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ABSTRACT. In this paper, we study the existence and uniqueness of entropy solution for some
quasilinear degenerate elliptic unilateral problems of the type

—diva(z,Vu)=f in €,

u=20 on 0N,
in the Musielak-Orlicz-Sobolev spaces W3 Ly, (), with f € L1(£2) and by assuming that the
conjugate function of the Musielak-Orlicz function ¢(z,t) satisfies the As—condition. An ex-
ample of such equation is given by

{ 7div<|Vu|p<z>72log”(1+ ) Vu) —f  inQ W

u =0 on 0,
for 1 < p(z) < oo and 0 < o < 0.
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1. Introduction
Let  be a bounded open subset of IRY (N > 2), with smooth boundary conditions.

For 2 — 3 < p < N, Boccardo and Gallouét have studied in [11] the elliptic

problem of the type

Au=f in Q,
u= 0 on 09,
where Au = —div a(z,u, Vu) is a Leray-Lions operator from Wol’p(Q) into its dual,
and f is a bounded Radon measure on 2. They have proved the existence of solutions
U € Wol’q(Q) forall 1<g<g= %. Also they proved some regularity results.

Aharouch and Bennouna have treated in [1] the quasilinear elliptic of unilateral
problem
{ —div (a(z,Vu)) = f in Q, @)
u= 0on 99,

Received March 17, 2015.



2 M. AL-HAWMI, A. BENKIRANE, H. HJIAJ, AND A. TOUZANI

where f € L'(2). They have proved the existence and uniqueness of entropy solu-
tions in the framework of Orlicz Sobolev spaces WL (Q) without assuming the
Ay—condition on the N—function M of the Orlicz spaces, (see also. [6, 7, 13]).

In [5], Bendahmane and Wittbold have proved existence and uniqueness of a renor-
malized solution to the nonlinear elliptic equation

. 92 .
{ —div (|Vu|p($) Vu)=f in Q, 3)
u= 0on 01,
where the right-hand side f € L!'(Q2) and the exponent p(-) : Q +— (1,4+00) is
continuous, for some related results we refer to [2, 4, 12, 22].

In the recent years, Musielak-Orlicz-Sobolev spaces have attracted the attention of
mainly researchers, the impulse for this manly comes from there physical applications,
such in electro-rheological fluids, (see [23]). The purpose of this paper is to prove the
existence and uniqueness of entropy solutions for some quasilinear unilateral elliptic
problem of the form

Au=f in Q,
{ u= 0 on 01, (4)

in Musielak-Orlicz-Sobolev spaces, where f € L'(Q) and A : D(A) C W§L,(Q) —
W =1L, (Q) is the Leray-Lions operator defined as:

A(u) = —div a(z, Vu),

by assuming that the conjugate function of Musielak-Orlicz function (z,t) satisfies
As-condition, and by using corollary 1 of [9] to construct a complementary system
(Wi L (), Wi Eo(Q); WLL,(Q), W1 Ey (92)).

Note that, the second author has studded in [9] the existence of solution for the
problem (4) where f is assumed to be in the dual, and only strict monotonicity is
assumed, we refer also to [19] for the elliptic case with large monotonicity, and the
interesting works of Gwiazda el al. [16, 17, 18] in the generalized Orlicz Sobolev spaces,
also [14] where the author has proved the Poincaré inequality under the Ay —condition.

This paper is organized as follows. In the section 2 we recall some definitions
and basic properties of Musielak-Orlicz-Sobolev. We introduce in the section 3 the
assumptions on a(z,£) under which our problem has at least one solution. The
section 4 contains some useful lemmas for proving our main results. The section 5
will be devoted to show the existence and uniqueness of entropy solutions for our
main problem (4).

2. Preliminaries

In this section, we introduce some definitions and known facts about Musielak-
Orlicz-Sobolev spaces. The standard reference is [24].

2.1. Musielak-Orlicz function. Let Q be an open bounded subset of IRY (N > 2)
with smooth boundary conditions, and let ¢(xz,t) be a real-valued function defined
on Q x IRT, and satisfying the following two conditions :
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(a): p(z,-) is an N-function, i.e. convex, nondecreasing, continuous, ¢(x,0) = 0,
o(x,t) >0 for all t > 0, and :
p(z,t)

limsupM:O , lim inf ————= = o0,
t—=0,cq t—ooxeQ) ¢
(b): o(+,t) is a measurable function.
A function ¢(z,t) which satisfies conditions (a) and (b) is called a Musielak-Orlicz
function.
For every Musielak-Orlicz function ¢(z,t), we set ¢, (t) = ¢(z,t) and let @, 1(¢) the
reciprocal function with respect to ¢ of ¢, (t), i.e.

vz (e(a,t) = ez, 97 ' (1) = t.
For any two Musielak-Orlicz functions ¢(x,t) and y(x,t), we introduce the following
ordering:
(c): If there exist two positive constants ¢ and T' such that for almost everywhere
x€e:
o(z,t) <~v(z,ct) for t>T,
we write ¢ < 7, and we say that v dominate ¢ globally if 7" = 0, and near infinity
itT > 0.
(d): For every positive constant ¢ and almost everywhere x € €, if

t t
lim (sup Pl ¢ )) =0 or lim (sup Pl ¢ )) =0,
t—0 €N ’Y(Z‘,t) =00 1 ')/(l',t)

we write ¢ << v at 0 or near oo respectively, and we say that ¢ increases
essentially more slowly than ~ at 0 or near co respectively.

The Musielak-Orlicz function ¥ (z,t) complementary to (or conjugate of) ¢(x,t),
in the sense of Young with respect to the variable ¢, is given by

7/}(1'7 5) = igg{St - QD(I7 t)}’ (5)

and we have
st < (x,8) + p(x,t) Vs, t € IRT. (6)
The Musielak-Orlicz function ¢(z,t) is said to satisfy the As—condition if, there
exists k > 0 and a nonnegative function h(-) € L*(f2), such that

oz, 2t) < ko(x,t) + h(z) a.e. x €,
for large values of ¢, or for all values of ¢.
2.2. Musielak-Orlicz Lebesgue spaces. In this paper, the measurability of a

function u :  — IR means the Lebesgue measurability.
We define the functional

o) = [ plafule)]) da,
where u : ) — IR is a measurable function. The set

K, (Q) ={u:Qr+— IR measurable / g, 0(u) < +oo}

is called the Musielak-Orlicz class (or the generalized Orlicz class). The Musielak-
Orlicz spaces (or the generalized Orlicz spaces) L, () is the vector space generated
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by K (), that is, L,(f2) is the smallest linear space containing the set K, (£2);
equivalently

L,(Q) = {u :Q+—— IR measurable / Q¢Q(|U(;\E)|) < +o0, for some A > O}.

In the space L, (2), we define the following two norms:

|\u||<p§z—1nf{)\>0/ / [u@)]y gy <1}

which is called the Luxemburg norm, and the so-called Orlicz norm is given by:

lulllo0 =  sup /|u )| dz,

[lvlly,2<1

where (z, t) is the Musielak-Orlicz function complementary (or conjugate) to ¢(x,t).
These two norms are equivalent on the Musielak-Orlicz space L (€2).

The closure in L, (£2) of the bounded measurable functions with compact support
in O is denoted by E,(Q). It is a separable space and (E,(£2))* = Ly ().

We have E,(Q2) = K,() if and only if K,(Q) = L, () if and only if ¢(z,t) has
the As—condition for large values of ¢, or for all values of ¢.

3. Musielak-Orlicz-Sobolev spaces. We now turn to the Musielak-Orlicz-Sobolev
space WL, (Q) (resp. WE,(2)) is the space of all measurable functions u such that
w and its distributional derivatives up to order 1 lie in L,(Q) (resp. E,(£)). Let
a = (aj,as,...,q,) with nonnegative integers o, |a| = |a1| + |ag| + ... + |ay,| and
D%y denotes the distributional derivatives.

We define the convex modular and the norm on the Musielak-Orlicz-Sobolev spaces
WL, () respectively by,

0,.0(u ZQwQDU and ||u||1¢g—1nf{)\>0 QWQ()\)<1}

| <1

for any u € WL, ().
The pair (WL, (), ||ul|1,4,0) is a Banach space if ¢ satisfies the following condition

there exists a constant ¢ >0 such that imsf2 o(x,1) > c.
TE

The spaces W' L, () and W!E,,(2) can be identified with subspaces of the product
of n+ 1 copies of L,(€2). Denoting this product by IIL, (), we will use the weak
topologies o(IIL, (), I1E(2)) and o(I1E, (), IIL,(£2)).

The space W E,(12) is defined as the (norm) closure of the Schwartz space D(2)
in W'E,(Q), and the space W L, () as the o(IIL,(£2),I1E(2)) closure of D(Q) in
WL, (Q), (for more details on Musielak-Orlicz-Sobolev spaces we refer to [24]).

2.4. Dual space. Let W™1L,(Q) (resp. W~1E,()) denotes the space of distribu-
tions on  which can be written as sums of derivatives of order < 1 of functions in
Ly () (resp. Ey(€2)). It is a Banach space under the usual quotient norm.

If ¢(z,t) has the Ag—condition, then the space D(2) is dense in W L,,(2) for the
topology ¢(IIL,(€2),IILy(€2)) (see corollary 1 of [9]).



EXISTENCE AND UNIQUENESS OF ENTROPY SOLUTION ..... 5
3. Essential assumptions

Let © be a bounded open subset of IRY (N > 2) with smooth boundary conditions.
Let (z,t) be a Musielak-Orlicz function and (z,t) the Musielak-Orlicz function
complementary (or conjugate) to ¢(z,t). We assume here that 1(x,t) satisfying the
Ag—condition near infinity, therefore L (Q2) = Ey(Q).

We assume that there exists an Orlicz function M (¢) such that M(t) < ¢(x,t) near
infinity, i.e. there exist two constants ¢ >0 and T > 0 such that
M(t) < p(z, ct) a.e.in for t>1T. (7)
Let ¥(-) be a measurable function on €2, such that
TH() € WyLe () N L>(Q),
and we consider the convex set

Ky = {v € Wy L,(Q) such thatv >V a.e. in Q}

The Leray-Lions operator A : D(A) C W} L,(Q) — WL, () given by
A(u) = =div a(x, Vu)

where a : Q x RN — IR is a Carathéodory function (measurable with respect to x
in Q for every ¢ in IRV, and continuous with respect to & in RN for almost every x
in Q) which satisfies the following conditions

la(z,&)| < B(K (x) + kg, (o(x, kal€])), (8)
(a(z,&) —a(x, &%) - (£ —€) >0 for €#E, 9)
a(m7£) &> a p(x, |£D’ (10)

)

for a.e. x € Q and all £ € RN, where K () is a nonnegative function lying in Fy (2

and o, 8 > 0 and ki, ks > 0.

We consider the quasilinear unilateral elliptic problem
{ —diva(z,Vu)=f in Q,

w=0 in o9, (11)

with f € L'(Q). We study the existence of entropy solution in the Musielak-Orlicz-
Sobolev spaces.

4. Some technical lemmas

Now, we present some lemmas useful in the proof of our main results.

Lemma 4.1. (see [20], Theorem 13.47) Let (uy)n be a sequence in L*(Q) and u €
LY (Q) such that

(i): up = u ae inQ,

(ii): up >0 and u >0 a.e. in Q,

(iii): / Uy, dx — / u dz,
then u, — u in L1

Lemma 4.2. Assuming that (8)—(10) hold, and let (uy,),, be a sequence in W L, (£2)
such that
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(1): up — u weakly in W§Ly(Q) for o(ILL,(Q2),I1E,()),
(ii): (a(x, Vuy))n is bounded in (Ly(Q)N = (Egx(Q))V,
(iii): Let Qs = {x €N, |Vu|l < s} and s his characteristic function, with

/(a(m, Vuy) — a(z, Vuys)) - (Vu, — Vuys)de — 0 as n,s — oo, (12)
Q

then o(z,|Vuy|) — @(x,|Vu|) in LY(Q) for a subsequence.

Proof. Taking s > r > 0, we have :

0< / (a(z, Vuy) — a(z, Vu)) - (Vu, — Vu) dz
Q.
< (a(z,Vuy) — a(z,Vu)) - (Vu, — Vu) dx
Qg (13)
= /5‘2‘(a($7 vun) - a(rT, VUXS)) : (Vun — VUXS) dx

< /(a(z, Vu,) —a(z, Vuyxs)) - (Vu, — Vuys) de.
Q
thanks to (12), we obtain

lim (a(z, Vuy,) — a(z, Vu)) - (Vu, — Vu)dx = 0. (14)

n— o0 Q.
Using the same argument as in [15], we claim that,
Vu, — Vu a.e. in Q. (15)
On the other hand, we have

/ a(x,Vuy) - Vu, dr = / (a(z, Vuy) — a(x, Vuxs)) - (Vuy, — Vuys) dx
[¢) Q (16)

—|—/ a(z, Vuys) - (Vu, — Vuys) de —|—/ a(x, Vuy) - Vuys dx.
Q Q

For the second term on the right-hand side of (16), having in mind that (x,s)
verify Ag—condition, then Ly (Q) = E,(2), and thanks to (8) we have a(x, Vuy,) €
(Ey(2))N. Moreover, we have Vu,, — Vu weakly in (L, (9))" for o(I1L,(Q), I1E, ()
then

);

lim a(z, Vuyxs) - (Vu, — Vuys)de = lim a(z, Vuyxs) - (Vu — Vuy,) de

s,n—00 Jo s—00 Jo

= lim a(x,0) - Vudx = 0.
57 Ja/,
(17)
Concerning the last term on the right-hand side of (16), since (a(x, Vu,,)), is bounded
n (Ey(2))Y and using (15), we obtain

a(z, Vu,) = a(z,Vu)  weakly in  (Ey(Q)Y for o(IIE,(Q),TIL,(Q)),
which implies that

lim a(z,Vuy,) - Vuxsdx = lim [ a(z,Vu)- - Vuysdz

s;n—o00 Jo s—o0 [ (18)
a(z,Vu) - Vudz.

Q
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By combining (12) and (16) — (18), we conclude that
/ a(x, Vuy,) - Vu, de — / a(z,Vu)-Vudr as n — oo. (19)
Q Q

On the other hand, we have ¢(x,|Vu,|) > 0 and ¢(x,|Vu,|) = ¢(z,|Vu|) a.e. in
Q, by using the Fatou’s Lemma we obtain

/ oz, |Vul) de < liminf/ o(z, |Vuyl) dz. (20)
Q n—oo Q

Moreover, since a(z, Vuy,) - Vu,, — ap(z, |Vu,|) > 0 and
a(x,Vuy,) - Vu, — ap(x, |Vu,|) — a(z, Vu) - Vu — agp(x, [Vul|) a.e. in  Q,
Thanks to Fatou’s Lemma, we get
/ a(xz,Vu) - Vu — ap(z, |Vul) de < lini)inf/ a(x,Vuy,) - Vu, — ap(z, |Vuy,|) d,
Q nTeeJa
using (19), we obtain
/ o(z, |Vul|) de > limsup/ oz, |Vuyl) dz. (21)
Q n—oo JQ
By combining (20) and (21), we deduce
/ oz, |Vuy|) de — / o(z, |Vul) dx as n — oo. (22)
Q Q

In view of Lemma 4.1, we conclude that
oz, [Vup|) — oz, |Vul) in L'(Q), (23)

which finishes our proof.

5. Main results

Definition 5.1. A measurable function u is called an entropy solution of the quasi-
linear unilateral elliptic problem (11) if

Tk(u) € Ky for any k> ||V e,

(24)

/ a(x,Vu) - VI (u—v) dx < / fTi(u—v)de Yo € Kg N L™ (Q).
Q Q

Theorem 5.1. Assuming that (7) — (10) hold, and f € L'(Q), Then, the problem
(11) has a unique entropy solution.

5.1. Existence of entropy solution.
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Step 1 : Approzimate problems. Let (fn)new € WLE,(2)NL>® () be a sequence of
smooth functions such that f, — fin L*(Q) and | f,,| < |f| (for example f,, = T}, (f)).
We consider the approximate problem

Uy € K\I/,
(Pn)
/a(x,Vun)-V —v dm</fn u, —v)dr forany v € KgNL¥(Q).
Q
(25)
Let X = Ky, we define the operator A : X — X™* by
(Au,v) = / a(x,Vu) - Vv dx Yv € Ky.
Q
Using (6), we have for any u,v € Ky,
‘/ a(x,Vu) - Vvdx‘ </B z) + ki, (o(2, ko | Vu)))) Vo] da
<5 [ v K@) dot iy [ (o kalVul) do+ 1+ ) [ ol Vol da
Q Q Q
(26)

Lemma 5.2. The operator A acted from Wi Ly,(Q) into W™ Ly (Q) = WLE,(Q) is
bounded and pseudo-monotone. Moreover,A is coercive in the following sense : there
exists vg € Ky such that

(Av,v — vg)

[v]]1,6,0

— 0 as  ||v||i,p,0 = 00 for ve Ky.

Proof of Lemma 5.2. In view of (26), the operator A is bounded. For the coercivity,
let € > 0, we have for vy € Ky and any v € Wi L,(9)

(v,on)] < [ ot Vo)| [Veo| do < 5 [ (560) + kv o hal T Vo] da
SB/QKx |wo|dx+/3kls/ng (¢l 2 F0])) 2 Vo] d
§ﬁ/ﬂw(x7K(x))dx+B/an(x,|Vv0|)dm—i—ﬁklfs/ﬂgp(x,k2|Vv|) dx

1
+6k15/ﬂ<p(x,g|Vvo|) dx

1
ch/<p(x,|Vv|)dx+ﬁ(k15—|—1)/ ol (= + 1) Vo) o+ Cr,
Q Q

with c. is a constant depending on . By taking e small enough such that c. < §,
we obtain

1
(Av,vg) < %/Qcp(a:, [Vo)dz + B(kie + 1) /Q o(x, (g + 1)|Vuo|) dz + C1.

On the other hand, in view of (10), we have

(Av,v) = / a(xz,Vv) - Vodz > a/ oz, |V|) d
Q Q
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Therefore
(Av,v —vg)  (Av,v) — (Av,vg)
vll1.0.0 [[v]]1,¢,0

1
o[ pla. (Vo) d = § [ ol [Vol)da = Bne +1) [ plo. (£ +1)[ V) da + Co
Q Q Q

Y

HU”L%Q
1
%/ go(x,|Vv\)dx—ﬁ(k16+1)/go(x,(g+1)|Vv0|)dx+C1
Q Q

= — 0
HU”L%Q

as [|v]|1,4,0 goes to infinity.
It remains to show that A is pseudo-monotone. Let (u)i be a sequence in W L, (£2)
such that
up = uin WaLy(Q)  for o(IIL,(2),[1E,(Q)),
Aup — x in WEL(Q) for o(IIEw(Q),I1L,()), (27)
lim sup(Auyg, ug) < (x, u).

k—o0

We will prove that
X = Au and (Aug,ug) — (x,u) as k — oo.

Firstly, since W Ly,(2) —— E,(£2), then u, — u in E, () for a subsequence still
denoted (ug)k-

As (ug)g is a bounded sequence in WjL,(£2) and thanks to the growth condition
(8), it follows that (a(z, Vuy))x is bounded in (Ey(£2))™. Therefore, there exists a
function & € (Ey(2))Y such that

a(z,Vur) =& in (Bu(Q)N for o(lIE4(Q),TIL,(Q) as k—oo.  (28)
It is clear that, for all v € W L,(f2), we have

(x,v) = lim (Aug,v) = lim [ a(z,Vug) - Vode= [ £ -Vuvdz. (29)
k—o0 k—o0 Q Q
By using (27) and (29), we obtain
lim sup{Auy, ug) = lim sup/ a(x, Vug) - Vug de < / & - Vudz. (30)
k— o0 k—oo JQ Q
On the other hand, thanks to (9), we have
/ (a(x, Vug) — al(x, Vu)) - (Vug — Vu) dz > 0, (31)
Q
then
/ a(x,Vuy) - Vug do > / a(x,Vug) - Vu dz —|—/ a(x,Vu) - (Vu,, — Vu) de.
Q Q Q

In view of (28), we have

liminf | a(z, Vuy) - Vuy de > / £-Vudx
Q

k—oc0 Q
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and (30) yields
lim [ a(z,Vug) - Vug de = / &-Vudz. (32)
Q

k—o0 Q

Combining (29) and (32), we find:
(Aug, uk) = {x,u) as k — oo. (33)

In view of (32), we have

lim (a(m, Vuy) — al(x, Vu)) - (Vug, —Vu)dz — 0

k—o0 O

which implies, thanks to Lemma 4.2, that
up —u in WyLy(Q) and Vur — Vu ae. in

then
a(z, Vug) = a(x,Vu) in (Ey(Q)Y,
we deduce that x = Au, which completes the proof the Lemma 5.2. (|

In view of Lemma 5.2, there exists at least one weak solution u,, € Wy L, () of
the problem (25), (cf. [10], Lemma 6).

Step 2 : A priori estimates. Taking v = u,, — nTj(u, — ¥T) € WL, (), for n small
enough we have v > ¥, thus v is an admissible test function in (25), and we obtain

/ a(x, Vuy,) - VIg(uy, — 1) dr < / FoTe(un — ¥ dz,
Q Q
Since VT (u, — ¥T) is identically zero on the set {|u, — ¥T| > k}, we can write
/ a(z,Vu,) - V(u, — ¥ de < | fuTk(u, — V) do < Cok,
{Jun—W+|<k} Q

with Cy = ||f|l1, it follows that

/ a(x,Vuy,) - Vu, de < Cok + / a(z,Vuy,) - VU dx.
{un—0+|<k} {lun—T+|<k}
Let 0 < A < a , it’s clear that
a+1
YA
a(z, Vuy,) - Vuy, de < Cok + A a(z, Vuy) - dz. (34)
{lun—w+|<k} {lun —0+|<k}
Thanks to (9), we have
vt vt
/ (a(x, Vuy,) — a(z, V7)) - (Vu, — v )dz >0,
{lun—w+|<k} A A
then
\VAURS
/ a(z, Vuy,) - dr < / a(z,Vuy) - Vu, dz
{lun—0+|<k} {lun—T+|<k} 4 N
v v
- a(z, L) - (Vu, — v ) dx.
{lun—w+|<k) A A
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Which yields thanks to (34), that

/ a(z,Vuy,) - Vu, de < Cok + )\/ a(x,Vuy) - Vu, dr
{Jun —+ <k} {lun—¥+|<k} N n
v
—A a(x, vy ) (Vu, — v ) dx.
{Jun— W+ <k} A A

Therefore, we obtain

yt Pt
(1—)\)/ a(x, Vuy) - Vu, d SCgk—I—)\/ a(%v ) Y z
0+ <k} {Jun—0+| <k} A A
\VAURS
- a(x, ——) - Vu, dz,
{lun—w+|<k) A
(35)
In view of (6), we have
+ \aa
| / e, ) Vg ds| < [ Y (e, ) do
{|un—T+|<k} A {lun =¥t |<k} A
+ o(z, |Vuy|) de

{lun—w+|<k}
Having in mind (10) and (35), we obtain

(a1 - —)\)/{ G

|“n

<(1-X) / a(x,Vuy,) - Vu, de — )\/ oz, |Vuy,l|) de
{|un—0+|<k} {lun—¥+|<k}

AVAURSREA VA AVAU s
< Cok+ A a(x, ) - dr + A P(z,|a(z, )|) d,
{lun—w+| <k} A A {lun—w+| <k} A
then,
/ oz, |Vuy|) de < Csk for k>1. (36)
{Jun—0+|<k}

On the other hand, since {|u,| <k} C {Ju, — V7| <k +|[¥T||x}, then

/Q (@, [V Tx(un)) dz = / (V) da

|un|<E}
< (@, [Vun|) de
{lun =T+ | <+ 0|}

< Ca(k+ [[97]|),
which implies that

/ o(x, VT (u,)|) de < Cyk for k> max(1, || V"), (37)
Q

with C} is a constant that does not depend on n and k.
Thus (T (uy)), is bounded in W3 L, (€2) uniformly in n, then there exists a subse-
quence still denoted (T (un))nenw and v € Wi L, (Q) such that

{Tk(un)évk weakly in - WgL,(Q) for o(IIL,(2),[1E,(Q)),

Ti(un) — vp  strongly in  E,(2) and aein Q. (38)
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Step 8 : Convergence in measure of u,. In view of (7), we have

M(t M(t
M(t) < p(z,ct) ae. in Q with lim M) =0 and lim M) =00

t—0 t t—oo t

In view of ([15], Lemma 5.7), there exists two positive constants C5 and Cg, and a
function ¢(-) € L*(Q) such that

C’5/QM(|Tk(un)|)d;z:+/

q(z)dz < /M(CGIVTk(Un)\)HJ(I)dI S/@(Iv VT (un)|)da.
Q Q Q

So, in virtue of (37), we obtain
/ M(|Ti(uy)|) de < kC for k> max(1, ||V ). (39)
Q
Then, we deduce that,

M (k) meas({lun| > k}) = M (| T (un)]) da

/Iun|>k}
/

< | M(|Tk(up)|) de < kC7,
Q
hence,
meas({|u,| > k}) = LiS — 0 as k— +o0 (40)
" - M(k) '

For all § > 0, we have

meas{|un, — | >0} < meas{|u,| > k} + meas{|u,,| > k}

+meas{| Ty (un) — Tr(um)| > 6}.
Let € > 0, using (40) we may choose k = k(e) large enough such that
meas{|un| > k} < g, and  meas{|um| > k} < %- (41)

Moreover, in view of (38) we have Tj(u,) — vy strongly in E,(2), then, we can
assume that (T (up))nemv is a Cauchy sequence in measure. Thus, for all k£ > 0 and
d,e > 0, there exists ng = no(k, d,€) such that

meas{|Ty(un) — T(un)| > 0} < % for all m,n > no(k,d,€). (42)

By combining (41) — (42), we conclude that
Vd,e >0 there exists ng =mng(d,e) such that meas{|un, —um| >0} <e

for any n,m > ng(d,¢). It follows that (u,), is a Cauchy sequence in measure, then
converges almost everywhere, for a subsequence, to some measurable function u. Con-
sequently, we have

{nw%wm)mmwlw%m)mam@@ﬂm@%

T(un) — Ti(u) strongly in  E,(Q). (43)
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Step 4 : Strong convergence of truncations. In the sequel, we denote by ¢;(n), i =
1,2,... various real-valued functions of real variables that converges to 0 as n tends
to infinity.

Let h > k > 0, we define

M := 4k + h, Zn = U — Th(ug) + Tk (un) — Te(u)  and  wy = Tog(2n).

Taking v = u,, — nw,, we have v > ¥ for 1 small enough, thus v is an admissible test
function in (25), and since Vw,, = 0 on {|u,| > M}, we obtain

/ a(x, VT (uy)) - Vw, de < / Sfnwn dz.
We have wy, = Ti(upn) — Ti(u) on {|u,| < k}, we conclude that

/ a(x, VI (un)) - (VT (un) — VIk(u)) de
{lun|<k}

+ a(x, VT (uy)) - Vw, dz < / fnwn dx.
{k<|un|<M} Q

Concerning the second term on the left-hand side of (44), we have

/ a(x, VT (uy)) - Vwy, dz
{k<|un|<M}

a(x, VT (un)) - V(uy — Th(ug) + Ti(un) — T (u)) dz

~/{k<|un|§M}ﬂ{|2n|§2k}

— la(x, VT (un))] |V (u)| de,
{k<|un|<M}

v

We have VTj(u) € (L,(2))Y, and since (|a(x, VT (un))|)rs is bounded in Ly () =
E (), there exists ¢ € Ey(Q) such that |a(xz, VT (uy,))| = ¢ weakly in E, () for
0(Ey(2), Ly (£2)). Therefore,

/ (0, VT ()| [V Tk (w)] dar —> ¢ IVTi(w)| dz = 0. (45)
{h<un| <M} {k<lul<M}

It follows that

/ a(x, VT (uy)) - Vw, dz > e1(n). (46)
{k<|un|<M}

Then, since f, — f in LY() and w, — Tor(u — Th(u)) weak—x* in L>(£), and
using (44), we deduce that

/ a(x, VT (un)) - (VIk(uy) — VIg(uw)) dz < / fTok(u — Th(u)) de + e2(n).
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function of Q. For the term on the left-hand side of (47), we have

We define Q, = {z € Q : |[VTi(u(z))| < s} and denote by x, the characteristic

/ a(@, VTk(un)) - (VTk(un) — VT () da
{lun|<k}

= /Qa(x, VTi(uy)) - (VTk(uy) — VT (u)xs) do

+ /a(z, VTi(up)) - (VT (u)xs — VTi(v)) dz Jr/ a(x, VI (uy)) - VI (u) dx
Q {lun|>k}

_ /Q (a(2, VTi(un)) — ae, VTi(w)xs)) - (VTi(n) — VTk(u)xs) do

+/ a(x, VT (w)xs) - (VT (un) — VT (u)xs) do
0

—/ a(x, VT (uy)) - VI (u) dx + / a(x, VT (uy)) - VI (u) dz.
O\Q, {lun|>k}
(48)
For the second term on the right-hand side of (48), we have a(x,VTi(u)xs) €
(Ey ()N, and since VT, (up,) — VT (u) weakly in (L, (Q))" for o(I1L,(2), I1E(2)),
then
lim [ a(z, VIp(u)xs) - (VTg(un) — VT (u)xs) dx

n—roo Q

= /Qa(x, VTi(u)xs) - (VTk(u) — VI (u)xs) dz (49)

= a(x,0) - VI (u) dx.
2\,

Concerning the third term on the right-hand side of (48), since (a(x, VTk(un))n is
bounded in (Fy(Q))Y, there exists ¢ € (Ey(Q))N such that a(z, VT(u,)) — &
weakly in (Ey(Q))V for o(I1E (), I1L,(12)), it follows that

lim a(x, VT (uy)) - VIi(u) de = / & VTi(u) dx. (50)
n=o0 JONQ, O\Q,
For the last term on the right-hand side of (48), we obtain
lim a(z, VIi(uy)) - VI (u) de = / & - VT (u) dx = 0. (51)
"0 S {lun|>k} {lu|>k}

By combining (48) — (51), we deduce that
/{ - a(z, VT (uy)) - (VT (uy) — VT (u)) dz
= /Q (a(z, VT (un)) — alz, VTi(u)xs)) - (VTk(un) — VTi(u)xs) do (52)
+/ (a(z,0) =€) - VIi(u) dz + e5(n)
Q\Q,
and since (a(z,0) —n) - VT (u) € L'(Q), then

/ (a(z,0) = &) - VTi(u) de — 0 as s — oo.
O\Q.
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Therefore, using (47) we conclude that
[ e 9Ti0) — 0o, Vi) - (Vi) = VTi(wxe)
Q

(53)
< / fTor(u —Th(u)) dz + e4(n, s).
Q

We have
/ fTop(u — Typ(u))doe — 0 as h — oo.
Q

It follows that
lim (a(z, VTi(uy)) — a(z, VT (u)xs)) - (VTk(un) — VTi(u)xs) dz = 0. (54)

m,800 J o
In view of Lemma 4.2, we deduce that
Vu, — Vu a.e. in (55)
and
(2, [VTi(un)l) — oz, |VTr(w)])  in LY(Q). (56)

Step 5 : Passage to the limit. Let v € KgNL>® () and 1 > 0, we have u,, — 0T (un, —
v) € Ky is an admissible test function in (25) for 1 small enough, and we obtain

/ a(z, Vuy,) - VI (u, —v) de < / foTk(up —v) da. (57)
Q Q

Choosing M = k + ||v||oc, then {|u, —v| < k} C {|u,| < M}. Firstly, we can write
the term on the left-hand side of the above relation as

/a(x, Vuy) VIg(u, —v) de = /a(x, VT (un)) - (VT (un) — VU)X {jup—v|<k} AT
Q Q

_ /Q (a(at, VTar(un)) — (@, V) - (VT (ttn) — VO)X {fus—oicty da

+/ a(z, Vo) - (VT (un) — VU)X {ju, —v|<k} dT-
Q

We have

(a(z, VT (un)) — alz, Vo)) - (VTa(tun) = V)X {ju,—v|<k}
— (a(x, VTy (u) — a(z, V) - (VTpr(u) — VU)X {ju—vj<k} @€ in = Q.

According to (9) and Fatou’s lemma, we obtain

lim inf/ a(x, Vuy,) - VT (uy — v) dz
Q

n—oo
> /(a(x, VT (u)) — a(z, Vv)) - (VT (u) = VU)X {ju—v|<k} dT (60)
Q
+ li_>rn a(z, Vo) - (VT (un) — VU)X [, —v|<k} dT-
n o0 Q

For the second term on the right-hand side of (60), we have a(z,Vv) € (E,(Q))Y
and VT (uy) = VT (u) weakly in (Ly(Q))N for o(I1L, (), ILE,(12)), then

lim a(x, Vv) - (VT (un) — V)X {ju,—v|<k} dT

n—oo
/ a(x, Vo) - (VT (u) — VU)X {ju—v|<k} de.
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Therefore, we get

linl)inf/a(x, Vuy) - VT (un —v) dx Z/a(a:, VT (u) - (VT (w) — VU)X {ju-v|<k} dT
:/ a(z,Vu) - VI (u —v) dz.
Q
(61)
On the other hand, being T (u, — v) = Tk (u — v) weak-*x in L°°(Q2) we deduce that

/ foTk(uy, —v) doe — / f Tk(u—v) dx. (62)
Q Q
By combining (61) and (62), we conclude the existence of entropy solution for our

problem.

5.2. Uniqueness of entropy solution. Let u;,us be two entropy solutions of the
problems (24), we shall prove that u; = us.

By using the test function v = Tj(uz2) € Ky N L>®(£) in (24) for the equation with
solution w1, we have

/ a(z,Vuy) - VT (ug — Th(uz)) doe < / FTi(ur — Ty (uz)) da.
Q Q

Similarly, by using v = Tj,(u1) € K¢ NL>®(£2) as a test function for the equation (24)
with solution us, we obtain

/ a(x, Vug) - VT (ug — Th(uy)) dr < / FTe(ue — T (uy)) de.
Q Q
By adding these two inequalities, we get

/ a(z,Vuy) - VT (ur — Th(ug)) dx —|—/ a(x,Vus) - VT (uo — Ty (u1)) dz
Q Q

(63)
< / ST (ur = Th(uz)) + Ti(uz — Th(u1))] da.
Q
We decompose the first integral of the left-hand side of (63) as
/ a(x,Vuy) - VTi(ug — Tp(ug)) de = / a(z,Vuy) - V(uy — Th(uz)) dx
Q {lwr=Th (u2)|<k}

—

a(x,Vuy) - (Vuy — Vug) dz
{lug —uz|<k}n{uz|<h}

a(xz,Vuy) - Vuy dz,
{lur=Th (u2)|<k}N{|uz|>h}

a(x,Vuy) - (Vuy — Vug) dz

1V
— +

{luy —uz|<k}n{|uz| <h}N{|ui|<h}

_|_

a(x,Vuy) - (Vuy — Vug) dz.
{lur —uz| <k} {|uz|<h}N{|u1[>h}
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Similarly, we have

/a(x,Vug) NTi(ug —Th(uy)) dx 2/ a(xVug) (Vus —Vuy) dz
Q {luz—ur|<k}O{Jur| <h}N{|uz|<h}
+ a(xz, Vuz) - (Vug — Vuy) dz.

{lue—ur[<kIN{ur [<AIN{[us| >R}
(65)
By combining (64) — (65), we obtain

/ a(2, Vur) - VT (w1 — Th(us)) do +/ a(z, V) - VTk(us — Th(ur)) da
Q Q

> (a(z, Vuy) — a(z, Vug)) - (Vug — Vug) do

/{Im—uzSk}ﬂ{luzéh}ﬂ{lulléh}

+ a(x,Vuy) - (Vuy — Vug) dzx

fur —uz | <k} Juz | <A {[ug| > R}
+\/
{

a(x,Vug) - (Vug — Vuy) dz.
luz —ur |<k}N{|ur | <h}N{|uz|>h}

In view of (63), we conclude that
/ (a(z,Vuy) — a(z, Vug)) - (Vuy — Vug) dx
{lur—ug|<k}n{fuz|<h}O{|u|<h}
< [ Bulur = Th(u) + Tuluz ~ Th(u)] do
Q

(66)
—/ a(x,Vuy) - (Vuy — Vug) dx
/ul—u2|§k}ﬁ{u2|§h}ﬂ{u1>h}
{

a(xz,Vug) - (Vug — Vuy) da.
luz —u1 [<E}N{Jur|<h}N{|uz|>h}

For the first term on the right-hand side of (66), we have

| T = Th02) + T = T )]

< |f‘ |Tk(u1 —UQ)+Tk(U2 —U1)|d£L'.

{Ju1|<h,|uz|<h}
+ |1 [Tk (ur — Th(u2)) + Ti(uz — Th(ur))| do

|ur|>h}
+/ |fI Tk (ur — Th(uz)) + Ti(uz — Th(u1))| do
{luz|>h}

< ok |f|dx—|—2k/ \f| da.
{|lur|>h} {|luz|>h}

since f € L'(Q) and meas{|u;| > h} — 0 when h — oo for i = 1,2, it follows that
/ FITo(us — Ta(us)) + T (us — Tn(w))] dz — 0 as h—soo.  (67)
Q

Concerning the third term on the right-hand side of (66). By taking Tp,(u1) as a test
function in (24) for the equation with solution u;, we obtain

/ a(z,Vuy) - VT (ug — Th(ug)) dax < / [T (ur — Th(w)) de,
Q Q
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in view of (10), we obtain

a/ oz, |Vup|) dz < / a(z,Vuy) - Vuy dz
{h<|u1|<h+k} {h<Jui|<h+k}

<k |f|dx —0 as h — oo.
{lu1|>h}

(68)

Also, we prove can that

a/ o(z,|Vug|)dz — 0 as h — oo. (69)
{h<|uz|<h+k}

On the other hand, we have

{Jur —ua] < k}n{Juz] <h}N{jui] > h} C{h <|ui| <h+Ek}N{h—k <|uz| <h},

In view of Young’s inequality, we obtain

/ a(x,Vuy) - (Vuy — Vug) dz
{lur—uz|<k}N{uz| <h}O{|ur|>h}

<p (K (@) + k7 (@, ol V) (Ve | + [Vt d
{lur—uz|<k}N{|uz|<h}N{|u1|>h}
<28 Y(z, K(x)) dx + 20k, o(x, ke|Vuq|) dz
{lu1|>h} {h<|u1|<h+k}
+6(k1 +1) e(@, |Vui|) do
h<|ui|<h+k}
+ﬁ(k’1+1)/ o(x, |Vug|)dz — 0 as h — oo,
{(h—k<|uz|<h}
(70)

Similarly, we can prove that

/ a(x,Vug) - (Vug —Vuy)der — 0 as h — oo, (71)
{lue—ur|<k}IN{Jur |[<hIN{|uz|>h}

By combining (66), (67) and (70) — (71), we conclude that
/ (a(z, Vur) — a(z, Vus)) - (Vuy — Vug) dx
{lur —uz| <k}

= lim (a(z, Vur) — a(z, Vug)) - (Vug — Vug) dz =0,
700 J{ur —ua | Sk} {Jua| <h}N{|u| <h}
(72)
Since (72) is true for all k& > 0 and thanks to (9), we conclude that V(u; —ug) =0
a.e.in , and since u; = us = 0 on 0%, thus u; = us a.e. in 2, which conclude the
proof of uniqueness of entropy solutions.

Example 5.1. Taking ¢(x,t) = [t[P®) log” (1+[t]) for 1 < p(z) < coand 0 < ¢ < 0.
Let f € L'(Q) and the obstacle ¥ = 0. We consider the following Carathéodory
function

a(z, Vu) = [Vul[P P2 1og? (1 4 |Vu|) Vu.
It is clear that a(x, Vu) verifies (8) — (10). In view of the Theorem 5.1, the problem

{ —div(|Vu|p(””)_2log”(1+|Vu|) Vu) —f inQ,
u =0

73
on 0f), (73)
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has one entropy solution, i.e.

and

u>0 ae in Q and Ti(u) € Wy L,(9),

/ (VuP@ =210 (1 + |Vu|)Vu - VTi(uy — v) de < / fTi(up — v) de, (74)
Q Q

for any v € WL, (Q) N L>(Q) with v > 0 a.e. in Q.
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