) =


(−1)n 1

(n−1)!
∫ b
a
w(t)dt

∫ t
a
(t− s)n−1w(s)ds, a ≤ t ≤ b− λ

(−1)n
[

1
(n−1)!

∫ b
a
w(t)dt

∫ t
a
(t− s)n−1w(s)ds− (t−b+λ)n

n!λ

]
, b− λ < t ≤ x

(−1)n
[

1
(n−1)!

∫ b
a
w(t)dt

∫ t
b
(t− s)n−1w(s)ds− (t−b)n

n!·λ

]
, x < t ≤ b.

Apply Theorem 2.1 to finish the proof.
b) Case [a, b] ⊆ [b− λ, b]

For u ≡ 1 on [b− λ, b] we have

(−1)nKn(t, x) =


− (b−λ−t)n

n!λ , b− λ ≤ t ≤ a
(−1)n

[
1

(n−1)!
∫ b
a
w(t)dt

∫ t
a
(t− s)n−1w(s)ds− (t−b+λ)n

n!λ

]
, a < t ≤ x

(−1)n
[

1
(n−1)!

∫ b
a
w(t)dt

∫ t
a
(t− s)n−1w(s)ds− (t−λ)n

n!λ

]
, x < t ≤ b.

Apply Theorem 2.1 to finish the proof.
�

Corollary 2.5. Let w : [a, b]→ [0, 1] be integrable function on [a, b]. If f : [a, b]→ R
is a 1−convex function then we have∫ b

b−λ
f(t)dt ≥

∫ b

a

w(t)f(t)dt. (14)

Remark 2.2. Inequality (14) is the left -hand side of reversed Steffensen inequality
(1).

3. n−exponential convexity of Steffensen’s inequality via one-point inte-
gral formula

In this section we shall generate means from the differences of weighted integrals,
and from Steffensen’s inequality via one-point integral formula.
Let x ∈ [a, b] ∩ [c, d] and let w : [a, b] → R and u : [c, d] → R be integrable functions
(weights). Let us define functional A : C[a,max{b, d}]→ R with

Af :=

∫ b

a

w(t)f(t)dt− T [a,b]
n,w (x)−

∫ d

c

u(t)f(t)dt+ T [c,d]
n,w (x). (15)

It is easy to check that A is linear functional.
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Corollary 3.1. Let f : [a, b] ∪ [c, d] → R be a n−convex function, x ∈ [a, b] ∩
[c, d] and let w : [a, b] → R and u : [c, d] → R be integrable functions (weights). If
(−1)nKn(t, x) ≥ 0 for every t ∈ [a, b] ∪ [c, d], then Af ≥ 0.

Proof. The proof follows immediatelly from the Theorem 2.1. �

Theorem 3.2. Assume that w : [a, b] → R and u : [c, d] → R are weights such that
(−1)nKn(t, x) ≥ 0 for every t ∈ [a, b] ∪ [c, d]. Then for every f ∈ Cn[a,max{b, d}]
there exists ξ ∈ [a,max{b, d}] such that

Af = f (n)(ξ)A(Pn), (16)

where Pn(t) = (t−a)n

n! .

Proof. For given function f ∈ Cn[a,max{b, d}] let us define

m := min{f (n)(t) : a ≤ t ≤ max{b, d}}

and

M := max{f (n)(t) : a ≤ t ≤ max{b, d}}.
Now, let us define functions h1, h2 : [a,max{b, d}]→ R with

h1(t) = M · Pn(t)− f(t), h2(x) = f(t)−m · Pn(t).

Note that h
(n)
1 (t) = M − f (n)(t) ≥ 0 for t ∈ [a,max{b, d}], so we conclude from the

Corollary 3.1 that Ah1 ≥ 0 and consequently Af ≤ M · A(Pn). On the other hand,

from h
(n)
2 (t) = f (n)(t)−m ≥ 0 we conclude m ·A(Pn) ≤ Af. Now from

m ·A(Pn) ≤ Af ≤MA(Pn)

and continuity of f (n) we conclude that there exists ξ ∈ [a,max{b, d}] such that (16)
is valid. �

Corollary 3.3. Assume that w : [a, b] → R and u : [c, d] → R are weights such
that (−1)nKn(t, x) ≥ 0 for every t ∈ [a, b] ∪ [c, d] and A(Pn) 6= 0. Then for every
f, g ∈ Cn[a,max{b, d}] there exists ξ ∈ [a,max{b, d}] such that

Af

Ag
=
f (n)(ξ)

g(n)(ξ)
(17)

provided that neither of the denominator equals zero.

Proof. Let us define function h(t) = f(t)A(g)− g(t)A(f). Since h(n)(t) = f (n)(t)Ag−
g(n)(t)Af is continuous, then according to the Theorem 3.2, there exits ξ ∈ [a,max{b, d}]
such that Ah = h(n)(ξ)A(Pn). It is obvious that Ah = 0, so we conclude that
f (n)(ξ)Ag − g(n)(ξ)Af = 0 which is equivalent to (17). �

Remark 3.1. If f(n)

g(n) has inverse function, then from (17) we have

ξ =

(
f (n)

g(n)

)−1(
Af

Ag

)
, (18)

so ξ is a mean.
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Using above results, we now make a list of linear functional that will give us
particular examples of Cauchy means. Motivated by inequalities (9),(13),(10) and
(14) we define functionals A1(f), A2(f), A3(f) and A4(f) by

A1(f) =
1∫ b

a
w(t)dt

∫ b

a

w(t)f(t)dt− T [a,b]
w,n (x)− 1

λ

∫ a+λ

a

f(t)dt+ T
[a,a+λ]
1,n (x)

(19)

A2(f) =
1

λ

∫ b

b−λ
f(t)dt− T [b−λ,b]

1,n (x)− 1∫ b
a
w(t)dt

∫ b

a

w(t)f(t)dt+ T [a,b]
w,n (x)

(20)

A3(f) =
1∫ b

a
w(t)dt

∫ b

a

w(t)f(t)dt− 1

λ

∫ a+λ

a

f(t)dt (21)

A4(f) =
1

λ

∫ b

b−λ
f(t)dt− 1∫ b

a
w(t)dt

∫ b

a

w(t)f(t)dt. (22)

Also, we define I1 = [a,max{b, a+ λ}], I2 = [max{b− λ, a}, b] and I3 = I4 = [a, b].
Now we will use above defined functionals to construct exponentially convex func-

tions. We start this part of the section with some definitions and facts about expo-
nentially convex functions which are used in our results (see[7]).

Definition 3.1. A function ψ : I → R is n-exponentially convex in the Jensen sense
on I if

n∑
i,j=1

ξiξj ψ

(
xi + xj

2

)
≥ 0,

hold for all choices ξ1, . . . , ξn ∈ R and all choices x1, . . . , xn ∈ I.
A function ψ : I → R is n-exponentially convex if it is n-exponentially convex in

the Jensen sense and continuous on I.

Remark 3.2. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions. Also, n-exponentially convex
function in the Jensen sense are k-exponentially convex in the Jensen sense for every
k ∈ N, k ≤ n.

Definition 3.2. A function ψ : I → R is exponentially convex in the Jensen sense
on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

Remark 3.3. A positive function is log-convex in the Jensen sense if and only if it
is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex. (see
[3])

Proposition 3.4. If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 6=
x2, y1 6= y2, then the following inequality is valid

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
.

If the function f is concave, the inequality is reversed.



ESTIMATIONS OF THE DIFFERENCE ... 137

Theorem 3.5. Let Υ = {fs : s ∈ J}, where J an interval in R, be a family of
functions defined on an interval Ii, i = 1, 2, 3, 4, in R, such that the function s 7→
fs[z0, . . . , zl] is n-exponentially convex in the Jensen sense on J for every (l + 1)
mutually different points z0, . . . , zl ∈ Ii. Let Ai, i = 1, 2, 3, 4, be linear functionals
defined with (19)-(22). Then s 7→ Ai(fs) is an n-exponentially convex function in the
Jensen sense on J .
If in the addition the function s 7→ Ai(fs) is continuous on J, then it is n-exponentially
convex on J .

Proof. For ξj ∈ R, j = 1, . . . , n and sj ∈ J, j = 1, . . . , n, we define the function

g(z) =

n∑
j,k=1

ξjξkf sj+sk
2

(z).

Since the function s 7→ fs[z0, . . . , zl] is n-exponentially convex in the Jensen sense, we
have

g[z0, . . . , zl] =

n∑
j,k=1

ξjξkf sj+sk
2

[z0, . . . , zl] ≥ 0,

so we conclude that g is a l-convex function on J , and thus Ai(g) ≥ 0, i = 1, 2, 3, 4,
hence

n∑
j,k=1

ξjξkAi

(
f sj+sk

2

)
≥ 0.

We conclude that the function s 7→ Ai(fs) is n-exponentially convex on J in the
Jensen sense.

If the function s 7→ Ai(fs) is also continuous on J , then s 7→ Ai(fs) is n-exponentially
convex by definition. �

The following corollaries are an immediate consequences of the above theorem:

Corollary 3.6. Let Υ = {fs : s ∈ J}, where J an interval in R, be a family of
functions defined on an interval Ii, i = 1, 2, 3, 4, in R, such that the function s 7→
fs[z0, . . . , zl] is exponentially convex in the Jensen sense on J for every (l+1) mutually
different points z0, . . . , zl ∈ Ii. Let Ai(f), i = 1, 2, 3, 4, be linear functionals defined
with (19)-(22). Then s 7→ Ai(fs) is an exponentially convex function in the Jensen
sense on J . If the function s 7→ Ai(fs) is continuous on J, then it is exponentially
convex on J .

Corollary 3.7. Let Υ = {fs : s ∈ J}, where J an interval in R, be a family of
functions defined on an interval Ii, i = 1, 2, 3, 4, in R, such that the function s 7→
fs[z0, . . . , zl] is 2-exponentially convex in the Jensen sense on J for every (l + 1)
mutually different points z0, . . . , zl ∈ Ii. Let Ai(f), i = 1, 2, 3, 4, be linear functional
defined as in (19)-(22). Then the following statements hold:
(i) If the function s 7→ Ai(fs) is continuous on J , then it is 2-exponentially convex

function on J . If s 7→ Ai(fs) is additionally strictly positive, then it is also
log-convex on J . Furthermore, the following inequality holds true:

[Ai(fs)]
t−r ≤ [Ai(fr)]

t−s
[Ai(ft)]

s−r
(23)

for every choice r, s, t ∈ J , such that r < s < t.
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(ii) If the function s 7→ Ai(fs) is strictly positive and differentiable on J, then for
every s, q, u, v ∈ J , such that s ≤ u and q ≤ v, we have

µs,q(Ai,Υ) ≤ µu,v(Ai,Υ), (24)

where

µs,q(Ai,Υ) =


(
Ai(fs)
Ai(fq)

) 1
s−q

, s 6= q,

exp
(

d
dsAi(fs)

Ai(fs)

)
, s = q,

(25)

for fs, fq ∈ Υ.

Proof. (i) This is an immediate consequence of Theorem 3.5 and Remark 3.3.
(ii) Since the function s 7→ Ai(fs), i = 1, 2, 3, 4 is positive and continuous, according

to (i) the function s 7→ Ai(fs) is log-convex on J , and thus the function s 7→
logAi(fs) is convex on J . So, we get

logAi(fs)− logAi(fq)

s− q
≤ logAi(fu)− logAi(fv)

u− v
, (26)

for s ≤ u, q ≤ v, s 6= q, u 6= v, and there form conclude that

µs,q(Ai,Υ) ≤ µu,v(Ai,Υ).

Cases s = q and u = v follows from (26) as limit cases.
�

Remark 3.4. Note that the results from above theorem and corollaries still hold when
two of the points z0, . . . , zl ∈ Ii coincide, say z1 = z0, for a family of differentiable
functions fs such that the function s 7→ fs[z0, . . . , zl] is n-exponentially convex in
the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense), and furthermore, they still hold when all (l + 1) points coincide for a family
of l differentiable functions with the same property. The proofs are obtained by (7)
and suitable characterization of convexity.

4. Applications to Stolarsky type means

In this section, we present few families of functions which fulfill the conditions of
Theorem 3.5, Corollary 3.6, Corollary 3.7 and Remark 3.4. This enable us to establish
a lots of families of functions which are exponentially convex.

Example 4.1. Consider a family of functions

Ω1 = {fs : R→ R : s ∈ R}

defined by

fs(t) =


est

sn , s 6= 0,

tn

n! , s = 0.

We have

f (n)
s (t) =

 est > 0, s 6= 0

1 > 0, s = 0.
,
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so fs is n-convex on R for every s ∈ R and s 7→ f
(n)
s (t) is exponentially convex by

definition. Using analogous arguing as in the proof of Theorem 3.5 we also have that
s 7→ fs[z0, . . . , zm] is exponentially convex (and so exponentially convex in the Jensen
sense). Using Corollary 3.6 we conclude that s 7→ Ai(fs), i = 1, 2, 3, 4, are exponen-
tially convex in the Jensen sense. It is easy to verify that this mapping is continuous
(although mapping s 7→ fs is not continuous for s = 0), so it is exponentially convex.

For this family of functions, µs,q(Ai,Ω1), i = 1, 2, 3, 4, from (25) we have

µs,q(Ai,Ω1) =


(
Ai(fs)
Ai(fq)

) 1
s−q

, s 6= q,

exp
(
Ai(id·fs)
Ai(fs) −

n
s

)
, s = q 6= 0,

exp
(

1
n+1

Ai(id·f0)
Ai(f0)

)
, s = q = 0.

Also, by (24) it is monotonous function in parameters s and q.

We observe here that

(
dnfs
dtn

dnfq
dtn

) 1
s−q

(log t) = t so using Corollary 3.3 it follows that

Ms,q(Ai,Ω1) = log µs,q(Ai,Ω1), i = 1, 2, 3, 4

satisfies:

a ≤Ms,q(A1,Ω1) ≤ max{b, a+ λ},
min{a, b− λ} ≤Ms,q(A2,Ω1) ≤ b,
a ≤Ms,q(A3,Ω1) ≤ b,
a ≤Ms,q(A4,Ω1) ≤ b.

So, Ms,q(Ai,Ω1) is monotonic mean.

Example 4.2. Consider a family of functions

Ω2 = {fs : (0,∞)→ R : s ∈ R}

defined by

fs(t) =

{
ts

s(s−1)···(s−n+1) , s /∈ {0, 1, . . . , n− 1},
tj ln t

(−1)n−1−jj!(n−1−j)! , s = j ∈ {0, 1, . . . , n− 1}.

Here, f
(n)
s (t) = ts−n = e(s−n) ln t > 0 which shows that fs is n-convex for t > 0 and

s 7→ f
(n)
s (t) is exponentially convex by definition. Analogue as in Example 4.1 we

get that the mappings s 7→ Ai(fs), i = 1, 2, 3, 4 are exponentially convex. Now (25)
equals to:

µs,q(Ai,Ω2) =



(
Ai(fs)
Ai(fq)

) 1
s−q

, s 6= q,

exp

(
(−1)n−1(n− 1)!Ai(f0fs)

Ai(fs) +

n−1∑
k=0

1

k − s

)
, s = q /∈ {0, 1, . . . , n− 1},

exp

(−1)n−1(n− 1)!Ai(f0fs)
2Ai(fs) +

n−1∑
k=0
k 6=s

1

k − s

 , s = q ∈ {0, 1, . . . , n− 1}.
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Again, using Corollary 3.3 we conclude that

a ≤
(
A1(fs)

A1(fq)

) 1
s−q

≤ max{b, a+ λ},

min{a, b− λ} ≤
(
A2(fs)

A2(fq)

) 1
s−q

≤ b,

a ≤
(
Ai(fs)

Ai(fq)

) 1
s−q

≤ b, i = 3, 4

which shows that µs,q(Ai,Ω2), i = 1, 2, 3, 4, is mean.
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