Existence and uniqueness of entropy solution for some nonlinear elliptic unilateral problems in Musielak-Orlicz-Sobolev spaces

Mohammed Al-Hawmi, Abdelmoujib Benkirane, Hassane Hjiaj, and Abdelfattah Touzani

Abstract. In this paper, we study the existence and uniqueness of entropy solution for some quasilinear degenerate elliptic unilateral problems of the type

$$
\begin{cases}-\operatorname{div} a(x, \nabla u)=f & \text { in } \quad \Omega, \\ u=0 & \text { on } \quad \partial \Omega\end{cases}
$$

in the Musielak-Orlicz-Sobolev spaces $W_{0}^{1} L_{\varphi}(\Omega)$, with $f \in L^{1}(\Omega)$ and by assuming that the conjugate function of the Musielak-Orlicz function $\varphi(x, t)$ satisfies the Δ_{2}-condition. An example of such equation is given by

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \log ^{\sigma}(1+|\nabla u|) \nabla u\right)=f & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

for $1 \leq p(x)<\infty$ and $0<\sigma<\infty$.
2010 Mathematics Subject Classification. 35J62, 35J25.
Key words and phrases. Musielak-Orlicz-Sobolev spaces, quasilinear degenerate elliptic equations, unilateral problem, entropy solutions, truncations.

1. Introduction

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, with smooth boundary conditions.
For $2-\frac{1}{N}<p<N$, Boccardo and Gallouët have studied in [11] the elliptic problem of the type

$$
\left\{\begin{array}{rl}
A u=f & \text { in } \quad \Omega, \\
u=0 & \text { on }
\end{array} \quad \partial \Omega,\right.
$$

where $A u=-\operatorname{div} a(x, u, \nabla u)$ is a Leray-Lions operator from $W_{0}^{1, p}(\Omega)$ into its dual, and f is a bounded Radon measure on Ω. They have proved the existence of solutions $u \in W_{0}^{1, q}(\Omega)$ for all $1<q<\bar{q}=\frac{N(p-1)}{N-1}$. Also they proved some regularity results.

Aharouch and Bennouna have treated in [1] the quasilinear elliptic of unilateral problem

$$
\left\{\begin{array}{l}
-\operatorname{div}(a(x, \nabla u))=f \text { in } \Omega, \tag{2}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $f \in L^{1}(\Omega)$. They have proved the existence and uniqueness of entropy solutions in the framework of Orlicz Sobolev spaces $W_{0}^{1} L_{M}(\Omega)$ without assuming the Δ_{2}-condition on the N-function M of the Orlicz spaces, (see also. [6, 7, 13]).

In [5], Bendahmane and Wittbold have proved existence and uniqueness of a renormalized solution to the nonlinear elliptic equation

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=f \text { in } \Omega, \tag{3}\\
u=0 \text { on } \partial \Omega,
\end{array}\right.
$$

where the right-hand side $f \in L^{1}(\Omega)$ and the exponent $p(\cdot): \bar{\Omega} \mapsto(1,+\infty)$ is continuous, for some related results we refer to $[2,4,12,22]$.

In the recent years, Musielak-Orlicz-Sobolev spaces have attracted the attention of mainly researchers, the impulse for this manly comes from there physical applications, such in electro-rheological fluids, (see [23]). The purpose of this paper is to prove the existence and uniqueness of entropy solutions for some quasilinear unilateral elliptic problem of the form

$$
\left\{\begin{align*}
A u=f & \text { in } \quad \Omega, \tag{4}\\
u=0 & \text { on } \quad \partial \Omega
\end{align*}\right.
$$

in Musielak-Orlicz-Sobolev spaces, where $f \in L^{1}(\Omega)$ and $A: D(A) \subset W_{0}^{1} L_{\varphi}(\Omega) \mapsto$ $W^{-1} L_{\psi}(\Omega)$ is the Leray-Lions operator defined as:

$$
A(u)=-\operatorname{div} a(x, \nabla u)
$$

by assuming that the conjugate function of Musielak-Orlicz function $\varphi(x, t)$ satisfies Δ_{2}-condition, and by using corollary 1 of [9] to construct a complementary system ($\left.W_{0}^{1} L_{\varphi}(\Omega), W_{0}^{1} E_{\varphi}(\Omega) ; W^{-1} L_{\psi}(\Omega), W^{-1} E_{\psi}(\Omega)\right)$.

Note that, the second author has studded in [9] the existence of solution for the problem (4) where f is assumed to be in the dual, and only strict monotonicity is assumed, we refer also to [19] for the elliptic case with large monotonicity, and the interesting works of Gwiazda el al. $[16,17,18]$ in the generalized Orlicz Sobolev spaces, also [14] where the author has proved the Poincaré inequality under the Δ_{2}-condition.

This paper is organized as follows. In the section 2 we recall some definitions and basic properties of Musielak-Orlicz-Sobolev. We introduce in the section 3 the assumptions on $a(x, \xi)$ under which our problem has at least one solution. The section 4 contains some useful lemmas for proving our main results. The section 5 will be devoted to show the existence and uniqueness of entropy solutions for our main problem (4).

2. Preliminaries

In this section, we introduce some definitions and known facts about Musielak-Orlicz-Sobolev spaces. The standard reference is [24].
2.1. Musielak-Orlicz function. Let Ω be an open bounded subset of $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary conditions, and let $\varphi(x, t)$ be a real-valued function defined on $\Omega \times \mathbb{R}^{+}$, and satisfying the following two conditions :
(a): $\varphi(x, \cdot)$ is an N-function, i.e. convex, nondecreasing, continuous, $\varphi(x, 0)=0$, $\varphi(x, t)>0$ for all $t>0$, and :

$$
\lim _{t \rightarrow 0} \sup _{x \in \Omega} \frac{\varphi(x, t)}{t}=0 \quad, \quad \lim _{t \rightarrow \infty} \inf _{x \in \Omega} \frac{\varphi(x, t)}{t}=\infty
$$

$(b): \varphi(\cdot, t)$ is a measurable function.
A function $\varphi(x, t)$ which satisfies conditions (a) and (b) is called a Musielak-Orlicz function.
For every Musielak-Orlicz function $\varphi(x, t)$, we set $\varphi_{x}(t)=\varphi(x, t)$ and let $\varphi_{x}^{-1}(t)$ the reciprocal function with respect to t of $\varphi_{x}(t)$, i.e.

$$
\varphi_{x}^{-1}(\varphi(x, t))=\varphi\left(x, \varphi_{x}^{-1}(t)\right)=t
$$

For any two Musielak-Orlicz functions $\varphi(x, t)$ and $\gamma(x, t)$, we introduce the following ordering:
(c): If there exist two positive constants c and T such that for almost everywhere $x \in \Omega$:

$$
\varphi(x, t) \leq \gamma(x, c t) \quad \text { for } \quad t \geq T
$$

we write $\varphi \prec \gamma$, and we say that γ dominate φ globally if $T=0$, and near infinity if $T>0$.
(d): For every positive constant c and almost everywhere $x \in \Omega$, if

$$
\lim _{t \rightarrow 0}\left(\sup _{x \in \Omega} \frac{\varphi(x, c t)}{\gamma(x, t)}\right)=0 \quad \text { or } \quad \lim _{t \rightarrow \infty}\left(\sup _{x \in \Omega} \frac{\varphi(x, c t)}{\gamma(x, t)}\right)=0
$$

we write $\varphi \prec \prec \gamma$ at 0 or near ∞ respectively, and we say that φ increases essentially more slowly than γ at 0 or near ∞ respectively.
The Musielak-Orlicz function $\psi(x, t)$ complementary to (or conjugate of) $\varphi(x, t)$, in the sense of Young with respect to the variable t, is given by

$$
\begin{equation*}
\psi(x, s)=\sup _{t \geq 0}\{s t-\varphi(x, t)\} \tag{5}
\end{equation*}
$$

and we have

$$
\begin{equation*}
s t \leq \psi(x, s)+\varphi(x, t) \quad \forall s, t \in \mathbb{R}^{+} . \tag{6}
\end{equation*}
$$

The Musielak-Orlicz function $\varphi(x, t)$ is said to satisfy the Δ_{2}-condition if, there exists $k>0$ and a nonnegative function $h(\cdot) \in L^{1}(\Omega)$, such that

$$
\varphi(x, 2 t) \leq k \varphi(x, t)+h(x) \quad \text { a.e. } \quad x \in \Omega,
$$

for large values of t, or for all values of t.
2.2. Musielak-Orlicz Lebesgue spaces. In this paper, the measurability of a function $u: \Omega \mapsto \mathbb{R}$ means the Lebesgue measurability.
We define the functional

$$
\varrho_{\varphi, \Omega}(u)=\int_{\Omega} \varphi(x,|u(x)|) d x
$$

where $u: \Omega \mapsto \mathbb{R}$ is a measurable function. The set

$$
K_{\varphi}(\Omega)=\left\{u: \Omega \longmapsto \mathbb{R} \quad \text { measurable } / \varrho_{\varphi, \Omega}(u)<+\infty\right\}
$$

is called the Musielak-Orlicz class (or the generalized Orlicz class). The MusielakOrlicz spaces (or the generalized Orlicz spaces) $L_{\varphi}(\Omega)$ is the vector space generated
by $K_{\varphi}(\Omega)$, that is, $L_{\varphi}(\Omega)$ is the smallest linear space containing the set $K_{\varphi}(\Omega)$; equivalently

$$
L_{\varphi}(\Omega)=\left\{u: \Omega \longmapsto \mathbb{R} \quad \text { measurable } \quad / \varrho_{\varphi, \Omega}\left(\frac{|u(x)|}{\lambda}\right)<+\infty, \quad \text { for some } \lambda>0\right\} .
$$

In the space $L_{\varphi}(\Omega)$, we define the following two norms:

$$
\|u\|_{\varphi, \Omega}=\inf \left\{\lambda>0 / \int_{\Omega} \varphi\left(x, \frac{|u(x)|}{\lambda}\right) d x \leq 1\right\}
$$

which is called the Luxemburg norm, and the so-called Orlicz norm is given by:

$$
\left\|\left\|u\left|\|_{\varphi, \Omega}=\sup _{\|v\|_{\psi, \Omega} \leq 1} \int_{\Omega}\right| u(x) v(x) \mid d x\right.\right.
$$

where $\psi(x, t)$ is the Musielak-Orlicz function complementary (or conjugate) to $\varphi(x, t)$. These two norms are equivalent on the Musielak-Orlicz space $L_{\varphi}(\Omega)$.

The closure in $L_{\varphi}(\Omega)$ of the bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{\varphi}(\Omega)$. It is a separable space and $\left(E_{\varphi}(\Omega)\right)^{*}=L_{\psi}(\Omega)$.

We have $E_{\varphi}(\Omega)=K_{\varphi}(\Omega)$ if and only if $K_{\varphi}(\Omega)=L_{\varphi}(\Omega)$ if and only if $\varphi(x, t)$ has the Δ_{2}-condition for large values of t, or for all values of t.
2.3. Musielak-Orlicz-Sobolev spaces. We now turn to the Musielak-Orlicz-Sobolev space $W^{1} L_{\varphi}(\Omega)$ (resp. $W^{1} E_{\varphi}(\Omega)$) is the space of all measurable functions u such that u and its distributional derivatives up to order 1 lie in $L_{\varphi}(\Omega)$ (resp. $E_{\varphi}(\Omega)$). Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with nonnegative integers $\alpha_{i},|\alpha|=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\ldots+\left|\alpha_{n}\right|$ and $D^{\alpha} u$ denotes the distributional derivatives.
We define the convex modular and the norm on the Musielak-Orlicz-Sobolev spaces $W^{1} L_{\varphi}(\Omega)$ respectively by,

$$
\varrho_{\varphi, \Omega}(u)=\sum_{|\alpha| \leq 1} \varrho_{\varphi, \Omega}\left(D^{\alpha} u\right) \quad \text { and } \quad\|u\|_{1, \varphi, \Omega}=\inf \left\{\lambda>0: \bar{\varrho}_{\varphi, \Omega}\left(\frac{u}{\lambda}\right) \leq 1\right\},
$$

for any $u \in W^{1} L_{\varphi}(\Omega)$.
The pair $\left\langle W^{1} L_{\varphi}(\Omega),\|u\|_{1, \varphi, \Omega}\right\rangle$ is a Banach space if φ satisfies the following condition

$$
\text { there exists a constant } \quad c>0 \quad \text { such that } \inf _{x \in \Omega} \varphi(x, 1) \geq c
$$

The spaces $W^{1} L_{\varphi}(\Omega)$ and $W^{1} E_{\varphi}(\Omega)$ can be identified with subspaces of the product of $n+1$ copies of $L_{\varphi}(\Omega)$. Denoting this product by $\Pi L_{\varphi}(\Omega)$, we will use the weak topologies $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$ and $\sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right)$.

The space $W_{0}^{1} E_{\varphi}(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathrm{D}(\Omega)$ in $W^{1} E_{\varphi}(\Omega)$, and the space $W_{0}^{1} L_{\varphi}(\Omega)$ as the $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$ closure of $\mathrm{D}(\Omega)$ in $W^{1} L_{\varphi}(\Omega)$, (for more details on Musielak-Orlicz-Sobolev spaces we refer to [24]).
2.4. Dual space. Let $W^{-1} L_{\psi}(\Omega)$ (resp. $\left.W^{-1} E_{\psi}(\Omega)\right)$ denotes the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\psi}(\Omega)$ (resp. $E_{\psi}(\Omega)$). It is a Banach space under the usual quotient norm.

If $\psi(x, t)$ has the Δ_{2}-condition, then the space $\mathrm{D}(\Omega)$ is dense in $W_{0}^{1} L_{\varphi}(\Omega)$ for the topology $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi L_{\psi}(\Omega)\right)$ (see corollary 1 of $[9]$).

3. Essential assumptions

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary conditions. Let $\varphi(x, t)$ be a Musielak-Orlicz function and $\psi(x, t)$ the Musielak-Orlicz function complementary (or conjugate) to $\varphi(x, t)$. We assume here that $\psi(x, t)$ satisfying the Δ_{2}-condition near infinity, therefore $L_{\psi}(\Omega)=E_{\psi}(\Omega)$.
We assume that there exists an Orlicz function $M(t)$ such that $M(t) \prec \varphi(x, t)$ near infinity, i.e. there exist two constants $c>0$ and $T \geq 0$ such that

$$
\begin{equation*}
M(t) \leq \varphi(x, c t) \quad \text { a.e. in } \quad \Omega \quad \text { for } \quad t \geq T \tag{7}
\end{equation*}
$$

Let $\Psi(\cdot)$ be a measurable function on Ω, such that

$$
\Psi^{+}(\cdot) \in W_{0}^{1} L_{\varphi}(\Omega) \cap L^{\infty}(\Omega)
$$

and we consider the convex set

$$
K_{\Psi}=\left\{v \in W_{0}^{1} L_{\varphi}(\Omega) \text { such that } v \geq \Psi \text { a.e. in } \Omega\right\}
$$

The Leray-Lions operator $A: D(A) \subset W_{0}^{1} L_{\varphi}(\Omega) \longmapsto W^{-1} L_{\psi}(\Omega)$ given by

$$
A(u)=-\operatorname{div} a(x, \nabla u)
$$

where $a: \Omega \times \mathbb{R}^{N} \longmapsto \mathbb{R}$ is a Carathéodory function (measurable with respect to x in Ω for every ξ in \mathbb{R}^{N}, and continuous with respect to ξ in \mathbb{R}^{N} for almost every x in Ω) which satisfies the following conditions

$$
\begin{gather*}
|a(x, \xi)| \leq \beta\left(K(x)+k_{1} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\xi|\right)\right)\right) \tag{8}\\
\left(a(x, \xi)-a\left(x, \xi^{*}\right)\right) \cdot\left(\xi-\xi^{*}\right)>0 \quad \text { for } \quad \xi \neq \xi^{*} \tag{9}\\
a(x, \xi) \cdot \xi \geq \alpha \varphi(x,|\xi|) \tag{10}
\end{gather*}
$$

for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^{N}$, where $K(x)$ is a nonnegative function lying in $E_{\psi}(\Omega)$ and $\alpha, \beta>0$ and $k_{1}, k_{2} \geq 0$.
We consider the quasilinear unilateral elliptic problem

$$
\begin{cases}-\operatorname{div} a(x, \nabla u)=f & \text { in } \Omega \tag{11}\\ u=0 & \text { in } \partial \Omega\end{cases}
$$

with $f \in L^{1}(\Omega)$. We study the existence of entropy solution in the Musielak-OrliczSobolev spaces.

4. Some technical lemmas

Now, we present some lemmas useful in the proof of our main results.
Lemma 4.1. (see [20], Theorem 13.47) Let $\left(u_{n}\right)_{n}$ be a sequence in $L^{1}(\Omega)$ and $u \in$ $L^{1}(\Omega)$ such that
(i): $u_{n} \rightarrow u$ a.e. in Ω,
(ii): $u_{n} \geq 0$ and $u \geq 0$ a.e. in Ω,
(iii): $\int_{\Omega} u_{n} d x \rightarrow \int_{\Omega} u d x$,
then $u_{n} \rightarrow u$ in $L^{1}(\Omega)$.
Lemma 4.2. Assuming that (8)-(10) hold, and let $\left(u_{n}\right)_{n}$ be a sequence in $W_{0}^{1} L_{\varphi}(\Omega)$ such that
(i): $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1} L_{\varphi}(\Omega)$ for $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$,
(ii): $\left(a\left(x, \nabla u_{n}\right)\right)_{n}$ is bounded in $\left(L_{\psi}(\Omega)\right)^{N}=\left(E_{\psi}(\Omega)\right)^{N}$,
(iii): Let $\Omega_{s}=\{x \in \Omega, \quad|\nabla u| \leq s\}$ and χ_{s} his characteristic function, with

$$
\begin{equation*}
\int_{\Omega}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x \longrightarrow 0 \quad \text { as } \quad n, s \rightarrow \infty \tag{12}
\end{equation*}
$$

then $\varphi\left(x,\left|\nabla u_{n}\right|\right) \longrightarrow \varphi(x,|\nabla u|) \quad$ in $\quad L^{1}(\Omega)$ for a subsequence.
Proof. Taking $s \geq r>0$, we have :

$$
\begin{align*}
0 \leq & \int_{\Omega_{r}}\left(a\left(x, \nabla u_{n}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \\
& \leq \int_{\Omega_{s}}\left(a\left(x, \nabla u_{n}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \\
& =\int_{\Omega_{s}}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x \tag{13}\\
& \leq \int_{\Omega}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x .
\end{align*}
$$

thanks to (12), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega_{r}}\left(a\left(x, \nabla u_{n}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x=0 \tag{14}
\end{equation*}
$$

Using the same argument as in [15], we claim that,

$$
\begin{equation*}
\nabla u_{n} \longrightarrow \nabla u \quad \text { a.e. in } \quad \Omega \tag{15}
\end{equation*}
$$

On the other hand, we have

$$
\begin{gather*}
\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x=\int_{\Omega}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x \tag{16}\\
\quad+\int_{\Omega} a\left(x, \nabla u \chi_{s}\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x+\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u \chi_{s} d x
\end{gather*}
$$

For the second term on the right-hand side of (16), having in mind that $\psi(x, s)$ verify Δ_{2}-condition, then $L_{\psi}(\Omega)=E_{\psi}(\Omega)$, and thanks to (8) we have $a\left(x, \nabla u \chi_{s}\right) \in$ $\left(E_{\psi}(\Omega)\right)^{N}$. Moreover, we have $\nabla u_{n} \rightharpoonup \nabla u$ weakly in $\left(L_{\varphi}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$, then

$$
\begin{align*}
\lim _{s, n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u \chi_{s}\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x & =\lim _{s \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u \chi_{s}\right) \cdot\left(\nabla u-\nabla u \chi_{s}\right) d x \\
& =\lim _{s \rightarrow \infty} \int_{\Omega / \Omega_{s}} a(x, 0) \cdot \nabla u d x=0 \tag{17}
\end{align*}
$$

Concerning the last term on the right-hand side of (16), since $\left(a\left(x, \nabla u_{n}\right)\right)_{n}$ is bounded in $\left(E_{\psi}(\Omega)\right)^{N}$ and using (15), we obtain

$$
a\left(x, \nabla u_{n}\right) \rightharpoonup a(x, \nabla u) \quad \text { weakly in } \quad\left(E_{\psi}(\Omega)\right)^{N} \quad \text { for } \quad \sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right)
$$

which implies that

$$
\begin{align*}
\lim _{s, n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u \chi_{s} d x & =\lim _{s \rightarrow \infty} \int_{\Omega} a(x, \nabla u) \cdot \nabla u \chi_{s} d x \tag{18}\\
& =\int_{\Omega} a(x, \nabla u) \cdot \nabla u d x
\end{align*}
$$

By combining (12) and (16) - (18), we conclude that

$$
\begin{equation*}
\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \longrightarrow \int_{\Omega} a(x, \nabla u) \cdot \nabla u d x \quad \text { as } \quad n \rightarrow \infty . \tag{19}
\end{equation*}
$$

On the other hand, we have $\varphi\left(x,\left|\nabla u_{n}\right|\right) \geq 0$ and $\varphi\left(x,\left|\nabla u_{n}\right|\right) \rightarrow \varphi(x,|\nabla u|)$ a.e. in Ω, by using the Fatou's Lemma we obtain

$$
\begin{equation*}
\int_{\Omega} \varphi(x,|\nabla u|) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \tag{20}
\end{equation*}
$$

Moreover, since $a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n}-\alpha \varphi\left(x,\left|\nabla u_{n}\right|\right) \geq 0$ and

$$
a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n}-\alpha \varphi\left(x,\left|\nabla u_{n}\right|\right) \longrightarrow a(x, \nabla u) \cdot \nabla u-\alpha \varphi(x,|\nabla u|) \quad \text { a.e. in } \quad \Omega,
$$

Thanks to Fatou's Lemma, we get

$$
\int_{\Omega} a(x, \nabla u) \cdot \nabla u-\alpha \varphi(x,|\nabla u|) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n}-\alpha \varphi\left(x,\left|\nabla u_{n}\right|\right) d x
$$

using (19), we obtain

$$
\begin{equation*}
\int_{\Omega} \varphi(x,|\nabla u|) d x \geq \limsup _{n \rightarrow \infty} \int_{\Omega} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \tag{21}
\end{equation*}
$$

By combining (20) and (21), we deduce

$$
\begin{equation*}
\int_{\Omega} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \longrightarrow \int_{\Omega} \varphi(x,|\nabla u|) d x \quad \text { as } \quad n \rightarrow \infty . \tag{22}
\end{equation*}
$$

In view of Lemma 4.1, we conclude that

$$
\begin{equation*}
\varphi\left(x,\left|\nabla u_{n}\right|\right) \longrightarrow \varphi(x,|\nabla u|) \quad \text { in } \quad L^{1}(\Omega), \tag{23}
\end{equation*}
$$

which finishes our proof.

5. Main results

Let $k>0$, we define the truncation function $T_{k}(\cdot): \mathbb{R} \longmapsto \mathbb{R}$ by

$$
T_{k}(s)=\left\{\begin{array}{ccc}
s & \text { if } & |s| \leq k \\
k \frac{s}{|s|} & \text { if } & |s|>k
\end{array}\right.
$$

Definition 5.1. A measurable function u is called an entropy solution of the quasilinear unilateral elliptic problem (11) if

$$
\left\{\begin{array}{l}
T_{k}(u) \in K_{\Psi} \quad \text { for any } \quad k>\left\|\Psi^{+}\right\|_{\infty}, \tag{24}\\
\int_{\Omega} a(x, \nabla u) \cdot \nabla T_{k}(u-v) d x \leq \int_{\Omega} f T_{k}(u-v) d x \quad \forall v \in K_{\Psi} \cap L^{\infty}(\Omega) .
\end{array}\right.
$$

Theorem 5.1. Assuming that (7) - (10) hold, and $f \in L^{1}(\Omega)$, Then, the problem (11) has a unique entropy solution.

5.1. Existence of entropy solution.

Step 1: Approximate problems. Let $\left(f_{n}\right)_{n \in \mathbb{N}} \in W^{-1} E_{\psi}(\Omega) \cap L^{\infty}(\Omega)$ be a sequence of smooth functions such that $f_{n} \rightarrow f$ in $L^{1}(\Omega)$ and $\left|f_{n}\right| \leq|f|\left(\right.$ for example $f_{n}=T_{n}(f)$). We consider the approximate problem
$\left(P_{n}\right)\left\{\begin{array}{l}u_{n} \in K_{\Psi}, \\ \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla\left(u_{n}-v\right) d x \leq \int_{\Omega} f_{n}\left(u_{n}-v\right) d x \quad \text { for any } \quad v \in K_{\Psi} \cap L^{\infty}(\Omega) .\end{array}\right.$
Let $X=K_{\Psi}$, we define the operator $A: X \longmapsto X^{*}$ by

$$
\langle A u, v\rangle=\int_{\Omega} a(x, \nabla u) \cdot \nabla v d x \quad \forall v \in K_{\Psi}
$$

Using (6), we have for any $u, v \in K_{\Psi}$,

$$
\begin{align*}
& \left|\int_{\Omega} a(x, \nabla u) \cdot \nabla v d x\right| \leq \int_{\Omega} \beta\left(K(x)+k_{1} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\nabla u|\right)\right)\right)|\nabla v| d x \\
& \quad \leq \beta \int_{\Omega} \psi(x, K(x)) d x+\beta k_{1} \int_{\Omega} \varphi\left(x, k_{2}|\nabla u|\right) d x+\beta\left(1+k_{1}\right) \int_{\Omega} \varphi(x,|\nabla v|) d x \tag{26}
\end{align*}
$$

Lemma 5.2. The operator A acted from $W_{0}^{1} L_{\varphi}(\Omega)$ in to $W^{-1} L_{\psi}(\Omega)=W^{-1} E_{\psi}(\Omega)$ is bounded and pseudo-monotone. Moreover, A is coercive in the following sense : there exists $v_{0} \in K_{\Psi}$ such that

$$
\frac{\left\langle A v, v-v_{0}\right\rangle}{\|v\|_{1, \varphi, \Omega}} \longrightarrow \infty \quad \text { as } \quad\|v\|_{1, \varphi, \Omega} \rightarrow \infty \quad \text { for } \quad v \in K_{\Psi}
$$

Proof of Lemma 5.2. In view of (26), the operator A is bounded. For the coercivity, let $\varepsilon>0$, we have for $v_{0} \in K_{\Psi}$ and any $v \in W_{0}^{1} L_{\varphi}(\Omega)$

$$
\begin{aligned}
\left|\left\langle A v, v_{0}\right\rangle\right| \leq & \int_{\Omega}|a(x, \nabla v)|\left|\nabla v_{0}\right| d x \leq \beta \int_{\Omega}\left(K(x)+k_{1} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\nabla v|\right)\right)\right)\left|\nabla v_{0}\right| d x \\
\leq & \beta \int_{\Omega} K(x)\left|\nabla v_{0}\right| d x+\beta k_{1} \varepsilon \int_{\Omega} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\nabla v|\right)\right) \frac{1}{\varepsilon}\left|\nabla v_{0}\right| d x \\
\leq & \beta \int_{\Omega} \psi(x, K(x)) d x+\beta \int_{\Omega} \varphi\left(x,\left|\nabla v_{0}\right|\right) d x+\beta k_{1} \varepsilon \int_{\Omega} \varphi\left(x, k_{2}|\nabla v|\right) d x \\
& \quad+\beta k_{1} \varepsilon \int_{\Omega} \varphi\left(x, \frac{1}{\varepsilon}\left|\nabla v_{0}\right|\right) d x \\
\leq & c_{\varepsilon} \int_{\Omega} \varphi(x,|\nabla v|) d x+\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}
\end{aligned}
$$

with c_{ε} is a constant depending on ε. By taking ε small enough such that $c_{\varepsilon} \leq \frac{\alpha}{2}$, we obtain

$$
\left\langle A v, v_{0}\right\rangle \leq \frac{\alpha}{2} \int_{\Omega} \varphi(x,|\nabla v|) d x+\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}
$$

On the other hand, in view of (10), we have

$$
\langle A v, v\rangle=\int_{\Omega} a(x, \nabla v) \cdot \nabla v d x \geq \alpha \int_{\Omega} \varphi(x,|\nabla v|) d x
$$

Therefore

$$
\begin{aligned}
& \frac{\left\langle A v, v-v_{0}\right\rangle}{\|v\|_{1, \varphi, \Omega}}=\frac{\langle A v, v\rangle-\left\langle A v, v_{0}\right\rangle}{\|v\|_{1, \varphi, \Omega}} \\
& \geq \frac{\alpha \int_{\Omega} \varphi(x,|\nabla v|) d x-\frac{\alpha}{2} \int_{\Omega} \varphi(x,|\nabla v|) d x-\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}}{\|v\|_{1, \varphi, \Omega}} \\
& =\frac{\frac{\alpha}{2} \int_{\Omega} \varphi(x,|\nabla v|) d x-\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}}{\|v\|_{1, \varphi, \Omega}} \longrightarrow \infty
\end{aligned}
$$

as $\|v\|_{1, \varphi, \Omega}$ goes to infinity.
It remains to show that A is pseudo-monotone. Let $\left(u_{k}\right)_{k}$ be a sequence in $W_{0}^{1} L_{\varphi}(\Omega)$ such that

$$
\left\{\begin{array}{ccc}
u_{k} \rightharpoonup u \text { in } W_{0}^{1} L_{\varphi}(\Omega) & \text { for } & \sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right) \tag{27}\\
A u_{k} \rightharpoonup \chi \text { in } W^{-1} E_{\psi}(\Omega) & \text { for } & \sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right), \\
\limsup _{k \rightarrow \infty}\left\langle A u_{k}, u_{k}\right\rangle \leq\langle\chi, u\rangle . &
\end{array}\right.
$$

We will prove that

$$
\chi=A u \text { and }\left\langle A u_{k}, u_{k}\right\rangle \rightarrow\langle\chi, u\rangle \text { as } k \rightarrow \infty
$$

Firstly, since $W_{0}^{1} L_{\varphi}(\Omega) \hookrightarrow \hookrightarrow E_{\varphi}(\Omega)$, then $u_{k} \rightarrow u$ in $E_{\varphi}(\Omega)$ for a subsequence still denoted $\left(u_{k}\right)_{k}$.
As $\left(u_{k}\right)_{k}$ is a bounded sequence in $W_{0}^{1} L_{\varphi}(\Omega)$ and thanks to the growth condition (8), it follows that $\left(a\left(x, \nabla u_{k}\right)\right)_{k}$ is bounded in $\left(E_{\psi}(\Omega)\right)^{N}$. Therefore, there exists a function $\xi \in\left(E_{\psi}(\Omega)\right)^{N}$ such that

$$
\begin{equation*}
a\left(x, \nabla u_{k}\right) \rightharpoonup \xi \quad \text { in } \quad\left(E_{\psi}(\Omega)\right)^{N} \quad \text { for } \quad \sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right) \quad \text { as } \quad k \rightarrow \infty \tag{28}
\end{equation*}
$$

It is clear that, for all $v \in W_{0}^{1} L_{\varphi}(\Omega)$, we have

$$
\begin{equation*}
\langle\chi, v\rangle=\lim _{k \rightarrow \infty}\left\langle A u_{k}, v\right\rangle=\lim _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla v d x=\int_{\Omega} \xi \cdot \nabla v d x \tag{29}
\end{equation*}
$$

By using (27) and (29), we obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle A u_{k}, u_{k}\right\rangle=\limsup _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x \leq \int_{\Omega} \xi \cdot \nabla u d x . \tag{30}
\end{equation*}
$$

On the other hand, thanks to (9), we have

$$
\begin{equation*}
\int_{\Omega}\left(a\left(x, \nabla u_{k}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{k}-\nabla u\right) d x \geq 0 \tag{31}
\end{equation*}
$$

then

$$
\int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x \geq \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u d x+\int_{\Omega} a(x, \nabla u) \cdot\left(\nabla u_{k}-\nabla u\right) d x
$$

In view of (28), we have

$$
\liminf _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x \geq \int_{\Omega} \xi \cdot \nabla u d x
$$

and (30) yields

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x=\int_{\Omega} \xi \cdot \nabla u d x \tag{32}
\end{equation*}
$$

Combining (29) and (32), we find:

$$
\begin{equation*}
\left\langle A u_{k}, u_{k}\right\rangle \rightarrow\langle\chi, u\rangle \quad \text { as } \quad k \rightarrow \infty . \tag{33}
\end{equation*}
$$

In view of (32), we have

$$
\lim _{k \rightarrow \infty} \int_{\Omega}\left(a\left(x, \nabla u_{k}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{k}-\nabla u\right) d x \rightarrow 0
$$

which implies, thanks to Lemma 4.2, that

$$
u_{k} \rightarrow u \quad \text { in } \quad W_{0}^{1} L_{\varphi}(\Omega) \quad \text { and } \quad \nabla u_{k} \rightarrow \nabla u \quad \text { a.e. in } \Omega,
$$

then

$$
a\left(x, \nabla u_{k}\right) \rightharpoonup a(x, \nabla u) \quad \text { in } \quad\left(E_{\psi}(\Omega)\right)^{N}
$$

we deduce that $\chi=A u$, which completes the proof the Lemma 5.2.
In view of Lemma 5.2, there exists at least one weak solution $u_{n} \in W_{0}^{1} L_{\varphi}(\Omega)$ of the problem (25), (cf. [10], Lemma 6).

Step 2 : A priori estimates. Taking $v=u_{n}-\eta T_{k}\left(u_{n}-\Psi^{+}\right) \in W_{0}^{1} L_{\varphi}(\Omega)$, for η small enough we have $v \geq \Psi$, thus v is an admissible test function in (25), and we obtain

$$
\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-\Psi^{+}\right) d x \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-\Psi^{+}\right) d x
$$

Since $\nabla T_{k}\left(u_{n}-\Psi^{+}\right)$is identically zero on the set $\left\{\left|u_{n}-\Psi^{+}\right|>k\right\}$, we can write

$$
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla\left(u_{n}-\Psi^{+}\right) d x \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-\Psi^{+}\right) d x \leq C_{2} k
$$

with $C_{2}=\|f\|_{1}$, it follows that

$$
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq C_{2} k+\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla \Psi^{+} d x .
$$

Let $0<\lambda<\frac{\alpha}{\alpha+1}$, it's clear that

$$
\begin{equation*}
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq C_{2} k+\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \frac{\nabla \Psi^{+}}{\lambda} d x \tag{34}
\end{equation*}
$$

Thanks to (9), we have

$$
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right)\right) \cdot\left(\nabla u_{n}-\frac{\nabla \Psi^{+}}{\lambda}\right) d x \geq 0
$$

then

$$
\begin{aligned}
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \frac{\nabla \Psi^{+}}{\lambda} d x \leq & \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \\
& -\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right) \cdot\left(\nabla u_{n}-\frac{\nabla \Psi^{+}}{\lambda}\right) d x .
\end{aligned}
$$

Which yields thanks to (34), that

$$
\begin{aligned}
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq & C_{2} k+\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \\
& -\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right) \cdot\left(\nabla u_{n}-\frac{\nabla \Psi^{+}}{\lambda}\right) d x .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{array}{r}
(1-\lambda) \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq C_{2} k+\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right) \cdot \frac{\nabla \Psi^{+}}{\lambda} d x \\
-\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right) \cdot \nabla u_{n} d x \tag{35}
\end{array}
$$

In view of (6), we have

$$
\begin{aligned}
\left|\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right) \cdot \nabla u_{n} d x\right| \leq & \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} \psi\left(x,\left|a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right)\right|\right) d x \\
& +\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x .
\end{aligned}
$$

Having in mind (10) and (35), we obtain

$$
\begin{aligned}
& (\alpha(1-\lambda)-\lambda) \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \\
& \leq(1-\lambda) \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x-\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \\
& \leq C_{2} k+\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right) \cdot \frac{\nabla \Psi^{+}}{\lambda} d x+\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} \psi\left(x,\left|a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right)\right|\right) d x,
\end{aligned}
$$

then,

$$
\begin{equation*}
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \leq C_{3} k \quad \text { for } \quad k \geq 1 . \tag{36}
\end{equation*}
$$

On the other hand, since $\left\{\left|u_{n}\right| \leq k\right\} \subset\left\{\left|u_{n}-\Psi^{+}\right| \leq k+\left\|\Psi^{+}\right\|_{\infty}\right\}$, then

$$
\begin{aligned}
\int_{\Omega} \varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x & =\int_{\left\{\left|u_{n}\right| \leq k\right\}} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \\
& \leq \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k+| | \Psi^{+} \|_{\infty}\right\}} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \\
& \leq C_{3}\left(k+\left\|\Psi^{+}\right\|_{\infty}\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\int_{\Omega} \varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x \leq C_{4} k \quad \text { for } \quad k \geq \max \left(1,\left\|\Psi^{+}\right\|_{\infty}\right) \tag{37}
\end{equation*}
$$

with C_{4} is a constant that does not depend on n and k.
Thus $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is bounded in $W_{0}^{1} L_{\varphi}(\Omega)$ uniformly in n, then there exists a subsequence still denoted $\left(T_{k}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ and $v_{k} \in W_{0}^{1} L_{\varphi}(\Omega)$ such that

$$
\begin{cases}T_{k}\left(u_{n}\right) \rightharpoonup v_{k} & \text { weakly in } \quad W_{0}^{1} L_{\varphi}(\Omega) \text { for } \sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right), \tag{38}\\ T_{k}\left(u_{n}\right) \rightarrow v_{k} & \text { strongly in } \quad E_{\varphi}(\Omega) \text { and } \quad \text { a.e in } \Omega .\end{cases}
$$

Step 3:Convergence in measure of u_{n}. In view of (7), we have

$$
M(t) \leq \varphi(x, c t) \quad \text { a.e. in } \quad \Omega \quad \text { with } \quad \lim _{t \rightarrow 0} \frac{M(t)}{t}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{M(t)}{t}=\infty
$$

In view of ([15], Lemma 5.7), there exists two positive constants C_{5} and C_{6}, and a function $q(\cdot) \in L^{1}(\Omega)$ such that
$C_{5} \int_{\Omega} M\left(\left|T_{k}\left(u_{n}\right)\right|\right) d x+\int_{\Omega} q(x) d x \leq \int_{\Omega} M\left(C_{6}\left|\nabla T_{k}\left(u_{n}\right)\right|\right)+q(x) d x \leq \int_{\Omega} \varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x$.
So, in virtue of (37), we obtain

$$
\begin{equation*}
\int_{\Omega} M\left(\left|T_{k}\left(u_{n}\right)\right|\right) d x \leq k C_{7} \quad \text { for } \quad k \geq \max \left(1,\left\|\Psi^{+}\right\|_{\infty}\right) \tag{39}
\end{equation*}
$$

Then, we deduce that,

$$
\begin{aligned}
M(k) \operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\}\right) & =\int_{\left\{\left|u_{n}\right|>k\right\}} M\left(\left|T_{k}\left(u_{n}\right)\right|\right) d x \\
& \leq \int_{\Omega} M\left(\left|T_{k}\left(u_{n}\right)\right|\right) d x \leq k C_{7}
\end{aligned}
$$

hence,

$$
\begin{equation*}
\operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\}\right)=\frac{k C_{7}}{M(k)} \longrightarrow 0 \quad \text { as } \quad k \rightarrow+\infty \tag{40}
\end{equation*}
$$

For all $\delta>0$, we have

$$
\begin{array}{r}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq \operatorname{meas}\left\{\left|u_{n}\right|>k\right\}+\operatorname{meas}\left\{\left|u_{m}\right|>k\right\} \\
+\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\}
\end{array}
$$

Let $\varepsilon>0$, using (40) we may choose $k=k(\varepsilon)$ large enough such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \leq \frac{\varepsilon}{3} \quad \text { and } \quad \text { meas }\left\{\left|u_{m}\right|>k\right\} \leq \frac{\varepsilon}{3} \tag{41}
\end{equation*}
$$

Moreover, in view of (38) we have $T_{k}\left(u_{n}\right) \rightarrow v_{k}$ strongly in $E_{\varphi}(\Omega)$, then, we can assume that $\left(T_{k}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in measure. Thus, for all $k>0$ and $\delta, \varepsilon>0$, there exists $n_{0}=n_{0}(k, \delta, \varepsilon)$ such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\} \leq \frac{\varepsilon}{3} \quad \text { for all } m, n \geq n_{0}(k, \delta, \varepsilon) \tag{42}
\end{equation*}
$$

By combining (41) - (42), we conclude that

$$
\forall \delta, \varepsilon>0 \quad \text { there exists } \quad n_{0}=n_{0}(\delta, \varepsilon) \quad \text { such that } \quad \operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq \varepsilon
$$

for any $n, m \geq n_{0}(\delta, \varepsilon)$. It follows that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure, then converges almost everywhere, for a subsequence, to some measurable function u. Consequently, we have

$$
\begin{cases}T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) & \text { weakly in } \quad W_{0}^{1} L_{\varphi}(\Omega) \quad \text { for } \quad \sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right) \tag{43}\\ T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { strongly in } \quad E_{\varphi}(\Omega) .\end{cases}
$$

Step 4 : Strong convergence of truncations. In the sequel, we denote by $\varepsilon_{i}(n), i=$ $1,2, \ldots$ various real-valued functions of real variables that converges to 0 as n tends to infinity.
Let $h>k>0$, we define

$$
M:=4 k+h, \quad z_{n}:=u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}\right)-T_{k}(u) \quad \text { and } \quad \omega_{n}:=T_{2 k}\left(z_{n}\right)
$$

Taking $v=u_{n}-\eta \omega_{n}$, we have $v \geq \Psi$ for η small enough, thus v is an admissible test function in (25), and since $\nabla \omega_{n}=0$ on $\left\{\left|u_{n}\right| \geq M\right\}$, we obtain

$$
\int_{\left\{\left|u_{n}\right| \leq M\right\}} a\left(x, \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla \omega_{n} d x \leq \int_{\Omega} f_{n} \omega_{n} d x
$$

We have $\omega_{n}=T_{k}\left(u_{n}\right)-T_{k}(u)$ on $\left\{\left|u_{n}\right| \leq k\right\}$, we conclude that

$$
\begin{align*}
& \int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \tag{44}\\
& \quad+\int_{\left\{k<\left|u_{n}\right| \leq M\right\}} a\left(x, \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla \omega_{n} d x \leq \int_{\Omega} f_{n} \omega_{n} d x
\end{align*}
$$

Concerning the second term on the left-hand side of (44), we have

$$
\begin{aligned}
& \int_{\left\{k<\left|u_{n}\right| \leq M\right\}} a\left(x, \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla \omega_{n} d x \\
& \quad=\int_{\left\{k<\left|u_{n}\right| \leq M\right\} \cap\left\{\left|z_{n}\right| \leq 2 k\right\}} a\left(x, \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& \quad \geq-\int_{\left\{k<\left|u_{n}\right| \leq M\right\}}\left|a\left(x, \nabla T_{M}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| d x,
\end{aligned}
$$

We have $\nabla T_{k}(u) \in\left(L_{\varphi}(\Omega)\right)^{N}$, and since $\left(\left|a\left(x, \nabla T_{M}\left(u_{n}\right)\right)\right|\right)_{n}$ is bounded in $L_{\psi}(\Omega)=$ $E_{\psi}(\Omega)$, there exists $\zeta \in E_{\psi}(\Omega)$ such that $\left|a\left(x, \nabla T_{M}\left(u_{n}\right)\right)\right| \rightharpoonup \zeta$ weakly in $E_{\psi}(\Omega)$ for $\sigma\left(E_{\psi}(\Omega), L_{\varphi}(\Omega)\right)$. Therefore,

$$
\begin{equation*}
\int_{\left\{k<\left|u_{n}\right| \leq M\right\}}\left|a\left(x, \nabla T_{M}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| d x \longrightarrow \int_{\{k<|u| \leq M\}} \zeta\left|\nabla T_{k}(u)\right| d x=0 \tag{45}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\int_{\left\{k<\left|u_{n}\right| \leq M\right\}} a\left(x, \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla \omega_{n} d x \geq \varepsilon_{1}(n) \tag{46}
\end{equation*}
$$

Then, since $f_{n} \rightarrow f$ in $L^{1}(\Omega)$ and $\omega_{n} \rightharpoonup T_{2 k}\left(u-T_{h}(u)\right)$ weak-* in $L^{\infty}(\Omega)$, and using (44), we deduce that

$$
\begin{equation*}
\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \leq \int_{\Omega} f T_{2 k}\left(u-T_{h}(u)\right) d x+\varepsilon_{2}(n) \tag{47}
\end{equation*}
$$

We define $\Omega_{s}=\left\{x \in \Omega:\left|\nabla T_{k}(u(x))\right| \leq s\right\}$ and denote by χ_{s} the characteristic function of Ω_{s}. For the term on the left-hand side of (47), we have

$$
\begin{align*}
& \int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
& =\int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right) d x \\
& \quad+\int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}(u) \chi_{s}-\nabla T_{k}(u)\right) d x+\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}(u) d x \\
& =\int_{\Omega}\left(a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right) d x \\
& \quad+\int_{\Omega} a\left(x, \nabla T_{k}(u) \chi_{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right) d x \\
& \quad-\int_{\Omega \backslash \Omega_{s}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}(u) d x+\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}(u) d x \tag{48}
\end{align*}
$$

For the second term on the right-hand side of (48), we have $a\left(x, \nabla T_{k}(u) \chi_{s}\right) \in$ $\left(E_{\psi}(\Omega)\right)^{N}$, and since $\nabla T_{k}\left(u_{n}\right) \rightharpoonup \nabla T_{k}(u)$ weakly in $\left(L_{\varphi}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$, then

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \int_{\Omega} a\left(x, \nabla T_{k}(u) \chi_{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right) d x \\
& =\int_{\Omega} a\left(x, \nabla T_{k}(u) \chi_{s}\right) \cdot\left(\nabla T_{k}(u)-\nabla T_{k}(u) \chi_{s}\right) d x \tag{49}\\
& =\int_{\Omega \backslash \Omega_{s}} a(x, 0) \cdot \nabla T_{k}(u) d x
\end{align*}
$$

Concerning the third term on the right-hand side of (48), since $\left(a\left(x, \nabla T_{k}\left(u_{n}\right)\right)_{n}\right.$ is bounded in $\left(E_{\psi}(\Omega)\right)^{N}$, there exists $\xi \in\left(E_{\psi}(\Omega)\right)^{N}$ such that $a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup \xi$ weakly in $\left(E_{\psi}(\Omega)\right)^{N}$ for $\sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right)$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega \backslash \Omega_{s}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}(u) d x=\int_{\Omega \backslash \Omega_{s}} \xi \cdot \nabla T_{k}(u) d x \tag{50}
\end{equation*}
$$

For the last term on the right-hand side of (48), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}(u) d x=\int_{\{|u|>k\}} \xi \cdot \nabla T_{k}(u) d x=0 \tag{51}
\end{equation*}
$$

By combining (48) - (51), we deduce that

$$
\begin{align*}
& \int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \\
& =\int_{\Omega}\left(a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right) d x \tag{52}\\
& \quad+\int_{\Omega \backslash \Omega_{s}}(a(x, 0)-\xi) \cdot \nabla T_{k}(u) d x+\varepsilon_{3}(n)
\end{align*}
$$

and since $(a(x, 0)-\eta) \cdot \nabla T_{k}(u) \in L^{1}(\Omega)$, then

$$
\int_{\Omega \backslash \Omega_{s}}(a(x, 0)-\xi) \cdot \nabla T_{k}(u) d x \longrightarrow 0 \quad \text { as } \quad s \rightarrow \infty
$$

Therefore, using (47) we conclude that

$$
\begin{align*}
& \int_{\Omega}\left(a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right) d x \\
& \quad \leq \int_{\Omega} f T_{2 k}\left(u-T_{h}(u)\right) d x+\varepsilon_{4}(n, s) \tag{53}
\end{align*}
$$

We have

$$
\int_{\Omega} f T_{2 k}\left(u-T_{h}(u)\right) d x \longrightarrow 0 \quad \text { as } \quad h \rightarrow \infty
$$

It follows that

$$
\begin{equation*}
\lim _{n, s \rightarrow \infty} \int_{\Omega}\left(a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right) d x=0 \tag{54}
\end{equation*}
$$

In view of Lemma 4.2, we deduce that

$$
\begin{equation*}
\nabla u_{n} \longrightarrow \nabla u \quad \text { a.e. in } \quad \Omega \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right) \longrightarrow \varphi\left(x,\left|\nabla T_{k}(u)\right|\right) \quad \text { in } \quad L^{1}(\Omega) \tag{56}
\end{equation*}
$$

Step 5 : Passage to the limit. Let $v \in K_{\Psi} \cap L^{\infty}(\Omega)$ and $\eta>0$, we have $u_{n}-\eta T_{k}\left(u_{n}-\right.$ $v) \in K_{\Psi}$ is an admissible test function in (25) for η small enough, and we obtain

$$
\begin{equation*}
\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-v\right) d x \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x \tag{57}
\end{equation*}
$$

Choosing $M=k+\|v\|_{\infty}$, then $\left\{\left|u_{n}-v\right| \leq k\right\} \subseteq\left\{\left|u_{n}\right| \leq M\right\}$. Firstly, we can write the term on the left-hand side of the above relation as

$$
\begin{align*}
& \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-v\right) d x=\int_{\Omega} a\left(x, \nabla T_{M}\left(u_{n}\right)\right) \cdot\left(\nabla T_{M}\left(u_{n}\right)-\nabla v\right) \chi_{\left\{\left|u_{n}-v\right| \leq k\right\}} d x \\
& \quad=\int_{\Omega}\left(a\left(x, \nabla T_{M}\left(u_{n}\right)\right)-a(x, \nabla v)\right) \cdot\left(\nabla T_{M}\left(u_{n}\right)-\nabla v\right) \chi_{\left\{\left|u_{n}-v\right| \leq k\right\}} d x \\
& \quad+\int_{\Omega} a(x, \nabla v) \cdot\left(\nabla T_{M}\left(u_{n}\right)-\nabla v\right) \chi_{\left\{\left|u_{n}-v\right| \leq k\right\}} d x \tag{58}
\end{align*}
$$

We have

$$
\begin{align*}
& \left(a\left(x, \nabla T_{M}\left(u_{n}\right)\right)-a(x, \nabla v)\right) \cdot\left(\nabla T_{M}\left(u_{n}\right)-\nabla v\right) \chi_{\left\{\left|u_{n}-v\right| \leq k\right\}} \tag{59}\\
& \xrightarrow{\longrightarrow}\left(a\left(x, \nabla T_{M}(u)\right)-a(x, \nabla v)\right) \cdot\left(\nabla T_{M}(u)-\nabla v\right) \chi_{\{|u-v| \leq k\}} \quad \text { a.e. in } \quad \Omega .
\end{align*}
$$

According to (9) and Fatou's lemma, we obtain

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-v\right) d x \\
& \quad \geq \int_{\Omega}\left(a\left(x, \nabla T_{M}(u)\right)-a(x, \nabla v)\right) \cdot\left(\nabla T_{M}(u)-\nabla v\right) \chi_{\{|u-v| \leq k\}} d x \tag{60}\\
& \quad \quad+\lim _{n \rightarrow \infty} \int_{\Omega} a(x, \nabla v) \cdot\left(\nabla T_{M}\left(u_{n}\right)-\nabla v\right) \chi_{\left\{\left|u_{n}-v\right| \leq k\right\}} d x
\end{align*}
$$

For the second term on the right-hand side of (60), we have $a(x, \nabla v) \in\left(E_{\psi}(\Omega)\right)^{N}$ and $\nabla T_{M}\left(u_{n}\right) \rightharpoonup \nabla T_{M}(u)$ weakly in $\left(L_{\varphi}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\Omega} a(x, \nabla v) \cdot\left(\nabla T_{M}\left(u_{n}\right)-\nabla v\right) \chi_{\left\{\left|u_{n}-v\right| \leq k\right\}} d x \\
& \quad=\int_{\Omega} a(x, \nabla v) \cdot\left(\nabla T_{M}(u)-\nabla v\right) \chi_{\{|u-v| \leq k\}} d x
\end{aligned}
$$

Therefore, we get

$$
\begin{align*}
\liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-v\right) d x & \geq \int_{\Omega} a\left(x, \nabla T_{M}(u)\right) \cdot\left(\nabla T_{M}(u)-\nabla v\right) \chi_{\{|u-v| \leq k\}} d x \\
& =\int_{\Omega} a(x, \nabla u) \cdot \nabla T_{k}(u-v) d x \tag{61}
\end{align*}
$$

On the other hand, being $T_{k}\left(u_{n}-v\right) \rightharpoonup T_{k}(u-v)$ weak- $\begin{gathered}\text { in } L^{\infty}(\Omega) \text { we deduce that }\end{gathered}$

$$
\begin{equation*}
\int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x \longrightarrow \int_{\Omega} f T_{k}(u-v) d x \tag{62}
\end{equation*}
$$

By combining (61) and (62), we conclude the existence of entropy solution for our problem.
5.2. Uniqueness of entropy solution. Let u_{1}, u_{2} be two entropy solutions of the problems (24), we shall prove that $u_{1}=u_{2}$.
By using the test function $v=T_{h}\left(u_{2}\right) \in K_{\Psi} \cap L^{\infty}(\Omega)$ in (24) for the equation with solution u_{1}, we have

$$
\int_{\Omega} a\left(x, \nabla u_{1}\right) \cdot \nabla T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right) d x \leq \int_{\Omega} f T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right) d x .
$$

Similarly, by using $v=T_{h}\left(u_{1}\right) \in K_{\Psi} \cap L^{\infty}(\Omega)$ as a test function for the equation (24) with solution u_{2}, we obtain

$$
\int_{\Omega} a\left(x, \nabla u_{2}\right) \cdot \nabla T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right) d x \leq \int_{\Omega} f T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right) d x
$$

By adding these two inequalities, we get

$$
\begin{align*}
& \int_{\Omega} a\left(x, \nabla u_{1}\right) \cdot \nabla T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right) d x+\int_{\Omega} a\left(x, \nabla u_{2}\right) \cdot \nabla T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right) d x \\
& \leq \int_{\Omega} f\left[T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right)+T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right)\right] d x \tag{63}
\end{align*}
$$

We decompose the first integral of the left-hand side of (63) as

$$
\begin{align*}
& \int_{\Omega} a\left(x, \nabla u_{1}\right) \cdot \nabla T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right) d x=\int_{\left\{\left|u_{1}-T_{h}\left(u_{2}\right)\right| \leq k\right\}} a\left(x, \nabla u_{1}\right) \cdot \nabla\left(u_{1}-T_{h}\left(u_{2}\right)\right) d x \\
&= \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\}} a\left(x, \nabla u_{1}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \\
&+\int_{\left\{\left|u_{1}-T_{h}\left(u_{2}\right)\right| \leq k\right\} \cap\left\{\left|u_{2}\right|>h\right\}} a\left(x, \nabla u_{1}\right) \cdot \nabla u_{1} d x, \\
& \geq \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right| \leq h\right\}} a\left(x, \nabla u_{1}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \\
&+\int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right|>h\right\}} a\left(x, \nabla u_{1}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x . \tag{64}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \int_{\Omega} a\left(x, \nabla u_{2}\right) \cdot \nabla T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right) d x \geq \int_{\left\{\left|u_{2}-u_{1}\right| \leq k\right\} \cap\left\{\left|u_{1}\right| \leq h\right\} \cap\left\{\left|u_{2}\right| \leq h\right\}} \quad a\left(x, \nabla u_{2}\right) \cdot\left(\nabla u_{2}-\nabla u_{1}\right) d x \\
& \quad+\int_{\left\{\left|u_{2}-u_{1}\right| \leq k\right\} \cap\left\{\left|u_{1}\right| \leq h\right\} \cap\left\{\left|u_{2}\right|>h\right\}} a\left(x, \nabla u_{2}\right) \cdot\left(\nabla u_{2}-\nabla u_{1}\right) d x . \tag{65}
\end{align*}
$$

By combining (64) - (65), we obtain

$$
\begin{aligned}
& \int_{\Omega} a\left(x, \nabla u_{1}\right) \cdot \nabla T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right) d x+\int_{\Omega} a\left(x, \nabla u_{2}\right) \cdot \nabla T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right) d x \\
& \geq \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right| \leq h\right\}}\left(a\left(x, \nabla u_{1}\right)-a\left(x, \nabla u_{2}\right)\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \\
&+\int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right|>h\right\}} a\left(x, \nabla u_{1}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \\
&+\int_{\left\{\left|u_{2}-u_{1}\right| \leq k\right\} \cap\left\{\left|u_{1}\right| \leq h\right\} \cap\left\{\left|u_{2}\right|>h\right\}} a\left(x, \nabla u_{2}\right) \cdot\left(\nabla u_{2}-\nabla u_{1}\right) d x .
\end{aligned}
$$

In view of (63), we conclude that

$$
\begin{align*}
& \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right| \leq h\right\}}\left(a\left(x, \nabla u_{1}\right)-a\left(x, \nabla u_{2}\right)\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \\
& \quad \leq \int_{\Omega} f\left[T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right)+T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right)\right] d x \\
& \quad-\int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right|>h\right\}} a\left(x, \nabla u_{1}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \tag{66}\\
& \quad-\int_{\left\{\left|u_{2}-u_{1}\right| \leq k\right\} \cap\left\{\left|u_{1}\right| \leq h\right\} \cap\left\{\left|u_{2}\right|>h\right\}} a\left(x, \nabla u_{2}\right) \cdot\left(\nabla u_{2}-\nabla u_{1}\right) d x .
\end{align*}
$$

For the first term on the right-hand side of (66), we have

$$
\begin{aligned}
& \left|\int_{\Omega} f\left[T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right)+T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right)\right] d x\right| \\
& \quad \leq \int_{\left\{\left|u_{1}\right| \leq h,\left|u_{2}\right| \leq h\right\}}|f|\left|T_{k}\left(u_{1}-u_{2}\right)+T_{k}\left(u_{2}-u_{1}\right)\right| d x \\
& \quad+\int_{\left\{\left|u_{1}\right|>h\right\}}|f|\left|T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right)+T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right)\right| d x \\
& \quad+\int_{\left\{\left|u_{2}\right|>h\right\}}|f|\left|T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right)+T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right)\right| d x \\
& \quad \leq 2 k \int_{\left\{\left|u_{1}\right|>h\right\}}|f| d x+2 k \int_{\left\{\left|u_{2}\right|>h\right\}}|f| d x .
\end{aligned}
$$

since $f \in L^{1}(\Omega)$ and meas $\left\{\left|u_{i}\right| \geq h\right\} \rightarrow 0$ when $h \rightarrow \infty$ for $i=1,2$, it follows that

$$
\begin{equation*}
\int_{\Omega} f\left[T_{k}\left(u_{1}-T_{h}\left(u_{2}\right)\right)+T_{k}\left(u_{2}-T_{h}\left(u_{1}\right)\right)\right] d x \longrightarrow 0 \quad \text { as } \quad h \rightarrow \infty \tag{67}
\end{equation*}
$$

Concerning the third term on the right-hand side of (66). By taking $T_{h}\left(u_{1}\right)$ as a test function in (24) for the equation with solution u_{1}, we obtain

$$
\int_{\Omega} a\left(x, \nabla u_{1}\right) \cdot \nabla T_{k}\left(u_{1}-T_{h}\left(u_{1}\right)\right) d x \leq \int_{\Omega} f T_{k}\left(u_{1}-T_{h}\left(u_{1}\right)\right) d x
$$

in view of (10), we obtain

$$
\begin{align*}
\alpha \int_{\left\{h<\left|u_{1}\right| \leq h+k\right\}} \varphi\left(x,\left|\nabla u_{1}\right|\right) d x & \leq \int_{\left\{h<\left|u_{1}\right| \leq h+k\right\}} a\left(x, \nabla u_{1}\right) \cdot \nabla u_{1} d x \\
& \leq k \int_{\left\{\left|u_{1}\right| \geq h\right\}}|f| d x \rightarrow 0 \quad \text { as } \quad h \rightarrow \infty \tag{68}
\end{align*}
$$

Also, we prove can that

$$
\begin{equation*}
\alpha \int_{\left\{h<\left|u_{2}\right| \leq h+k\right\}} \varphi\left(x,\left|\nabla u_{2}\right|\right) d x \rightarrow 0 \quad \text { as } \quad h \rightarrow \infty . \tag{69}
\end{equation*}
$$

On the other hand, we have

$$
\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right|>h\right\} \subseteq\left\{h<\left|u_{1}\right| \leq h+k\right\} \cap\left\{h-k<\left|u_{2}\right| \leq h\right\},
$$

In view of Young's inequality, we obtain

$$
\begin{align*}
& \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right|>h\right\}} a\left(x, \nabla u_{1}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \\
& \leq \beta \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right|>h\right\}}\left(K(x)+k_{1} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}\left|\nabla u_{1}\right|\right)\right)\right)\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right| d x\right. \\
& \leq 2 \beta \int_{\left\{\left|u_{1}\right|>h\right\}} \psi(x, K(x)) d x+2 \beta k_{1} \int_{\left\{h<\left|u_{1}\right| \leq h+k\right\}} \varphi\left(x, k_{2}\left|\nabla u_{1}\right|\right) d x \\
& \quad+\beta\left(k_{1}+1\right) \int_{\left\{h<\left|u_{1}\right| \leq h+k\right\}} \varphi\left(x,\left|\nabla u_{1}\right|\right) d x \\
& \quad+\beta\left(k_{1}+1\right) \int_{\left\{h-k<\left|u_{2}\right| \leq h\right\}} \varphi\left(x,\left|\nabla u_{2}\right|\right) d x \longrightarrow 0 \quad \text { as } \quad h \rightarrow \infty, \tag{70}
\end{align*}
$$

Similarly, we can prove that

$$
\begin{equation*}
\int_{\left\{\left|u_{2}-u_{1}\right| \leq k\right\} \cap\left\{\left|u_{1}\right| \leq h\right\} \cap\left\{\left|u_{2}\right|>h\right\}} a\left(x, \nabla u_{2}\right) \cdot\left(\nabla u_{2}-\nabla u_{1}\right) d x \longrightarrow 0 \quad \text { as } \quad h \rightarrow \infty, \tag{71}
\end{equation*}
$$

By combining (66), (67) and (70) - (71), we conclude that

$$
\begin{align*}
& \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\}}\left(a\left(x, \nabla u_{1}\right)-a\left(x, \nabla u_{2}\right)\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x \\
& =\lim _{h \rightarrow \infty} \int_{\left\{\left|u_{1}-u_{2}\right| \leq k\right\} \cap\left\{\left|u_{2}\right| \leq h\right\} \cap\left\{\left|u_{1}\right| \leq h\right\}}\left(a\left(x, \nabla u_{1}\right)-a\left(x, \nabla u_{2}\right)\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x=0, \tag{72}
\end{align*}
$$

Since (72) is true for all $k>0$ and thanks to (9), we conclude that $\nabla\left(u_{1}-u_{2}\right)=0$ a.e.in Ω, and since $u_{1}=u_{2}=0$ on $\partial \Omega$, thus $u_{1}=u_{2}$ a.e. in Ω, which conclude the proof of uniqueness of entropy solutions.
Example 5.1. Taking $\varphi(x, t)=|t|^{p(x)} \log ^{\sigma}(1+|t|)$ for $1 \leq p(x)<\infty$ and $0<\sigma<\infty$. Let $f \in L^{1}(\Omega)$ and the obstacle $\Psi=0$. We consider the following Carathéodory function

$$
a(x, \nabla u)=|\nabla u|^{p(x)-2} \log ^{\sigma}(1+|\nabla u|) \nabla u .
$$

It is clear that $a(x, \nabla u)$ verifies $(8)-(10)$. In view of the Theorem 5.1, the problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \log ^{\sigma}(1+|\nabla u|) \nabla u\right)=f & \text { in } \Omega \tag{73}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has one entropy solution, i.e.

$$
u \geq 0 \quad \text { a.e. in } \Omega \quad \text { and } \quad T_{k}(u) \in W_{0}^{1} L_{\varphi}(\Omega)
$$

and

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p(x)-2} \log ^{\sigma}(1+|\nabla u|) \nabla u \cdot \nabla T_{k}\left(u_{n}-\nu\right) d x \leq \int_{\Omega} f T_{k}\left(u_{n}-\nu\right) d x \tag{74}
\end{equation*}
$$

for any $\nu \in W_{0}^{1} L_{\varphi}(\Omega) \cap L^{\infty}(\Omega)$ with $v \geq 0$ a.e. in Ω.

References

[1] L. Aharouch, J. Bennouna, Existence and uniqueness of solutions of unilateral problems in Orlicz spaces, Nonlinear Analysis 72 (2010), 3553-3565.
[2] E. Azroul, M. B. Benboubker, M. Rhoudaf, On some p(x)-quasilinear problem with right-hand side measure, Math. Comput. Simulation 102 (2014), 117-130.
[3] E. Azroul, A. Benkirane, M. Rhoudaf, On some strongly nonlinear elliptic problems in L1-data with a nonlinearity having a constant sign in Orlicz spaces via penalization methods, Aust. J. Math. Anal. Appl. 7 (2010), no. 1, Art. 5, 1-25.
[4] E. Azroul, H. Hjiaj, A. Touzani, Existence and Regularity of Entropy solutions For Strongly Nonlinear $p(x)$-elliptic equations, Electronic J. Diff. Equ. 68 (2013), 1-27.
[5] M. Bendahmane, P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data, Nonlinear Analysis 70 (2009), no. 2, 567-583.
[6] A. Benkirane, J. Bennouna, Existence of entropy solutions for some nonlinear problems in Orlicz spaces, Abstr. Appl. Anal. 7 (2002), 85-102.
[7] A. Benkirane, A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Analysis 36 (1999), 11-24.
[8] A. Benkirane, A. Elmahi, Almost everywhere convergence of gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Analysis T.M.A. 28 (1997), No.11, 17691784.
[9] A. Benkirane, M. Ould Mohamedhen Val, An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 1, 57-75.
[10] A. Benkirane, M. Ould Mohamedhen Val, Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 5, $787-811$.
[11] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), no. 3-4, 641-655.
[12] R. Di Nardo, F. Feo, O. Guibé, Uniqueness result for nonlinear anisotropic elliptic equations, Adv. Differential Equations 18 (2013), no. 5-6, 433-458.
[13] A. Elmahi, D. Meskine, Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces, Abstr. Appl. Anal. 12 (2004), 1031-1045.
[14] X. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear Analysis 75 (2012), no. 4, 1959-1971.
[15] J.P. Gossez, Nonlinear elliptic boundary value prolems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
[16] P. Gwiazda, A. Swierczewska-Gwiazda, A. Wroblewska, Monotonicity methods in generalized Orlicz spaces for a class of non- Newtonian fluids, Math. Methods Appl. Sci. 33 (2010), no. 2, 125-137.
[17] P. Gwiazda, A. Swierczewska-Gwiazda, A. Wroblewska, Generalized Stokes system in Orlicz spaces. Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2125-2146.
[18] P. Gwiazda, P. Minakowski, A. Wroblewska-Kaminska, Elliptic problems in generalized OrliczMusielak spaces, Cent. Eur. J. Math. 10 (2012), no. 6, 2019-2032.
[19] P. Gwiazda, P. Wittbold, A. Wroblewska, A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Diff. Equ. 253 (2012), no. 2, 635-666
[20] E. Hewitt, K. Stromberg, Real and abstract analysis, Springer-Verlag, Berlin Heidelberg New York, 1965.
[21] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthiers-Villars, Paris, 1969.
[22] M. Sanchón, J.M. Urbano, Entropy solutions for the $\mathrm{p}(\mathrm{x})$-Laplace equation, Trans. Amer. Math. Soc. 361 (2009), 6387-6405.
[23] M. Ru̇žička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000.
[24] J. Musielak, Orlicz spaces and Modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin Heidelberg 1983.
(Mohammed Al-Hawmi) LAMA Laboratory, Department of Mathematics, University of Sidi Mohamed Ben Abdellah, B. P. 1796 Atlas Fez, Morocco
E-mail address: m.alhomi2011@gmail.com
(Abdelmoujib Benkirane) LAMA Laboratory, Department of Mathematics, University of Sidi Mohamed Ben Abdellah, B. P. 1796 Atlas Fez, Morocco
E-mail address: abd.benkirane@gmail.com
(Hassane Hjiaj) Department of Mathematics, Faculty of Sciences Tetouan, University Abdelmalek Essaadi, B. P. 2121, Tetouan, Morocco
E-mail address: hjiajhassane@yahoo.fr
(Abdelfattah Touzani) LAMA Laboratory, Department of Mathematics, University of Sidi Mohamed Ben Abdellah, B. P. 1796 Atlas Fez, Morocco
E-mail address: atouzani07@gmail.com

